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Clustering

Distance Measures

Hierarchical Clustering

k -Means Algorithms
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The Problem of Clustering

�Given a set of points, with a notion of 
distance between points, group the 
points into some number of clusters, so 
that members of a cluster are in some 
sense as close to each other as 
possible.
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Problems With Clustering

�Clustering in two dimensions looks 
easy.

�Clustering small amounts of data looks 
easy.

�And in most cases, looks are not
deceiving.
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The Curse of Dimensionality

�Many applications involve not 2, but 10 
or 10,000 dimensions.

�High-dimensional spaces look different: 
almost all pairs of points are at about 
the same distance.

� Assuming random points within a bounding 
box, e.g., values between 0 and 1 in each 
dimension.
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Example: SkyCat

�A catalog of 2 billion “sky objects”
represented objects by their radiation in 
9 dimensions (frequency bands).

�Problem: cluster into similar objects, 
e.g., galaxies, nearby stars, quasars, 
etc.

�Sloan Sky Survey is a newer, better 
version.
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Example: Clustering CD’s 
(Collaborative Filtering)

�Intuitively: music divides into categories, 
and customers prefer a few categories.

� But what are categories really?

�Represent a CD by the customers who 
bought it.

�Similar CD’s have similar sets of 
customers, and vice-versa.



8

The Space of CD’s

�Think of a space with one dimension 
for each customer.

� Values in a dimension may be 0 or 1 only.

�A CD’s point in this space is             
(x1, x2,…, xk), where xi = 1 iff the i 

th

customer bought the CD.

� Compare with the “correlated items”
matrix: rows = customers; cols. = CD’s.
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Example: Clustering Documents

�Represent a document by a vector    
(x1, x2,…, xk), where xi = 1 iff the i th

word (in some order) appears in the 
document.

� It actually doesn’t matter if k is infinite; 
i.e., we don’t limit the set of words.

�Documents with similar sets of words 
may be about the same topic.
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Example: Protein Sequences

�Objects are sequences of {C,A,T,G}.

�Distance between sequences is edit 
distance, the minimum number of 
inserts and deletes needed to turn one 
into the other.

�Note there is a “distance,” but no 
convenient space in which points “live.”
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Distance Measures

� Each clustering problem is based on 
some kind of “distance” between 
points.

� Two major classes of distance 
measure:

1. Euclidean

2. Non-Euclidean
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Euclidean Vs. Non-Euclidean

�A Euclidean space has some number of 
real-valued dimensions and “dense” points.

� There is a notion of “average” of two points.

� A Euclidean distance is based on the locations 
of points in such a space.

�A Non-Euclidean distance is based on 
properties of points, but not their 
“location” in a space.
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Axioms of a Distance Measure

� d is a distance measure if it is a 
function from pairs of points to reals 
such that:

1. d(x,y) > 0. 

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle 
inequality ).
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Some Euclidean Distances

�L2 norm : d(x,y) = square root of the 
sum of the squares of the differences 
between x and y in each dimension.

� The most common notion of “distance.”

�L1 norm : sum of the differences in 
each dimension.

�Manhattan distance = distance if you had 
to travel along coordinates only.
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Examples of Euclidean Distances

x = (5,5)

y = (9,8)
L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35
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Another Euclidean Distance

�L∞ norm : d(x,y) = the maximum of 
the differences between x and y in 
any dimension.

�Note: the maximum is the limit as n
goes to ∞ of what you get by taking 

the n th power of the differences, 
summing and taking the n th root.
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Non-Euclidean Distances

�Jaccard distance for sets = 1 minus 
ratio of sizes of intersection and union.

�Cosine distance = angle between 
vectors from the origin to the points in 
question.

�Edit distance = number of inserts and 
deletes to change one string into 
another.
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Jaccard Distance

�Example: p1 = 10111; p2 = 10011.

� Size of intersection = 3; size of union = 4, 
Jaccard measure (not distance) = 3/4.

�Need to make a distance function 
satisfying triangle inequality and other 
laws.

�d(x,y) = 1 – (Jaccard measure) works.
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Why J.D. Is a Distance Measure

�d(x,x) = 0 because x∩x = x∪x.

�d(x,y) = d(y,x) because union and 
intersection are symmetric.

�d(x,y) > 0 because |x∩y| < |x∪y|.

�d(x,y) < d(x,z) + d(z,y) trickier --- next 
slide.
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Triangle Inequality for J.D.

