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Abstract— Statistical modeling methods have been success-
fully used to segment, classify, and annotate digital images, over
the years. In this paper, we present a 3-D hidden Markov model
(HMM) for volume image modeling. The 3-D HMM is applied to
volume image segmentation and tested using synthetic images
with ground truth. Potential applications to 3-D biomedical
image analysis are also discussed.

I. INTRODUCTION

Computer based content analysis of digital images has
become very important today. Magnetic Resonance Imag-
ing (MRI) and Computed Tomography (CT) scanners in
hospitals can produce high-resolution 3-D images of the
human brain or the human body. Conventional 2-D image
modeling paradigms may not always be effective in vol-
ume image analysis as there is a third dimensional link-
age that they cannot capture. Researchers have strived to
extend existing algorithms for modeling and analyzing large-
scale multi-dimensional data. 3-D Markov random fields
based techniques have been proposed for medical image
segmentation [5]. Among other modeling paradigms, hidden
Markov models (HMM) have particularly demonstrated high
effectiveness in modeling speech, image, and video. Pseudo
3-D HMMs have been proposed for face recognition [2]. 2-D
multiresolution HMMs have been successfully used for su-
pervised image segmentation and image annotation [3], [4].
Here we present a 3-D HMM, characterize its segmentation
performance and discuss its computational complexity.

II. MODEL ASSUMPTIONS OF 3-D HMM

In 3-D modeling, a volume image is represented by feature
vectors on a 3-D grid. An image may be divided into cubes
which could be overlapping. In such a case, every cube
corresponds to one position in the grid. The 3-D HMM
model represents a 3-D image as a statistical process, the
parameters of which have to be learned. More specifically,
every point in a 3-D grid exists in a latent state, which
is influenced by the states of its geometric neighbors. This
geometric dependence is Markovian in nature as shown in
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Fig. 1. A 3-D grid representing a 3-D image. Given the states of
all the points that precede point (i, j,k), only the states of the three
indicated neighboring points affect the distribution of the state at
(i, j,k).

Figure 1. Every state has an emission distribution associated
with it which generates the feature vectors. The observed
feature vectors are assumed to be conditionally independent
given the states. In our model, the emission distribution is
assumed to be multivariate Gaussian distribution, with the
probability density function represented as
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Here u represents the d dimensional feature vector of a
point modeled as an instance of the multivariate Gaussian
distribution with mean vector µ and covariance matrix Σ.
The challenging issue here is to estimate the parameters of
the 3-D HMM model for a given image. The parameters
to be estimated consist of the state transition probabilities
and the mean and covariances of the Gaussian distributions.
Due to the large number of parameters, we regularize the
transition probabilities by a partial 3-D dependence. In [1],
we proposed a computationally efficient algorithm for doing
so. Briefly, the estimation is performed in an iterative fashion
using the Viterbi approach. Viterbi gives the optimal state
sequence for a row of points under a fixed set of parameters.
The parameters themselves get updated iteratively. The pro-
posed approach is shown to be polynomial time with respect
to the number of states of the model and the problem size.



(a) (b) (c)

(d) (e) (f)

Fig. 2. Segmentation of a hyperboloid image into two classes using
3-D HMM. The figure shows 3 frames one each in the X −Y ,
Y −Z and X −Z planes. (a)-(c) is the original image; (d)-(f) is the
segmented image. The parameters a = 35, b = 25, c = 30, and σ
= 0.6. Error rate is 1.7%.

