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ABSTRACT
Automatic linguistic indexing of pictures is an important
but highly challenging problem for researchers in computer
vision and content-based image retrieval. In this paper, we
introduce a statistical modeling approach to this problem.
Categorized images are used to train a dictionary of hun-
dreds of concepts automatically based on statistical mod-
eling. Images of any given concept category are regarded
as instances of a stochastic process that characterizes the
category. To measure the extent of association between an
image and the textual description of a category of images,
the likelihood of the occurrence of the image based on the
stochastic process derived from the category is computed.
A high likelihood indicates a strong association. In our ex-
perimental implementation, the ALIP (Automatic Linguis-
tic Indexing of Pictures) system, we focus on a particular
group of stochastic processes for describing images, that is,
the two-dimensional multiresolution hidden Markov models
(2-D MHMMs). We implemented and tested the system on
a photographic image database of 600 di�erent semantic cat-
egories, each with about 40 training images. Tested using
3,000 images outside the training database, the system has
demonstrated good accuracy and high potential in linguistic
indexing of these test images.
Index Terms { Content-based image retrieval, image clas-
si�cation, hidden Markov model, computer vision, machine
learning, image segmentation, region matching, wavelets.

1. INTRODUCTION
A picture is worth a thousand words. As human beings, we
are able to tell a story from a picture based on what we have
seen and what we have been taught. A 3-year old child is
capable of building models of a substantial number of con-
cepts and recognizing them using the learned models stored
in her brain. Can a computer program learn a large col-
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lection of semantic concepts from 2-D or 3-D images, build
models about these concepts, and recognize them based on
these models? This is the question we attempt to address
in this work.

Automatic linguistic indexing of pictures is essentially im-
portant to content-based image retrieval and computer ob-
ject recognition. It can potentially be applied to many areas
including biomedicine, commerce, the military, education,
digital libraries, and Web searching. Decades of research
has shown that designing a generic computer algorithm that
can learn concepts from images and automatically translate
the content of images to linguistic terms is highly diÆcult.

Much success has been achieved in recognizing a relatively
small set of objects or concepts within speci�c domains.
There is a rich resource of prior work in the �elds of com-
puter vision, pattern recognition, and their applications [12].
Space limitations do not allow us to present a broad survey.
Instead we try to emphasize some of the work that is most
related to what we propose. The references below are to be
taken as examples of related work, not as the complete list
of work in the cited areas.

1.1 Related work on indexing images
Many content-based image retrieval (CBIR) systems have
been developed since the early 1990s [11, 7, 20, 22, 18, 4,
25, 19, 6]. Most of the above mentioned projects aimed at
general-purpose image indexing and retrieval systems focus-
ing on searching images visually similar to the query image
or a query sketch. They do not have the capability to assign
comprehensive textual description automatically to pictures,
i.e., linguistic indexing, because of the great diÆculties in
recognizing a large number of objects. However, this func-
tion is essential for linking images to text and consequently
broadening the possible usages of an image database.

A growing trend in the �eld of image retrieval is to lin-
guistically index images using computer programs relying
on statistical classi�cation methods. The Stanford SIM-
PLIcity system [24] uses manually-de�ned statistical clas-
si�cation methods to classify the images into rough seman-
tic classes, such as textured-nontextured, graph-photograph.
Potentially, the categorization enhances retrieval by permit-
ting semantically-adaptive searching methods and narrow-
ing down the searching range in a database. The approach
is limited because these classi�cation methods are problem



speci�c and must be manually developed and coded.

A recent work in associating images explicitly with words
is that of Barnard and Forsyth of University of California
at Berkeley [1]. An object name is associated with a region
in an image based on previously learned region-term asso-
ciation probabilities. The work has achieved some success
for certain image types. But as pointed out by the authors
in [1], one major limitation is that the algorithm relies on
semantically meaningful segmentation, which is in general
unavailable to image databases. Automatic segmentation is
still an open problem in computer vision [27, 21, 26]. More-
over, some concepts may not be learned from a single region
of an image or a region within an over-segmented image. For
example, when a tiger object of a test image is segmented
into the head and the body segments, the computer program
assigns the keyword \building" to the head portion of the
tiger due to the similarity between the features of the head
and those of buildings.