1 - |x ∩z| + 1 - |y ∩z| > 1 - |x ∩y|

|x ∪z|         |y ∪z|          |x ∪y|

�Remember: |a ∩b|/|a ∪b| = probability 
that minhash(a) = minhash(b).

�Thus, 1 - |a ∩b|/|a ∪b| = probability 
that minhash(a) ≠ minhash(b).
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Triangle Inequality --- (2)

�So we need to observe that  
prob[minhash(x) ≠ minhash(y)] <
prob[minhash(x) ≠ minhash(z)] +
prob[minhash(z) ≠ minhash(y)]

�Clincher: whenever minhash(x) ≠ minhash(y), 
one of minhash(x) ≠ minhash(z) and
minhash(z) ≠ minhash(y) must be true.
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Cosine Distance

�Think of a point as a vector from the 
origin (0,0,…,0) to its location.

�Two points’ vectors make an angle, 
whose cosine is the normalized dot-
product of the vectors: p1.p2/|p2||p1|.
� Example p1 = 00111; p2 = 10011.

� p1.p2 = 2; |p1| = |p2| = √3.

� cos(θ) = 2/3; θ is about 48 degrees.
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Cosine-Measure Diagram

p1

p2p1.p2

θ

|p2|

dist(p1, p2) = θ = arccos(p1.p2/|p2||p1|)
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Why?

p1 = (x1,y1)

p2 = (x2,0)x1

θ

Dot product is invariant under
rotation, so pick convenient
coordinate system.

x1 = p1.p2/|p2|

p1.p2 = x1*x2.
|p2| = x2.
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Why C.D. Is a Distance Measure

�d(x,x) = 0 because arccos(1) = 0.

�d(x,y) = d(y,x) by symmetry.

�d(x,y) > 0 because angles are chosen 
to be in the range 0 to 180 degrees.

�Triangle inequality: physical reasoning.  
If I rotate an angle from x to z and 
then from z to y, I can’t rotate less 
than from x to y.
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Edit Distance

�The edit distance of two strings is the 
number of inserts and deletes of 
characters needed to turn one into the 
other.

�Equivalently, d(x,y) =                      
|x| + |y| -2|LCS(x,y)|.

� LCS = longest common subsequence = 
longest string obtained both by deleting 
from x and deleting from y.
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Example

�x = abcde ; y = bcduve.

�Turn x into y by deleting a, then 
inserting u and v after d.

� Edit-distance = 3.

�Or, LCS(x,y) = bcde.

�|x| + |y| - 2|LCS(x,y)| = 5 + 6 –2*4 = 3.
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Why E.D. Is a Distance Measure

�d(x,x) = 0 because 0 edits suffice.

�d(x,y) = d(y,x) because insert/delete 
are inverses of each other.

�d(x,y) > 0: no notion of negative edits.

�Triangle inequality: changing x to z
and then to y is one way to change x
to y.
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Variant Edit Distance

�Allow insert, delete, and mutate.

� Change one character into another.

�Minimum number of inserts, deletes, 
and mutates also forms a distance 
measure.
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Methods of Clustering

�Hierarchical:

� Initially, each point in cluster by itself.

� Repeatedly combine the two “closest”
clusters into one.

�Point Assignment:

�Maintain a set of clusters.

� Place points into “closest” cluster.
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Hierarchical Clustering

�Key problem: as you build clusters, how 
do you represent the location of each 
cluster, to tell which pair of clusters is 
closest?

�Euclidean case: each cluster has a 
centroid = average of its points.

�Measure intercluster distances by distances 
of centroids.
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Example
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And in the Non-Euclidean Case?

�The only “locations” we can talk about 
are the points themselves.

� I.e., there is no “average” of two points.

�Approach 1: clustroid = point “closest”
to other points.

� Treat clustroid as if it were centroid, when 
computing intercluster distances. 
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“Closest”?

� Possible meanings:

1. Smallest maximum distance to the other 
points.

2. Smallest average distance to other 
points.

3. Smallest sum of squares of distances to 
other points.
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Example

1 2

3

4

5

6

intercluster

distance

clustroid

clustroid



36

Other Approaches to Defining 
“Nearness” of Clusters

�Approach 2: intercluster distance = 
minimum of the distances between any 
two points, one from each cluster.

�Approach 3: Pick a notion of “cohesion”
of clusters, e.g., maximum distance from 
the clustroid.

�Merge clusters whose union is most 
cohesive.
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k –Means Algorithm(s)

�Assumes Euclidean space.

�Start by picking k, the number of 
clusters.

�Initialize clusters by picking one point 
per cluster.

� For instance, pick one point at random, 
then k -1 other points, each as far away as 
possible from the previous points.



38

Populating Clusters

1. For each point, place it in the cluster 
whose current centroid it is nearest.

2. After all points are assigned, fix the 
centroids of the k clusters.

3. Reassign all points to their closest 
centroid.
� Sometimes moves points between 

clusters.
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Example
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points
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Getting k Right

� Try different k, looking at the change in 
the average distance to centroid, as k
increases.

�Average falls rapidly until right k, then 
changes little.

k

Average
distance to
centroid

Best value
of k
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BFR Algorithm

�BFR (Bradley-Fayyad-Reina) is a variant 
of k -means designed to handle very 
large (disk-resident) data sets.

�It assumes that clusters are normally 
distributed around a centroid in a 
Euclidean space.

� Standard deviations in different dimensions 
may vary.
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BFR --- (2)

�Points are read one main-memory-full at 
a time.

�Most points from previous memory loads 
are summarized by simple statistics.

�To begin, from the initial load we select 
the initial k centroids by some sensible 
approach.
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Initialization: k -Means

� Possibilities include:

1. Take a small sample and cluster 
optimally.

2. Take a sample; pick a random point, and 
then k – 1 more points, each as far from 
the previously selected points as possible.



47

Three Classes of Points

1. The discard set : points close enough to 
a centroid to be represented statistically.

2. The compression set : groups of points 
that are close together but not close to 
any centroid.  They are represented 
statistically, but not assigned to a cluster.

3. The retained set : isolated points.
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Representing Sets of Points

� For each cluster, the discard set is 
represented by:

1. The number of points, N.

2. The vector SUM, whose i th component is 
the sum of the coordinates of the points in 
the i th dimension.

3. The vector SUMSQ: i th component = sum 
of squares of coordinates in i th dimension.
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Comments

�2d + 1 values represent any number of 
points.

� d = number of dimensions.

�Averages in each dimension (centroid 
coordinates) can be calculated easily as 
SUMi /N.

� SUMi = i
th component of SUM.
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Comments --- (2)

�Variance of a cluster’s discard set in 
dimension i can be computed by: 

(SUMSQi /N ) – (SUMi /N )2

�And the standard deviation is the 
square root of that.

�The same statistics can represent any 
compression set.



51

“Galaxies” Picture

A cluster.  Its points
are in the DS.

The centroid

Compressed sets.
Their points are in
the CS.

Points in
the RS
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Processing a “Memory-Load”
of Points

1. Find those points that are “sufficiently 
close” to a cluster centroid; add those 
points to that cluster and the DS.

2. Use any main-memory clustering 
algorithm to cluster the remaining 
points and the old RS.

� Clusters go to the CS; outlying points to 
the RS.
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Processing --- (2)

3. Adjust statistics of the clusters to 
account for the new points.

4. Consider merging compressed sets in 
the CS.

5. If this is the last round, merge all 
compressed sets in the CS and all RS 
points into their nearest cluster.
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A Few Details . . .

�How do we decide if a point is “close 
enough” to a cluster that we will add 
the point to that cluster?

�How do we decide whether two 
compressed sets deserve to be 
combined into one?
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How Close is Close Enough?

� We need a way to decide whether to 
put a new point into a cluster.

� BFR suggest two ways:

1. The Mahalanobis distance is less than a 
threshold.

2. Low likelihood of the currently nearest 
centroid changing.
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Mahalanobis Distance

� Normalized Euclidean distance.

� For point (x1,…,xk) and centroid 
(c1,…,ck):
1. Normalize in each dimension: yi = |xi -ci|/σi
2. Take sum of the squares of the yi ’s.

3. Take the square root.
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Mahalanobis Distance --- (2)

�If clusters are normally distributed in d
dimensions, then one standard 
deviation corresponds to a distance √d.

� I.e., 70% of the points of the cluster will 
have a Mahalanobis distance < √d.

�Accept a point for a cluster if its M.D. is 
< some threshold, e.g. 4 standard 
deviations.
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Picture: Equal M.D. Regions

σ
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Should Two CS Subclusters Be 
Combined?

�Compute the variance of the combined 
subcluster.

� N, SUM, and SUMSQ allow us to make that 
calculation.

�Combine if the variance is below some 
threshold.