III. UNSUPERVISED SEGMENTATION OF 3-D IMAGES

The 3-D HMM has been applied to volume image seg-
mentation. Experiments were performed using a large pool
of synthetic volume images. Each image contained a standard
mathematical 3-D shape, centered about the image. The
initial parameter set was determined using a naive k-means
clustering approach. Assuming that the clusters define the
states of the model, the sample means and covariances deter-
mine the initial Gaussian distributions. The Viterbi approach
is iteratively applied to refine the parameter set and state
assignment to the points. The final segmentation depends
upon the states of points at the end of the iterations. The
method of image generation was as follows. Points in the
interior of the 3-D shape were assigned black color while
the rest were white. Each color voxel, black (µ = 0) and
white (µ = 1), was perturbed by an additive Gaussian noise

� N(0,σ 2) and the voxel values were truncated to lie in the
interval [−2σ ,1+2σ ]. For the purpose of displaying images,
voxel values in the interval [−2σ ,1 + 2σ ] were scaled to
[0,255]. A unidimensional feature was used for each color
voxel. The 3-D shape parameters (length of semi axes and
radii, denoted by a, b, and c) and the noise parameter σ were
varied to form a pool of 70 images.

IV. DISCUSSION OF RESULTS

The regularization parameter α determines the extent of
3-D dependence. Segmentation performance as α is var-
ied is shown in Table I. Note that the best performance
usually occurs at an intermediate value of α . A trade-off
between model complexity (complete 3-D model, α = 1)
and ease of estimation (2-D model, α = 0), is preferred
in most cases, and the results support this hypothesis. As
the variance of Gaussian noise is increased the segmentation
becomes harder. In Table II, we tabulate the best and median
segmentation performances for different values of σ . As is
evident from the results, 3-D HMM performs reasonably
well segmentation even for large values of σ . The running
times of 3-D HMM segmentation program for image sizes
(w×w×w), where w takes values 50, 100, 150, and 200,

parameters α
a c 0.0 0.2 0.4 0.6 0.8 1.0

20 20 0.0144 0.0116 0.0068 0.0072 0.0064 0.0816
20 30 0.0104 0.0114 0.0110 0.0106 0.0105 0.0276
20 40 0.0129 0.0124 0.0120 0.0115 0.0119 0.0372
30 30 0.0365 0.0342 0.0314 0.0338 0.0372 0.0373
30 40 0.0338 0.0598 0.0449 0.0511 0.0233 0.0353
40 40 0.0091 0.0115 0.0468 0.0184 0.0687 0.0456

TABLE I
COMPARE THE SEGMENTATION

PERFORMANCES OF TORII IMAGES (SIZE 100×100×100 AND σ = 0.5)
AS THE REGULARIZATION PARAMETER α IS VARIED BETWEEN 0 AND 1.

THE BEST PERFORMANCE IS INDICATED IN BOLD.

σ 0.2 0.3 0.4 0.5 0.6 0.7�
best 0.0001 0.0005 0.0019 0.0037 0.0067 0.0058�
med 0.0004 0.0041 0.0157 0.0406 0.1207 0.1995

TABLE II
COMPARE THE BEST ( � best ) AND MEDIAN ( � med ) SEGMENTATION

PERFORMANCES OVER 70 IMAGES (SIZE 100×100×100) AS THE

VARIANCE OF THE GAUSSIAN NOISE INCREASES FROM 0.2 TO 0.7.

were found out to be 32s, 280s, 798s, and 938s respectively.
These numbers support the fact that the complexity of the
algorithm is linear in problem size (w3). Due to space
limitations, we are unable to present all the results and
comparisons here. Please see [1] for more details.

V. CONCLUSION

We presented 3-D HMM for volume image modeling.
The model and estimation methodology were briefly dis-
cussed. We also demonstrated its performance on synthetic
3-D images. Model regularization parameter was varied to
determine the best performance for a given problem and
segmentation over large noise variances was found to be
robust. The described framework can be useful for modeling
3-D medical image data. We are collaborating with certain
experts in biology and are currently in the process of ac-
quiring 3-D images. Through participation in this workshop,
we wish to entail feedback from the audience, learn more
about problems in biomedical imaging and foster potential
collaboration with participants. The success of multidimen-
sional hidden Markov models for 2-D image analysis gives
us confidence in our 3-D HMM.
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