1.2 Our approach

a region of an image the whole image

Figure 1: It is often impossible to accurately de-
termine the semantics of an image by looking at a
single region of the image.

Intuitively, human beings recognize many concepts from im-
ages based on not just one region of an image. Often we
need to view the image as a whole in order to determine
the semantic meanings of each region and consequently tell
a complete story about the image. For one example (Fig-
ure 1), if we look at only a region of an image, i.e., the
face of a person, we would not know that the image depicts
the concept `ski'. But if we see in addition the cloth of the
person, the equipment the person is holding, and the white
snow in the background, we can recognize easily the concept
`ski'. Therefore, treating an image as an entity has the po-
tential for modeling relatively high-level concepts as well as
improving the modeling accuracy of low-level concepts.

In our work, we propose to model the entire images statis-
tically. In our experimental implementation, we use a 2-D
multiresolution hidden Markov model (MHMM) [15]. This
statistical approach reduces the dependence on correct im-
age segmentation because cross pixel and cross resolution
dependencies are captured in the model itself. These mod-
els are created automatically by training on sets of images
representing the same concepts. Machine-generated models
of the concepts are then stored and used to automatically
index images based on linguistic terms. Readers are referred
to Li and Gray [16] for details on 2-D MHMM. For clarity
of this paper, we present basics regarding the models.

Statistical image modeling is a research topic extensively
studied in various �elds including image processing and com-

puter vision. Detailed review on some models used in image
segmentation is provided in [15]. Theories and methodolo-
gies related to Markov random �elds (MRFs) [10, 13, 14, 5]
have played important roles in the construction of many sta-
tistical image models. For a thorough introduction to MRFs
and their applications, see Kindermann and Snell [14] and
Chellappa and Jain [5].

The 2-D multiresolution hidden Markov model has been suc-
cessfully applied to image segmentation and compression.
This model explores statistical dependence among image
pixels or blocks across multiple resolution as well as within
a single resolution. It possesses a 
exible structure to al-
low di�erent proportions of emphasis on inter-resolution and
intra-resolution dependency. As a result, users have ample
freedom in choosing a particular form of the model accord-
ing to application targeted. Analytic formula for estimat-
ing the model by the maximum likelihood criterion and for
computing likelihood of an instance based on the model are
available. A 2-D MHMM estimated from training images
summarizes two types of information: clusters of feature vec-
tors at multiple resolutions and the spatial relation between
those clusters. The clusters of feature vectors normally re-

ect color and texture. Given its modeling eÆciency and
computational convenience, we consider 2-D MHMM an ap-
propriate starting point for exploring the statistical model-
ing approach to linguistic indexing.

1.3 Outline of the paper
The remainder of the paper is organized as follows: an
overview of our ALIP (Automatic Linguistic Indexing of Pic-
tures) system is introduced in Section 2. The model learn-
ing algorithm is described in Section 3. Linguistic indexing
methods are presented in Section 4. In Section 5, experi-
ments and results are described. We conclude and suggest
future research in Section 6.

2. SYSTEM OVERVIEW
The ALIP system has three major components, the feature
extraction process, the multiresolution statistical modeling
process, and the statistical linguistic indexing process. In
this section, we introduce the basics about these individual
components and their relationships.

2.1 Feature extraction
The ALIP system characterizes localized features of train-
ing images using wavelets. In this process, an image is
partitioned into small pixel blocks. For our experiments,
the block size is chosen to be 4 � 4 to compromise between
the texture detail and the computation time. Other similar
block sizes can also be used. The system extracts a feature
vector of six dimensions for each block. Three of these fea-
tures are the average color components in the block of pixels.
The other three are texture features extracted to represent
energy in high frequency bands of wavelet transforms [9].
Speci�cally, each of the three features is the square root of
the second order moment of wavelet coeÆcients in one of
the three high frequency bands. The feature extraction pro-
cess is performed in the LUV color space, where L encodes
luminance, and U and V encode color information (chromi-
nance). The LUV color space is chosen because of its good
perception correlation properties.
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Figure 2: Decomposition of images into frequency
bands by wavelet transforms.

