Mining of Massive Datasets

Jure Leskovec
Stanford Univ.

Anand Rajaraman
Milliway Labs

Jeffrey D. Ullman
Stanford Univ.

Preface

This book evolved from material developed over several years by Anand Raja-
raman and Jeff Ullman for a one-quarter course at Stanford. The course
CS345A, titled “Web Mining,” was designed as an advanced graduate course,
although it has become accessible and interesting to advanced undergraduates.
When Jure Leskovec joined the Stanford faculty, we reorganized the material
considerably. He introduced a new course CS224W on network analysis and
added material to CS345A, which was renumbered CS246. The three authors
also introduced a large-scale data-mining project course, CS341. The book now
contains material taught in all three courses.

What the Book Is About

At the highest level of description, this book is about data mining. However,
it focuses on data mining of very large amounts of data, that is, data so large
it does not fit in main memory. Because of the emphasis on size, many of our
examples are about the Web or data derived from the Web. Further, the book
takes an algorithmic point of view: data mining is about applying algorithms
to data, rather than using data to “train” a machine-learning engine of some
sort. The principal topics covered are:

1. Distributed file systems and map-reduce as a tool for creating parallel
 algorithms that succeed on very large amounts of data.

2. Similarity search, including the key techniques of minhashing and locality-
sensitive hashing.

3. Data-stream processing and specialized algorithms for dealing with data
 that arrives so fast it must be processed immediately or lost.

4. The technology of search engines, including Google’s PageRank, link-spam
detection, and the hubs-and-authorities approach.

5. Frequent-itemset mining, including association rules, market-baskets, the
 A-Priori Algorithm and its improvements.

6. Algorithms for clustering very large, high-dimensional datasets.
7. Two key problems for Web applications: managing advertising and recommendation systems.

8. Algorithms for analyzing and mining the structure of very large graphs, especially social-network graphs.

9. Techniques for obtaining the important properties of a large dataset by dimensionality reduction, including singular-value decomposition and latent semantic indexing.

10. Machine-learning algorithms that can be applied to very large data, such as perceptrons, support-vector machines, and gradient descent.

Prerequisites

To appreciate fully the material in this book, we recommend the following prerequisites:

1. An introduction to database systems, covering SQL and related programming systems.

2. A sophomore-level course in data structures, algorithms, and discrete math.

3. A sophomore-level course in software systems, software engineering, and programming languages.

Exercises

The book contains extensive exercises, with some for almost every section. We indicate harder exercises or parts of exercises with an exclamation point. The hardest exercises have a double exclamation point.

Support on the Web

Go to http://www.mmds.org for slides, homework assignments, project requirements, and exams from courses related to this book.

Gradiance Automated Homework

There are automated exercises based on this book, using the Gradiance root-question technology, available at www.gradiance.com/services. Students may enter a public class by creating an account at that site and entering the class with code 1EDD8A1D. Instructors may use the site by making an account there.
and then emailing support at gradiance dot com with their login name, the name of their school, and a request to use the MMDS materials.

Acknowledgements

Cover art is by Scott Ullman.

We would like to thank Foto Afrati, Arun Marathe, and Rok Sosic for critical readings of a draft of this manuscript.

Errors were also reported by Rajiv Abraham, Apoorv Agarwal, Aris Anastopoulos, Atilla Soner Balkir, Arnaud Belleti, Robin Bennett, Susan Biancani, Amitabh Chaudhary, Leland Chen, Hua Feng, Marcus Gemeinder, Anastasios Gomaris, Clark Grubb, Shrey Gupta, Walied Hameid, Saman Harazadeh, Przemyslaw Horban, Jeff Hwang, Rafi Kamal, Lachlan Kang, Ed Knorr, Haewoon Kwak, Ellis Lau, Greg Lee, David Z. Liu, Ethan Lozano, Yunan Luo, Michael Mahoney, Justin Meyer, Bryant Moscon, Brad Penoff, John Phillips, Philip Kokoh Prasetyo, Qi Ge, Harizo Rajaona, Timon Ruban, Rich Seiter, Hitesh Shetty, Angad Singh, Sandeep Sripada, Dennis Sidharta, Krzysztof Stencel, Mark Storus, Roshan Sumbaly, Zack Taylor, Tim Triche Jr., Wang Bin, Weng Zhen-Bin, Robert West, Oscar Wu, Xie Ke, Nicolas Zhao, and Zhou Jingbo. The remaining errors are ours, of course.

J. L.
A. R.
J. D. U.
Palo Alto, CA
March, 2014
Contents

1 Data Mining 1
 1.1 What is Data Mining? 1
 1.1.1 Statistical Modeling 1
 1.1.2 Machine Learning 2
 1.1.3 Computational Approaches to Modeling 2
 1.1.4 Summarization 3
 1.1.5 Feature Extraction 4
 1.2 Statistical Limits on Data Mining 4
 1.2.1 Total Information Awareness 5
 1.2.2 Bonferroni’s Principle 5
 1.2.3 An Example of Bonferroni’s Principle 6
 1.2.4 Exercises for Section 1.2 7
 1.3 Things Useful to Know 7
 1.3.1 Importance of Words in Documents 7
 1.3.2 Hash Functions 9
 1.3.3 Indexes 10
 1.3.4 Secondary Storage 11
 1.3.5 The Base of Natural Logarithms 12
 1.3.6 Power Laws 13
 1.3.7 Exercises for Section 1.3 15
 1.4 Outline of the Book 15
 1.5 Summary of Chapter 1 17
 1.6 References for Chapter 1 18

2 MapReduce and the New Software Stack 21
 2.1 Distributed File Systems 22
 2.1.1 Physical Organization of Compute Nodes 22
 2.1.2 Large-Scale File-System Organization 23
 2.2 MapReduce 24
 2.2.1 The Map Tasks 25
 2.2.2 Grouping by Key 26
 2.2.3 The Reduce Tasks 27
 2.2.4 Combiners 27
2.2.5 Details of MapReduce Execution .. 28
2.2.6 Coping With Node Failures ... 29
2.2.7 Exercises for Section 2.2 .. 30
2.3 Algorithms Using MapReduce ... 30
 2.3.1 Matrix-Vector Multiplication by MapReduce 31
 2.3.2 If the Vector \(v \) Cannot Fit in Main Memory 31
 2.3.3 Relational-Algebra Operations 32
 2.3.4 Computing Selections by MapReduce 35
 2.3.5 Computing Projections by MapReduce 36
 2.3.6 Union, Intersection, and Difference by MapReduce 36
 2.3.7 Computing Natural Join by MapReduce 37
 2.3.8 Grouping and Aggregation by MapReduce 37
 2.3.9 Matrix Multiplication .. 38
 2.3.10 Matrix Multiplication with One MapReduce Step 39
 2.3.11 Exercises for Section 2.3 .. 40
2.4 Extensions to MapReduce .. 41
 2.4.1 Workflow Systems .. 41
 2.4.2 Recursive Extensions to MapReduce 42
 2.4.3 Pregel .. 45
 2.4.4 Exercises for Section 2.4 .. 46
2.5 The Communication Cost Model .. 46
 2.5.1 Communication-Cost for Task Networks 47
 2.5.2 Wall-Clock Time .. 49
 2.5.3 Multiway Joins .. 49
 2.5.4 Exercises for Section 2.5 .. 52
2.6 Complexity Theory for MapReduce 54
 2.6.1 Reducer Size and Replication Rate 54
 2.6.2 An Example: Similarity Joins 55
 2.6.3 A Graph Model for MapReduce Problems 57
 2.6.4 Mapping Schemas .. 58
 2.6.5 When Not All Inputs Are Present 60
 2.6.6 Lower Bounds on Replication Rate 61
 2.6.7 Case Study: Matrix Multiplication 62
 2.6.8 Exercises for Section 2.6 .. 66
2.7 Summary of Chapter 2 .. 67
2.8 References for Chapter 2 ... 69

