Still More Stream-Mining

Frequent Itemsets
Elephants and Troops
Exponentially Decaying Windows

Counting Items

- Problem: given a stream, which items appear more than s times in the window?
- Possible solution: think of the stream of baskets as one binary stream per item.
 - 1 = item present; 0 = not present.
 - Use DGIM to estimate counts of 1's for all items.

Extensions

- In principle, you could count frequent pairs or even larger sets the same way.
 - One stream per itemset.
- Drawbacks:
 - 1. Only approximate.
 - 2. Number of itemsets is way too big.

Approaches

- "Elephants and troops": a heuristic way to converge on unusually strongly connected itemsets.
- Exponentially decaying windows: a heuristic for selecting likely frequent itemsets.

Elephants and Troops

- When Sergey Brin wasn't worrying about Google, he tried the following experiment.
- Goal: find unusually correlated sets of words.
 - "High Correlation" = frequency of occurrence of set >> product of frequency of members.

Experimental Setup

- The data was an early Google crawl of the Stanford Web.
- Each night, the data would be streamed to a process that counted a preselected collection of itemsets.
 - If {a, b, c} is selected, count {a, b, c}, {a}, {b}, and {c}.
 - "Correlation" = n^2 * #abc/(#a * #b * #c).
 - n = number of pages.

After Each Night's Processing . . .

- 1. Find the most correlated sets counted.
- 2. Construct a new collection of itemsets to count the next night.
 - All the most correlated sets ("winners").
 - Pairs of a word in some winner and a random word.
 - Winners combined in various ways.
 - Some random pairs.

After a Week . . .

- The pair {"elephants", "troops"} came up as the big winner.
- Why? It turns out that Stanford students were playing a Punic-War simulation game internationally, where moves were sent by Web pages.

Mining Streams Vs. Mining DB's (New Topic)

- Unlike mining databases, mining streams doesn't have a fixed answer.
- ◆We're really mining in the "Stat" point of view, e.g., "Which itemsets are frequent in the underlying model that generates the stream?"

Stationarity

- Two different assumptions make a big difference.
 - 1. Is the model *stationary*?
 - I.e., are the same statistics used throughout all time to generate the stream?
 - 2. Or does the frequency of generating given items or itemsets change over time?

Some Options

- We could:
 - 1. Run periodic experiments, like E&T.
 - Like SON --- itemset is frequent if it is found frequent on any "day."
 - Good for stationary statistics.
 - 2. Frame the problem as finding all frequent itemsets in an "exponentially decaying window."
 - Good for nonstationary statistics.

Exponentially Decaying Windows

- If stream is a_1 , a_2 ,... and we are taking the sum of the stream, take the answer at time t to be: $\sum_{i=1,2,...,t} a_i e^{-c(t-i)}$.
- \bullet c is a constant, presumably tiny, like 10^{-6} or 10^{-9} .

Example: Counting Items

- If each a_i is an "item" we can compute the *characteristic function* of each possible item x as an E.D.W.
- That is: $\sum_{i=1,2,...,t} \delta_i e^{-c(t-i)}$, where $\delta_i = 1$ if $a_i = x$, and 0 otherwise.
 - Call this sum the weight of item x.

Counting Items --- (2)

- Suppose we want to find those items of weight at least ½.
- ◆Important property: sum over all weights is $e^{c}/(e^{c}-1)$ or very close to 1/c.
- Thus: at most 2/c items have weight at least 1/2.

Extension to Larger Itemsets*

- Count (some) itemsets in an E.D.W.
- When a basket B comes in:
 - 1. Multiply all counts by (1-c); drop counts < $\frac{1}{2}$.
 - 2. If an item in *B* is uncounted, create new count.
 - 3. Add 1 to count of any item in *B* and to any counted itemset contained in *B*.
 - 4. Initiate new counts (next slide).

Initiation of New Counts

- Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B.
- ◆Example: Start counting {*i*, *j*} iff both *i* and *j* were counted prior to seeing *B*.
- ◆Example: Start counting { i, j, k } iff { i, j }, { i, k }, and { j, k } were all counted prior to seeing B.

How Many Counts?

- Counts for single items = (2/c) times the average number of items in a basket.
- ◆ Counts for larger itemsets = ??. But we are conservative about starting counts of large sets.
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts.