More Stream-Mining

Counting How Many Elements
Computing "Moments"

Counting Distinct Elements

- ◆Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?).
- How many different Web pages does each customer request in a week?

Using Small Storage

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin* Approach

- Pick a hash function h that maps each of the n elements to log₂n bits, uniformly.
 - Important that the hash function be (almost)
 a random permutation of the elements.
- For each stream element a, let r(a) be the number of trailing 0's in h(a).
- Record R = the maximum r(a) seen.
- \bullet Estimate = 2^R .

^{*} Really based on a variant due to AMS (Alon, Matias, and Szegedy)

Why It Works

- ♦ The probability that a given element a has $h(a) \ge r$ is 2^{-r} .
- ◆If there are m elements in the stream, the probability that $R \ge r$ is $1 (1 2^{-r})^m$.
- ♦ If $2^r >> m$, prob $\approx m/2^r$ (small).
- \bullet If $2^r << m$, prob ≈ 1 .
- \bullet Thus, 2^R will almost always be around m.

Why It Doesn't Work

- \bullet E(2^R) is actually infinite.
 - Probability halves when R -> R +1, but value doubles.
- That means using many hash functions and getting many samples.
- How are samples combined?
 - Average? What if one very large value?
 - Median? All values are a power of 2.

Solution

- Partition your samples into small groups.
- Take the average of groups.
- Then take the median of the averages.

Moments (New Topic)

- Suppose a stream has elements chosen from a set of n values.
- Let m_i be the number of times value i occurs.
- The k^{th} moment is the sum of $(m_i)^k$ over all i.

Special Cases

- Oth moment = number of different elements in the stream.
 - The problem just considered.
- ◆1st moment = sum of the numbers of elements = length of the stream.
 - Easy to compute.
- ◆2nd moment = *surprise number* = a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 values appear.
- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise # = 8,110.

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll just concentrate on 2nd moment.
- Based on calculation of many random variables X.
 - Each requires a count in main memory, so number is limited.

One Random Variable

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- $\bullet X = n^*$ ((twice the number of a's in the stream starting at the chosen time) 1).

Expected Value of X

- 2nd moment is $\Sigma_a (m_a)^2$.
- \bullet E(X) = (1/n)(Σ_{all times t} of n* (twice the number of times the stream element at time t appears from that time on) 1).
- $\bullet = \Sigma_a (1/n)(n)(1+3+5+...+2m_a-1)$.
- $\diamond = \Sigma_a (m_a)^2$.

Combining Samples

- Compute as many variables X as can fit in available memory.
- Average them in groups.
- Take median of averages.
- Proper balance of group sizes and number of groups assures not only correct expected value, but expected error goes to 0 as number of samples gets large.

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n is a variable --- the number of elements seen so far.

Fixups

- 1. The variables *X* have *n* as a factor --- need to scale as *n* grows.
- 2. Suppose we can only store *k* counts. We must throw some *X*'s out as time goes on.
 - Objective: each X is selected with probability k / n.

Solution to (2)

- Choose the first k elements.
- When the n^{th} element arrives (n > k), choose it with probability k / n.
- If you choose it, throw one of the previously stored variables out, with equal probability.