3 Finding Similar Items .. 73
 3.1 Applications of Near-Neighbor Search 73
 3.1.1 Jaccard Similarity of Sets 74
 3.1.2 Similarity of Documents ... 74
 3.1.3 Collaborative Filtering as a Similar-Sets Problem 75
 3.1.4 Exercises for Section 3.1 77
 3.2 Shingling of Documents .. 77
 3.2.1 \(k \)-Shingles .. 77
CONTENTS

3.9.1 Finding Identical Items 118
3.9.2 Representing Sets as Strings 118
3.9.3 Length-Based Filtering 119
3.9.4 Prefix Indexing 119
3.9.5 Using Position Information 121
3.9.6 Using Position and Length in Indexes 122
3.9.7 Exercises for Section 3.9 125
3.10 Summary of Chapter 3 126
3.11 References for Chapter 3 128

4 Mining Data Streams 131
4.1 The Stream Data Model 131
 4.1.1 A Data-Stream-Management System 132
 4.1.2 Examples of Stream Sources 133
 4.1.3 Stream Queries 134
 4.1.4 Issues in Stream Processing 135
4.2 Sampling Data in a Stream 136
 4.2.1 A Motivating Example 136
 4.2.2 Obtaining a Representative Sample 137
 4.2.3 The General Sampling Problem 137
 4.2.4 Varying the Sample Size 138
 4.2.5 Exercises for Section 4.2 138
4.3 Filtering Streams 139
 4.3.1 A Motivating Example 139
 4.3.2 The Bloom Filter 140
 4.3.3 Analysis of Bloom Filtering 140
 4.3.4 Exercises for Section 4.3 141
4.4 Counting Distinct Elements in a Stream 142
 4.4.1 The Count-Distinct Problem 142
 4.4.2 The Flajolet-Martin Algorithm 143
 4.4.3 Combining Estimates 144
 4.4.4 Space Requirements 144
 4.4.5 Exercises for Section 4.4 145
4.5 Estimating Moments 145
 4.5.1 Definition of Moments 145
 4.5.2 The Alon-Matias-Szegedy Algorithm for Second
 Moments .. 146
 4.5.3 Why the Alon-Matias-Szegedy Algorithm Works .. 147
 4.5.4 Higher-Order Moments 148
 4.5.5 Dealing With Infinite Streams 148
 4.5.6 Exercises for Section 4.5 149
4.6 Counting Ones in a Window 150
 4.6.1 The Cost of Exact Counts 151
 4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm ... 151
 4.6.3 Storage Requirements for the DGIM Algorithm . 153
5.6 Summary of Chapter 5 ... 196
5.7 References for Chapter 5 ... 200

6 Frequent Itemsets ... 201
6.1 The Market-Basket Model .. 202
 6.1.1 Definition of Frequent Itemsets 202
 6.1.2 Applications of Frequent Itemsets 204
 6.1.3 Association Rules ... 205
 6.1.4 Finding Association Rules with High Confidence 207
 6.1.5 Exercises for Section 6.1 207
6.2 Market Baskets and the A-Priori Algorithm 209
 6.2.1 Representation of Market-Basket Data 209
 6.2.2 Use of Main Memory for Itemset Counting 210
 6.2.3 Monotonicity of Itemsets 212
 6.2.4 Tyranny of Counting Pairs 213
 6.2.5 The A-Priori Algorithm 213
 6.2.6 A-Priori for All Frequent Itemsets 214
 6.2.7 Exercises for Section 6.2 217
6.3 Handling Larger Datasets in Main Memory 218
 6.3.1 The Algorithm of Park, Chen, and Yu 218
 6.3.2 The Multistage Algorithm 220
 6.3.3 The Multihash Algorithm 222
 6.3.4 Exercises for Section 6.3 224
6.4 Limited-Pass Algorithms .. 226
 6.4.1 The Simple, Randomized Algorithm 226
 6.4.2 Avoiding Errors in Sampling Algorithms 227
 6.4.3 The Algorithm of Savasere, Omiecinski, and Navathe 228
 6.4.4 The SON Algorithm and MapReduce 229
 6.4.5 Toivonen’s Algorithm ... 230
 6.4.6 Why Toivonen’s Algorithm Works 231
 6.4.7 Exercises for Section 6.4 232
6.5 Counting Frequent Items in a Stream 232
 6.5.1 Sampling Methods for Streams 233
 6.5.2 Frequent Itemsets in Decaying Windows 234
 6.5.3 Hybrid Methods ... 235
 6.5.4 Exercises for Section 6.5 235
6.6 Summary of Chapter 6 .. 236
6.7 References for Chapter 6 ... 238

