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Abstract the past several years. Unfortunately, due to the development

cost and the complexity of the required changes, most oper-
ating systems are unable to effectively utilize these large
machines. Poor scalability restricts the size of machines that
can be supported by most current commercial operating sys-
tems to at most a few dozen processors. Memory allocation
algorithms that are not aware of the large difference in local
versus remote memory access latencies on NUMA (Non-
Uniform Memory Access time) systems lead to suboptimal
. . application performance. Resource management policies not
In this paper we grsent a system called Cellular Disco  yegigned to handle a large number of resources can lead to
that extends the Disco work toopide all the advantages of  qntention and inefficient usage. Finally, the inability of the
the hadware partitioning and scalable operating system ,herating system to survive any hardware or system software
approaches. Wague that Cellular Disco can achieve these (aijyre results in the loss of all the applications running on
benefits at only a small fraction of the development cost Ofyne gystem, requiring the entire machine to be rebooted.
modifying the operating system. Cellular Disco effectively ) )
turns a |age_sca|e Sha}d_memory mu|tim’cessor into a The solutions that have bgen proposed to date are Qlther
virtual cluster that supports fault containment and heter ~based on hardware partitioning [4][21][25][28], or require
geneity while avoiding operating system scalability bottle- developing new operating systems with improved scalability
necks. ¥t at the same time, Cellular Discoeperves the  and fault containment characteristics [3][8][10][22]. Unfor-
benefits of a shad-memory multigrcessor by implement-  tunately, both of these approaches suffer from serious draw-
ing dynamic, ﬁne_grainecbsouce Sharing, and by allow- backs. Hardware partitioning limits the flexibility with
ing users to oveommit esouces such as pcessors and which allocation and Sharing of resources in a Iarge system
memory This hybrid appwach equires a scalableasouce can be adapted to dynamically changing load requirements.
manager that makes local decisions with limited informa- Since partitioning effectively turns the system into a cluster

tion while still poviding good global performance and fault  of smaller machines, applications requiring a large number
containment. of resources will not perform well. New operating system

designs can provide excellent performance, but require a
considerable investment in development effort and time
before reaching commercial maturity.

Despite the fact that lge-scale shad-memory multim-
cessors have been comuially available for several years,
system softwar that fully utilizes all their feates is still

not available, mostly due to the complexity and cost of mak-
ing the equired changes to the operating systemeéently
proposed apprach, called Disco, substantiallgduces this
development cost by using a virtual machine monitor that
leverages the existing operating system technology

In this paper we describe our experience with a Cellular
Disco piototype on a 32-mcessor SGI Origin 2000 system.
We show that the execution time penalty for this aggin is
low, typically within 10% of the best available comaoi&ir A recently proposed alternative approach, called
operating system for most workloads, and that it can man-Disco[2], uses a virtual machine monitor to run unmodified
age the CPU and memorgsouces of the machine signifi- commaodity operating systems on scalable multiprocessors.

cantly better than the hdware partitioning appoach. With a low implementation cost and a small run-time virtu-
alization overhead, the Disco work shows that a virtual
1 Introduction machine monitor can be used to address scalability and

i i NUMA-awareness issues. By running multiple copies of an
Shared-memory multiprocessor systems with up 0 & few uf the-shelf operating system, the Disco approach is able to
hundred processors have been commercially available forleverage existing operating system technology to form the

system software for scalable machines.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that ~ Although Disco demonstrated the feasibility of this new
copies are not made or distributed for profit or commercial advan- approach, it left many unanswered questions. In particular,
tage, and that copies bear this notice and the full citation on the firstthe Disco prototype lacked several major features that made
page. To copy otherwise, to republish, to post on servers or to redisiy gjfficult to compare Disco to other approaches. For exam-
tribute to lists, requires prior specific permission and/or a fee. ple, while other approaches such as hardware partitioning
support hardware fault containment, the Disco prototype
lacked such support. In addition, the Disco prototype lacked
© 1999 ACM 1-58113-140-2/99/0012...$5.00 the resource management mechanisms and policies required
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to make it competitive compared to a customized operatingfactored out. A key design decision that reduced cost com-
system approach. pared to Hive was to assume that the code of Cellular Disco
In this work we present a system called Cellular Disco [tSelf is correct. This assumption is warranted by the fact that

that extends the basic Disco approach by supporting hardihe size of _the virtual machine monitor (50K lines of C and
ware fault containment and aggressive global resource man@ssembly) is small enough to be thoroughly tested.
agement, and by running on actual scalable hardware. Our Resource management: In order to support better
system effectively turns a large-scale shared-memoryresource managementthan hardware clusters, Cellular Disco
machine into avirtual clusterby combining the scalability  allows virtual machines to overcommit the actual physical
and fault containment benefits of clusters with the resourceresources present in the system. This offers an increased
allocation flexibility of shared-memory systems. Our experi- degree of flexibility by allowing Cellular Disco to dynami-
ence with Cellular Disco shows that: cally adjust the fraction of the system resources assigned to

1. Hardware fault containment can be added to a virtual €ach virtual machine. This approach can lead to a signifi-
machine monitor with very low run-time overheads and cantly better utilization of the system, assuming that
implementation costs. ittt a negligible performance pen- resource requirement peaks do not occur simultaneously.
alty over the existing virtualization overheads, fault contain- Cellular Disco multiplexes physical processors among
ment can be provided in the monitor at only a very small several virtual machines, and supports memory paging in
fraction of the developmentfeft that would be needed for  addition to any such mechanism that may be provided by the
adding this support to the operating system. hosted operating system. These features have been carefully