To extract the three texture features, we apply either the
Daubechies-4 wavelet transform or the Haar transform to
the L component of the image. These two wavelet trans-
forms have better localization properties and require less
computation compared to Daubechies' wavelets with longer
�lters. After a one-level wavelet transform, a 4 � 4 block
is decomposed into four frequency bands as shown in Fig-
ure 2. Each band contains 2 � 2 coeÆcients. Without loss
of generality, suppose the coeÆcients in the HL band are
fck;l; ck;l+1; ck+1;l; ck+1;l+1g. One feature is then computed

as f = 1
2

qP1
i=0

P1
j=0 c

2
k+i;l+j . The other two texture fea-

tures are computed in a similar manner from the LH and
HH bands, respectively.

The motivation for using these features is their re
ection
of local texture properties. Unser [23] has shown that mo-
ments of wavelet coeÆcients in various frequency bands can
be used to e�ectively discern local texture. Wavelet coeÆ-
cients in di�erent frequency bands signal variation in di�er-
ent directions. For example, the HL band shows activities
in the horizontal direction. A local texture of vertical strips
thus has high energy in the HL band of the image and low
energy in the LH band. The use of this wavelet-based tex-
ture feature is a good compromise between computational
complexity and e�ectiveness.

2.2 Multiresolution statistical modeling
We �rst manually enlist a series of concepts to be trained for
inclusion in the dictionary of concepts. For each concept in
this dictionary, we prepare a training image database with
a set of images capturing the concept. These images do
not have to be visually similar. We also manually prepare a
short but informative description about any given concept in
this dictionary. Therefore, our approach has the potential
to train a large collection of concepts because we do not
need to manually create descriptions about each image in
the training database.

Block-based features are extracted from each of these train-
ing images at several di�erent resolutions. The statistical
modeling process does not depend on a speci�c feature ex-
traction algorithm. The same feature dimensionality is as-
sumed for all blocks of pixels.

The statistical modeling process studies the multiresolution
features extracted from each training image in the training
database. A cross-scale statistical model about a concept is
obtained after analyzing all available training images in a
training database. This model is then associated with the
textual description of the concept and stored in the concept
dictionary.

2.3 Statistical linguistic indexing
The ALIP system automatically indexes images with lin-
guistic terms based on statistical model comparison. For
a given image to be indexed, we �rst extract multiresolu-
tion block-based features in the same manner as the feature
extraction process for the training images.

This collection of feature vectors is statistically compared
with the trained models stored in the concept dictionary to
obtain a series of likelihoods representing the statistical sim-
ilarity between the image and each of the trained concepts.
These likelihoods, along with the stored textual descriptions
about the concepts, are processed in the signi�cance proces-
sor to extract a small set of statistically signi�cant index
terms about the image. These index terms are then stored
with the image in the image database for future keyword-
based query processing.

2.4 Major advantages
Our ALIP system has several major advantages:

1. If new images are added to a given concept training
database, only the particular statistical model of this
given concept needs to be retrained. We need not
change the trained models about other concepts in the
same dictionary. This property is very di�erent from
conventional training-based classi�cation approaches
based on neural networks [2], classi�cation and regres-
sion trees (CART) [3], and support vector machines
(SVM) [8].

2. Because models of di�erent concepts are independent
of each others in our system, we can train a relatively
large number of concepts at once. A statistical model,
established for a category of images, serves as a pic-
torial description for the entire category and enables
eÆcient association of textual annotations with im-
age pixel representations. In our experiments, we have
trained the system to automatically create a dictionary
of 600 concepts.

3. In our initial statistical model, spatial relations among
image pixels and across image resolutions are both
taken into consideration. This property is especially
useful for images with special texture patterns. We can
avoid segmenting images or de�ning a similarity dis-
tance for any particular set of features. Likelihood can
be used as a universal measure of similarity. With this
statistical likelihood approach, images used to train
the same semantic concept do not have to be all visu-
ally similar.

3. THE MODEL-BASED LEARNING OF
CONCEPTS

In this section, we provide details about our statistical image
modeling process which learns a dictionary of a large num-
ber of concepts automatically. We present here assumptions
of the 2-D MHMM which is modi�ed from the model origi-
nally developed for the purpose of image segmentation [15].
The model studies the collection of training images within
a concept category in their entireties.



3.1 Image Modeling
To describe an image by a multiresolution model, multiple
versions of the image at di�erent resolutions are obtained
�rst. The original image corresponds to the highest resolu-
tion. Lower resolutions are generated by successively �lter-
ing out high frequency information. Wavelet transforms [9]
naturally provide low resolution images in the low frequency
band (the LL band). Features are extracted at all the res-
olutions. The 2-D MHMM aims at describing statistical
properties of the feature vectors and their spatial depen-
dence.
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Figure 3: The image hierarchy across resolutions

In the 2-D MHMM, features are regarded as elements in
a vector. They can be selected 
exibly by users and are
treated integratedly as dependent random variables by the
model. Example features include color components and
statistics re
ecting texture. To save computation, feature
vectors are often extracted from non-overlapping blocks in
an image. An element in an image is therefore a block
rather than a pixel. The numbers of blocks in both rows
and columns reduce by half successively at each lower res-
olution. Obviously, a block at a lower resolution covers a
spatially more global region of the image. As is indicated
by Figure 3, the block at the lower resolution is referred to
as a parent block, and the four blocks at the same spatial lo-
cation at the higher resolution are referred to as child blocks.
We will always assume such a \quad-tree" split in the se-
quel since the extension to other hierarchical structures is
straightforward.

We �rst review the basic assumptions of the single resolution
2-D HMM as presented in [17]. In the 2-D HMM, feature
vectors are generated by a Markov model that may change
state once every block. Suppose there areM states, the state
of block (i; j) being denoted by si;j . The feature vector of
block (i; j) is ui;j . We use P (�) to represent the probability of
an event. We denote (i0; j0) < (i; j) if i0 < i or i0 = i; j0 < j,
in which case we say that block (i0; j0) is before block (i; j).
The �rst assumption is that

P (si;j j context) = am;n;l ;

context = fsi0;j0 ; ui0;j0 : (i
0; j0) < (i; j)g ;

where m = si�1;j , n = si;j�1, and l = si;j . The second
assumption is that for every state, the feature vectors fol-
low a Gaussian distribution. Once the state of a block is
known, the feature vector is conditionally independent of
information in other blocks. The covariance matrix �s and
the mean vector �s of the Gaussian distribution vary with
state s.

Given an image, only feature vectors are observable, the rea-
son that the model is named as a hidden Markov model. The
state of a feature vector is conceptually parallel to the clus-
ter identity of a vector in unsupervised clustering. As with
clustering, the state of vector is not provided directly by the
training data and hence needs to be estimated. In clustering,
feature vectors are considered as independent samples from
a given distribution. In the 2-D HMM, feature vectors are
statistically dependent through the underlying states char-
acterized by Markovian properties.

For the MHMM, denote the collection of resolutions by R =
f1; :::; Rg, with r = R being the �nest resolution. Let the
collection of block indices at resolution r be

N
(r) = f(i; j) : 0 � i < w=2R�r ; 0 � j < z=2R�rg :

Images are described by feature vectors at all the resolu-

tions, denoted by u
(r)
i;j , r 2 R. The underlying state of a

feature vector is s
(r)
i;j . At each resolution r, the set of states

is f1(r); 2(r); :::; M
(r)
r g. Note that as states vary across reso-

lutions, di�erent resolutions do not share states.

To structure statistical dependence among resolutions, a
Markov chain with resolution playing a time-like role is as-
sumed in the 2-D MHMM. Given the states and the features
at the parent resolution, the states and the features at the
current resolution are conditionally independent of the other
previous resolutions, so that

P fs
(r)
i;j ; u

(r)
i;j : r 2 R; (i; j) 2 N

(r)g (1)

= Pfs
(1)
i;j ; u

(1)
i;j : (i; j) 2 N

(1)g �

Pfs
(2)
i;j ; u

(2)
i;j : (i; j) 2 N

(2) j s
(1)
k;l : (k; l) 2 N

(1)g � � � � �

Pfs
(R)
i;j ; u

(R)
i;j : (i; j) 2 N

(R) j s
(R�1)
k;l : (k; l) 2 N

(R�1)g: (2)

At the coarsest resolution, r = 1, feature vectors are as-
sumed to be generated by a single resolution 2-D HMM. At
a higher resolution, the conditional distribution of a feature
vector given its state is also assumed to be Gaussian. The
parameters of the Gaussian distribution depend upon the
state at the particular resolution.
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Figure 4: The hierarchical statistical dependence
across resolutions

Given the states at resolution r � 1, statistical dependence
among blocks at the �ner resolution r is constrained to sib-
ling blocks (child blocks descended from the same parent
block). Speci�cally, child blocks descended from di�erent



parent blocks are conditionally independent. In addition,
given the state of a parent block, the states of its child blocks
are independent of the states of their \uncle" blocks (non-
parent blocks at the parent resolution). State transitions
among sibling blocks are governed by the same Markovian
property assumed for a single resolution 2-D HMM. The
state transition probabilities, however, depend on the state
of their parent block. To formulate these assumptions, de-
note the child blocks at resolution r of block (k; l) at reso-
lution r � 1 by

D (k; l) = f(2k; 2l); (2k + 1; 2l); (2k; 2l + 1); (2k + 1; 2l + 1)g :

According to the assumptions,

Pfs
(r)
i;j : (i; j) 2 N

(r) j s
(r�1)
k;l : (k; l) 2 N

(r�1)g

=
Y

(k;l)2N(r�1)

Pfs
(r)
i;j : (i; j) 2 D (k; l) j s

(r�1)
k;l g ;

where Pfs
(r)
i;j : (i; j) 2 D (k; l)j s

(r�1)
k;l g can be evaluated by

transition probabilities conditioned on s
(r�1)
k;l , denoted by

am;n;l(s
(r�1)
k;l ). We thus have a di�erent set of transition

probabilities am;n;l for every possible state in the parent
resolution. The in
uence of previous resolutions is exerted
hierarchically through the probability of the states, which
can be visualized in Figure 4. The joint probability of states
and feature vectors at all the resolutions in (2) is then de-
rived.

To summarize, a 2-D MHMM re
ects both the inter-scale
and intra-scale statistical dependence. The inter-scale de-
pendence is modeled by the Markov chain over resolutions.
The intra-scale dependence is modeled by the HMM. At the
coarsest resolution, feature vectors are assumed to be gener-
ated by a 2-D HMM. Figure 5 illustrates the inter-scale and
intra-scale dependencies modeled. At all the higher resolu-
tions, feature vectors of sibling blocks are also assumed to
be generated by 2-D HMMs. The HMMs vary according to
the states of parent blocks. Therefore, if the next coarser
resolution has M states, then there are, correspondingly, M
HMMs at the current resolution.

The 2-D MHMM can be estimated by the maximum likeli-
hood criterion using the EM algorithm. Details about the
estimation algorithm and the computation of the likelihood
of an image given a 2-D MHMM are referred to [15].

4. THE AUTOMATIC LINGUISTIC INDEX-
ING OF PICTURES

In this section, we describe the component of the ALIP
system that automatically indexes pictures with linguistic
terms. For a given image, the system compares the im-
age statistically with the trained models in the concept dic-
tionary and extract the most statistically signi�cant index
terms to describe the image.

For any given image, a collection of feature vectors at mul-

tiple resolution fu
(r)
i;j ; r 2 R; (i; j) 2 N

(r)g are computed as

described in Section 3. We regard fu
(r)
i;j ; r 2 R; (i; j) 2 N

(r)g
as an instance of a stochastic process de�ned on a multireso-
lution grid. The similarity between the image and a category
of images in the database is assessed by the log likelihood

of this instance under the model M trained from images in
the category, that is,

log Pfu
(r)
i;j ; r 2 R; (i; j) 2 N

(r) j Mg :

A recursive algorithm is used to compute the above log like-
lihood in an manner described in [15]. After determining
the log likelihood of the image depicting any given concept
in the dictionary, we sort the log likelihoods to �nd the few
categories with the highest likelihoods. The short textual
descriptions of these categories are loaded in the program in
order to �nd the proper index terms for this image.

We use the most statistically signi�cant index terms within
the textual descriptions to index the image. Annotation
words may have vastly di�erent frequencies of appearing in
the categories of an image database. For instance, much
more categories may be described with the index term \land-
scape" than with the term \dessert". Therefore, obtain-
ing the index word \dessert" in the top ranked categories
matched to an image is in a sense more surprising than ob-
taining \landscape" since the word \landscape" may have
a good chance of being selected even by random matching.
To measure the level of signi�cance when a word appears j
times in the top k matched categories, we compute the prob-
ability of obtaining the word j or more times in k randomly
selected categories. This probability is given by

P (j; k) =

kX
i=j

I(i � m)

�
m

i

��
n�m

k�i

�
�
n

k

�
=

kX
i=j

I(i � m)
m! (n�m)! k! (n� k)!

i! (m� i)! (k � i)! (n�m� k + i)! n!
;

where I(�) is the indicator function that equals 1 when the
argument is true and 0 otherwise, n is the total number
of image categories in the database, and m is the number
of image categories that are annotated with the given word.
The probability P (j; k) can be approximated as follows using
the binomial distribution if n;m >> k,

P (j; k) =
kX
i=i

 
k

i

!
pi(1� p)k�i =

kX
i=j

k!

i!(k � i)!
pi(1� p)k�i ;

where p = m=n is the percentage of image categories in the
database that are annotated with this word, or equivalently,
the frequency of the word being used in annotation. A lower
value of P (j; k) indicates a higher level of signi�cance for a
given index term. We rank the index terms within the short
descriptions of the most likely concept categories according
to their statistical signi�cance. The terms with high signif-
icance are used to index the image.

5. EXPERIMENTS
To validate the methods we have described, we implemented
the components of the ALIP system and tested with a general-
purpose image database including about 60; 000 photographs.
These images are stored in JPEG format with size 384�256
or 256 � 384. The system is written in the C programming
language and compiled on two UNIX platforms: LINUX and
Solaris. In this section, we describe the training concepts
and show indexing results.



Figure 5: In the statistical modeling process, spatial relations among image pixels and across image resolutions
are both taken into consideration. Arrows, not all drawn, indicate the transition probabilities captured in
the statistical model.

5.1 Training concepts
We conducted experiments on learning-based linguistic in-
dexing with a large number of concepts. The ALIP system
was trained using a subset of 60; 000 photographs which are
based on 600 CD-ROMs published by COREL Corp. Typi-
cally, each COREL CD-ROM of about 100 images represent
one distinct topic of interest. For our experiment, the dictio-
nary of concepts contains all 600 concepts, each associated
with one CD-ROM of images.

We manually assigned a set of keywords to describe each
CD-ROM collection of 100 photographs. The semantic de-
scriptions of these collections of images range from as simple
or low-level as \mushrooms" and \
owers" to as complex or
high-level as \England, landscape, mountain, lake, Euro-
pean, people, historical building" and \battle, rural, people,
guard, �ght, grass". On average, 3.6 keywords are used to
describe the content of each of the 600 concept categories. It
took the authors approximately 10 hours to annotate these
categories. Table 1 shows a sample of these annotations.

5.2 Results
After the training, a statistical model is generated for each of
the 600 collections of images. Depending on the complexity
of the concept, the training process takes between 15 to
40 minutes of CPU time on an 800 MHz Pentium III PC
to converge on a model. On average, 30 minutes of CPU
time is spent to train a concept. The training process is
conducted only once for each concept in the list.

These models are stored in a fashion similar to a dictionary
or encyclopedia. Essentially, we use computers to create a
dictionary of concepts that will enable computers to index
images linguistically. The process is entirely parallelizable
because the training of one concept is independent from the
training of other concepts in the same dictionary.

We randomly selected 3,000 test images outside the training
image database and processed these images by the linguistic
indexing component of the system. For each of the 3,000 test

images, the computer program selected a number of concepts
in the dictionary with the highest likelihood of describing the
image. Next, the most signi�cant index terms for the image
are extracted from the collection of index terms associated
with the chosen concept categories.

It takes an average of two seconds CPU time on the same
PC to compute the likelihood of a test image resembling
one of the concepts in the dictionary. The process is highly
parallelizable because the computation of the likelihood to
a concept is independent from the computation of the like-
lihood to another concept.

Figure 8 shows the computer indexing results of 21 randomly
selected images outside the training database. The method
appears to be highly promising for automatic learning and
linguistic indexing of images. Some of the computer pre-
dictions seem to suggest that one can control what is to be
learned and what is not by adjusting the training database
of individual concepts. As indicated in the second exam-
ple, the computer predictions of a wildlife animal picture
include \cloth" and \people". It is possible that the com-
puter learned the association between animal fur and the
clothes of people from the training databases which con-
tain images with female super-models wearing fur clothes.
Consequently, computer predictions are objective and with-
out human subjective biases. Potentially, computer-based
indexing of images eliminates the inconsistency problems
commonly associated with manual image annotations.

5.3 Systematic evaluation
To provide numerical results on the performance, we eval-
uated the ALIP system based on a subset of the COREL
database, formed by 10 image categories (Africa people and
villages, beach, buildings, buses, dinosaurs, elephants, 
ow-
ers, horses, mountains and glaciers, food), each containing
100 pictures. Within this database, it is known whether
any two images are of the same category. We trained each
concept using 40 images and test the models using 500 im-
ages outside the training database. Instead of annotating



ID Category Descriptions
0 Africa, people, landscape, animal
10 England, landscape, mountain, lake, European, people, historical building
20 Monaco, ocean, historical building, food, European, people
30 royal guard, England, European, people
40 vegetable
50 wild life, young animal, animal, grass
60 European, historical building, church
70 animal, wild life, grass, snow, rock
80 plant, landscape, 
ower, ocean
90 European, historical building, grass, people
100 painting, European
110 
ower
120 decoration, man-made
130 Alaska, landscape, house, snow, mountain, lake
140 Berlin, historical building, European, landscape
150 Canada, game, sport, people, snow, ice
160 castle, historical building, sky
170 cuisine, food, indoor
180 England, landscape, mountain, lake, tree
190 �tness, sport, indoor, people, cloth
200 fractal, man-made, texture
210 holiday, poster, drawing, man-made, indoor
220 Japan, historical building, garden, tree
230 man, male, people, cloth, face
240 wild, landscape, north, lake, mountain, sky
250 old, poster, man-made, indoor
260 plant, art, 
ower, indoor
270 recreation, sport, water, ocean, people
280 ruin, historical building, landmark
290 sculpture, man-made

Table 1: Examples of the 600 categories and their descriptions. Every category has 40 training images.