7 Clustering ... 241
7.1 Introduction to Clustering Techniques 241
 7.1.1 Points, Spaces, and Distances 241
 7.1.2 Clustering Strategies .. 243
 7.1.3 The Curse of Dimensionality 244
7.1.4 Exercises for Section 7.1 245
7.2 Hierarchical Clustering 245
 7.2.1 Hierarchical Clustering in a Euclidean Space 246
 7.2.2 Efficiency of Hierarchical Clustering 248
 7.2.3 Alternative Rules for Controlling Hierarchical
 Clustering ... 249
 7.2.4 Hierarchical Clustering in Non-Euclidean Spaces 252
 7.2.5 Exercises for Section 7.2 253
7.3 K-means Algorithms 254
 7.3.1 K-Means Basics 255
 7.3.2 Initializing Clusters for K-Means 255
 7.3.3 Picking the Right Value of k 256
 7.3.4 The Algorithm of Bradley, Fayyad, and Reina 257
 7.3.5 Processing Data in the BFR Algorithm 259
 7.3.6 Exercises for Section 7.3 262
7.4 The CURE Algorithm 262
 7.4.1 Initialization in CURE 263
 7.4.2 Completion of the CURE Algorithm 264
 7.4.3 Exercises for Section 7.4 265
7.5 Clustering in Non-Euclidean Spaces 266
 7.5.1 Representing Clusters in the GRGPF Algorithm 266
 7.5.2 Initializing the Cluster Tree 267
 7.5.3 Adding Points in the GRGPF Algorithm 268
 7.5.4 Splitting and Merging Clusters 269
 7.5.5 Exercises for Section 7.5 270
7.6 Clustering for Streams and Parallelism 270
 7.6.1 The Stream-Computing Model 271
 7.6.2 A Stream-Clustering Algorithm 271
 7.6.3 Initializing Buckets 272
 7.6.4 Merging Buckets 272
 7.6.5 Answering Queries 275
 7.6.6 Clustering in a Parallel Environment 275
 7.6.7 Exercises for Section 7.6 276
7.7 Summary of Chapter 7 276
7.8 References for Chapter 7 280

8 Advertising on the Web 281
 8.1 Issues in On-Line Advertising 281
 8.1.1 Advertising Opportunities 281
 8.1.2 Direct Placement of Ads 282
 8.1.3 Issues for Display Ads 283
 8.2 On-Line Algorithms 284
 8.2.1 On-Line and Off-Line Algorithms 284
 8.2.2 Greedy Algorithms 285
 8.2.3 The Competitive Ratio 286
9.4.2 Root-Mean-Square Error

329

9.4.3 Incremental Computation of a UV-Decomposition

330

9.4.4 Optimizing an Arbitrary Element

332

9.4.5 Building a Complete UV-Decomposition Algorithm

334

9.4.6 Exercises for Section 9.4

336

9.5 The NetFlix Challenge

337

9.6 Summary of Chapter 9

338

9.7 References for Chapter 9

340

10 Mining Social-Network Graphs

343

10.1 Social Networks as Graphs

343

10.1.1 What is a Social Network?

344

10.1.2 Social Networks as Graphs

344

10.1.3 Varieties of Social Networks

346

10.1.4 Graphs With Several Node Types

347

10.1.5 Exercises for Section 10.1

348

10.2 Clustering of Social-Network Graphs

349

10.2.1 Distance Measures for Social-Network Graphs

349

10.2.2 Applying Standard Clustering Methods

349

10.2.3 Betweenness

351

10.2.4 The Girvan-Newman Algorithm

351

10.2.5 Using Betweenness to Find Communities

354

10.2.6 Exercises for Section 10.2

356

10.3 Direct Discovery of Communities

357

10.3.1 Finding Cliques

357

10.3.2 Complete Bipartite Graphs

357

10.3.3 Finding Complete Bipartite Subgraphs

358

10.3.4 Why Complete Bipartite Graphs Must Exist

359

10.3.5 Exercises for Section 10.3

361

10.4 Partitioning of Graphs

361

10.4.1 What Makes a Good Partition?

362

10.4.2 Normalized Cuts

362

10.4.3 Some Matrices That Describe Graphs

363

10.4.4 Eigenvalues of the Laplacian Matrix

364

10.4.5 Alternative Partitioning Methods

367

10.4.6 Exercises for Section 10.4

368

10.5 Finding Overlapping Communities

369

10.5.1 The Nature of Communities

369

10.5.2 Maximum-Likelihood Estimation

369

10.5.3 The Affiliation-Graph Model

371

10.5.4 Avoiding the Use of Discrete Membership Changes

374

10.5.5 Exercises for Section 10.5

375

10.6 Simrank

376

10.6.1 Random Walkers on a Social Graph

376

10.6.2 Random Walks with Restart

377
10.6.3 Exercises for Section 10.6 380
10.7 Counting Triangles . 380
10.7.1 Why Count Triangles? . 380
10.7.2 An Algorithm for Finding Triangles 381
10.7.3 Optimality of the Triangle-Finding Algorithm 382
10.7.4 Finding Triangles Using MapReduce 383
10.7.5 Using Fewer Reduce Tasks 384
10.7.6 Exercises for Section 10.7 385

10.8 Neighborhood Properties of Graphs 386
10.8.1 Directed Graphs and Neighborhoods 386
10.8.2 The Diameter of a Graph . 388
10.8.3 Transitive Closure and Reachability 389
10.8.4 Transitive Closure Via MapReduce 390
10.8.5 Smart Transitive Closure . 392
10.8.6 Transitive Closure by Graph Reduction 393
10.8.7 Approximating the Sizes of Neighborhoods 395
10.8.8 Exercises for Section 10.8 397

10.9 Summary of Chapter 10 . 398
10.10 References for Chapter 10 . 402

11 Dimensionality Reduction 405
11.1 Eigenvalues and Eigenvectors of Symmetric Matrices 406
11.1.1 Definitions . 406
11.1.2 Computing Eigenvalues and Eigenvectors 407
11.1.3 Finding Eigenpairs by Power Iteration 408
11.1.4 The Matrix of Eigenvectors 411
11.1.5 Exercises for Section 11.1 411
11.2 Principal-Component Analysis . 412
11.2.1 An Illustrative Example . 413
11.2.2 Using Eigenvectors for Dimensionality Reduction 416
11.2.3 The Matrix of Distances . 417
11.2.4 Exercises for Section 11.2 418
11.3 Singular-Value Decomposition . 418
11.3.1 Definition of SVD . 418
11.3.2 Interpretation of SVD . 420
11.3.3 Dimensionality Reduction Using SVD 422
11.3.4 Why Zeroing Low Singular Values Works 423
11.3.5 Querying Using Concepts . 425
11.3.6 Computing the SVD of a Matrix 426
11.3.7 Exercises for Section 11.3 427
11.4 CUR Decomposition . 428
11.4.1 Definition of CUR . 429
11.4.2 Choosing Rows and Columns Properly 430
11.4.3 Constructing the Middle Matrix 431
11.4.4 The Complete CUR Decomposition 432