
1

More Stream-Mining

Counting How Many Elements

Computing “Moments”

2

Counting Distinct Elements

�Problem: a data stream consists of
elements chosen from a set of size n.
Maintain a count of the number of
distinct elements seen so far.

�Obvious approach: maintain the set of
elements seen.

3

Applications

�How many different words are found
among the Web pages being crawled at
a site?

� Unusually low or high numbers could
indicate artificial pages (spam?).

�How many different Web pages does
each customer request in a week?

4

Using Small Storage

�Real Problem: what if we do not have
space to store the complete set?

�Estimate the count in an unbiased way.

�Accept that the count may be in error,
but limit the probability that the error is
large.

5

Flajolet-Martin* Approach

�Pick a hash function h that maps each of
the n elements to log2n bits, uniformly.

� Important that the hash function be (almost)
a random permutation of the elements.

�For each stream element a, let r (a) be
the number of trailing 0’s in h (a).

�Record R = the maximum r (a) seen.

�Estimate = 2R.
* Really based on a variant due to AMS (Alon, Matias, and Szegedy)

6

Why It Works

�The probability that a given element a
has h (a) ≥ r is 2-r.

�If there are m elements in the stream,
the probability that R ≥ r is 1 – (1 - 2-r)m.

�If 2r >> m, prob ≈ m / 2r (small).

�If 2r << m, prob ≈ 1.

�Thus, 2R will almost always be around m.

7

Why It Doesn’t Work

�E(2R) is actually infinite.

� Probability halves when R -> R +1, but value
doubles.

�That means using many hash functions
and getting many samples.

�How are samples combined?

� Average? What if one very large value?

�Median? All values are a power of 2.

8

Solution

�Partition your samples into small
groups.

�Take the average of groups.

�Then take the median of the averages.

9

Moments (New Topic)

�Suppose a stream has elements chosen
from a set of n values.

�Let mi be the number of times value i
occurs.

�The k th moment is the sum of (mi)
k

over all i.

10

Special Cases

�0th moment = number of different
elements in the stream.

� The problem just considered.

�1st moment = sum of the numbers of
elements = length of the stream.

� Easy to compute.

�2nd moment = surprise number = a
measure of how uneven the distribution is.

11

Example: Surprise Number

�Stream of length 100; 11 values
appear.

�Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9. Surprise # = 910.

�Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1,
1. Surprise # = 8,110.

12

AMS Method

�Works for all moments; gives an
unbiased estimate.

�We’ll just concentrate on 2nd moment.

�Based on calculation of many random
variables X.

� Each requires a count in main memory, so
number is limited.

13

One Random Variable

�Assume stream has length n.

�Pick a random time to start, so that any
time is equally likely.

�Let the chosen time have element a in
the stream.

�X = n * ((twice the number of a ’s in the
stream starting at the chosen time) – 1).

14

Expected Value of X

�2nd moment is Σa (ma)
2.

�E(X) = (1/n)(Σall times t of n * (twice the

number of times the stream element at

time t appears from that time on) – 1).
�= Σa (1/n)(n)(1+3+5+…+2ma-1) .

�= Σa (ma)
2.

15

Combining Samples

�Compute as many variables X as can fit
in available memory.

�Average them in groups.

�Take median of averages.

�Proper balance of group sizes and number
of groups assures not only correct
expected value, but expected error goes
to 0 as number of samples gets large.

16

Problem: Streams Never End

�We assumed there was a number n,
the number of positions in the stream.

�But real streams go on forever, so n is
a variable --- the number of elements
seen so far.

17

Fixups

1. The variables X have n as a factor ---
need to scale as n grows.

2. Suppose we can only store k counts.
We must throw some X ’s out as time
goes on.

� Objective: each X is selected with
probability k / n.

18

Solution to (2)

�Choose the first k elements.

�When the n th element arrives (n > k),
choose it with probability k / n.

�If you choose it, throw one of the
previously stored variables out, with
equal probability.