Figure 6: Training images used to learn a given concept are not necessarily all visually similar. For example,
these 40 images were used to train the concept of Paris with the category description: \Paris, European,
historical building, beach, landscape, water".



Figure 7: Training images used to learn the concept of male with the category description: \man, male,
people, cloth, face".
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Figure 10: Percentages of images classi�ed to the
same category as the manual classi�cation. The ex-
periment is conducted on a test image database of
10 image categories. (also see Figure 9)

the images, the program was used to select the category
with the highest likelihood for each test image. That is,
we use the classi�cation power of the system as an indica-
tion of the accuracy. An image is considered to be classi�ed
correctly if the computer predicts the original category the
image belongs to. This assumption is reasonable since the 10
categories were chosen so that each depicts a substantially
distinct semantic topic.

Figure 9 shows the automatic classi�cation result as com-
pared with the original image classi�cation. Figure 10 plots
the accuracy in each category as the percentage of images
correctly classi�ed. As indicated in the plots, some of the
concepts can be related. For example, both the \beach" and
the \mountains and glaciers" categories contain images with
rocks, sky, and trees. Moreover, the system is designed for
the purpose of automatically annotating images where the

major challenge is to model hundreds of di�erent concepts
rather than to classify images into a small set of classes with
high accuracy. As a result, the evaluation method we use
here can be used to assess the lower bounds of the annota-
tion accuracy of the system for the given concept categories.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we demonstrated our statistical modeling ap-
proach to the problem of automatic linguistic indexing of
pictures for the purpose of image retrieval. In our ALIP
system, we used categorized images to train a dictionary of
hundreds of concepts automatically. Wavelet-based features
are used to describe local color and texture in the images.
After analyzing all training images for a training concept, a
two-dimensional multiresolution hidden Markov model (2-D
MHMM) is created and stored in a concept dictionary. Im-
ages in one category is regarded as instances of a stochas-
tic process that characterizes the category. To measure the
extent of association between an image and the textual de-
scription of a category of images, we compute the likelihood
of the occurrence of the image based on the stochastic pro-
cess derived from the category. We have demonstrated that
the proposed methods can be used to train 600 di�erent se-
mantic concepts at the same time and these models can be
used to index images linguistically.

The major advantages with our approach are (1) models
for di�erent concepts can be independently trained and re-
trained; (2) a relatively large number of concepts can be
trained and stored; (3) spatial relation among image pixels
and across image resolutions is taken into consideration with
probabilistic likelihood as a universal measure.

The current ALIP system has several limitations.

� We are training the concept dictionary with only 2-D
images without a sense of object size. It is believed
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Figure 8: Annotations automatically generated by our computer-based linguistic indexing algorithm. The
dictionary with 600 concepts was created automatically using statistical modeling and learning. Test images
were randomly selected outside the training database.
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Figure 9: Results for the application of ALIP to the automatic image categorization problem. Left: the true
class identities of the test images indexed from 1 to 500. Every 50 images belong to the same class. For images
with indices 50(i� 1) + 1 to 50i, the correct class identities are i. Right: the class identities predicted by our
system for the 500 images. The experiment is conducted on a test image database of 10 image categories.



that the object recognizer of human beings are usually
trained using 3-D stereo with motion and a sense of
object sizes. Training with 2-D still images potentially
limits the ability of accurate learning of concepts. We
are currently attempting to work on training with 3-D
images.

� Related concepts can sometimes be confusing if the
models are trained with only positive examples. The
current statistical model captures the association be-
tween a set of positive training example and their se-
mantic concept. However, when a part of an associa-
tion is not desired, the model should include a mecha-
nism to make necessary corrections. We are exploring
the possibility of adjusting the model based on nega-
tive examples provided to the system.

� For very complex concepts, i.e., when images repre-
senting the concept have very di�erent appearances,
it seems that 40 training images are not enough for
the computer program to build a reliable model. The
more complex the concept, the more training images
are needed and the more CPU time is required. This
is expected as it takes human beings more experiences
and longer time to learn more complex concepts.
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