2. The virtual cluster approach can qu|ck|y andi-ef ir_nplemented to avo?d the inefficiencies that have plagued
ciently correct resource allocation imbalances in scalableVirtual machine monitors in the p4&0]. For example, Cel-
systems. This capability allows Cellular Disco to manage lular Disco tracks operating system memory usage and pag-
the resources of a scalable multiprocessor significantly beting disk I/O to eliminate double paging overheads.
ter than a hardware partitioning scheme and almost as well  Cellular Disco must manage the physical resources in the
as a highly-tuned operating system-centric approa@h. V system while satisfying the often conflicting constraints of
tual clusters do not sigfr from the resource allocation con-  providing good fault-containment and scalable resource load
straints of actual hardware clusters, sincgdaapplications  palancing. Since a virtual machine becomes vulnerable to
can be allowed to use all the resources of the systemfaults in a cell once it starts using any resources from that
instead of being confined to a single partition. cell, fault containment will only be effective if all of the

3. The small-scale, simulation-based results of Disco resources for a given virtual machine are allocated from a
appear to match the experience of running workloads onsmall number of cells. However, a naive policy may subop-
real scalable hardware.éMave built a Cellular Disco pro- timally use the resources due to load imbalance. Resource
totype that runs on a 32-processor SGI Origin Jaapand load balancing is required to achieve efficient resource utili-
is able to host multiple instances of SGIRIX 6.2 operat- zation in large systems. The Cellular Disco implementation
ing system running complex workloads. Using this system, of both CPU and memory load balancing was designed to
we have shown that Cellular Disco provides all the featurespreserve fault containment, avoid contention, and scale to
mentioned above while keeping the run-time overhead ofhundreds of nodes.
virtualization below 10% for most workloads. In the process of virtualizing the hardware, Cellular

This paper focuses on our experience with the mecha-Disco can also make many of the NUMA-specific resource
nisms and policies implemented in Cellular Disco for deal- management decisions for the operating system. The physi-
ing with the interrelated challenges of hardware fault cal memory manager of our virtual machine monitor imple-
containment and global resource management: ments first-touch allocation and dynamic migration or

Fault containment: Although a virtual machine monitor ~ 'ePlication of “hot” memory pages [29]. These features are

automatically provides software fault containment in that a OUPIed with a physical CPU scheduler that is aware of
failure of one operating system instance is unlikely to harm Memory locality issues.
software running in other virtual machines, the large poten- By virtualizing the underlying hardware, Cellular Disco
tial size of scalable shared-memory multiprocessors alsoprovides an additional level of indirection that offers an eas-
requires the ability to contain hardware faults. Cellular Disco ier and more effective alternative to changing the operating
is internally structured into a number of semi-independent system. For instance, we have added support that allows
cells or fault-containment units. This design allows the large applications running across multiple virtual machines
impact of most hardware failures to be confined to a singleto interact directly through shared memory by registering
cell, a behavior very similar to that of clusters, where most their shared memory regions directly with the virtual
failures remain limited to a single node. machine monitorThis support allows a much mordigént
While Cellular Disco is organized in a cellular structure interaction than thro_ugh standard distributed-system proto-
similar to the one in the Hive operating system [3], providing C°!S andcan be provided transparently to the hosted operat-

fault containment in Cellular Disco required only a fraction N9 System.
of the development effort needed for Hive, and it does not  This paper is structured as follows. We start by describ-
impact performance once the virtualization cost has beening the Cellular Disco architecture in Sect@nSectior3
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dynamic needs and the priority of the virtual machine, simi-

machine monitor needs to intercept all privileged opera-
tions performed by a virtual machine. This can be imple-

| Application ” App ”App ”Appl lar to the way an operating system schedules physical

| 0s ” oS ” Operating System | tr_esources based on the needs and the priority of user applica-
ions.

| VM ” VM ” Virtual Machine | To be able to virtualize the hardware, the virtual

Cellular Disco (Virtual Machine Monitor) |

mented efficiently by using the privilege levels of the
processor. Although the complexity of a virtual machine
|N0de| |Node| |Node| |Node| |Node| |Node| |Node| |N0de| monitor depends on the underlying hardware, even com-
| I I | plex architectures such as the Intel x86 have been success-
I nter connect fully virtualized [30]. The MIPS processor architecture
[11] that is supported by Cellular Disco has three privilege
Figure 1. Cellular Disco architecture. Multiple levels:user mod€least privileged, all memory accesses are
instances of an off-the-shelf operating system run mapped), supervisor mode (semi-privileged, allows
inside virtual machines on top of a virtual machine mapped accesses to supervisor and user spaceleare
monitor; each instance is only booted with as many mode (most privileged, allows use of both mapped and
resources as it can handle well. In the Origin 2000 unmapped accesses to any location, and allows execution
each node contains two CPUs and a portion of the of privileged instructions). Without virtualization, the
system memory (not shown in the figure). operating system runs at kernel level and applications exe-

cute in user mode; supervisor mode is not used. Under Cel-

describes the prototype implementation and the basic virtu-ular D|ico, oInIIy thle V|rtduaLmach|rr1]e mo(;utor is allowed to I
alization and fault-containment overheads. Next, we discuss Y" ‘E“t ernel Ievel, an tht us tc; avi irect agcess tot a
our resource management mechanisms and policies: CPU'acniné resources in the system. An operaling system
management in Sectigh and memory management in Instance running |_nS|de a virtual machine is only perm_ltted
Section5. Sectiors discusses hardware fault recovery. We [© Use the supervisor and user levels. Whenever a virtual-
conclude after comparing our work to hardware- and Oloer_|zed operating system kernel executes a privileged instruc-

ating system-centric approaches and discussing related!on: the processor will trap into Cellular Disco where that
work. Instruction is emulated. Since in supervisor mode all mem-

ory accesses are mapped, an additional level of indirection

) . thus becomes available to map physical resources to actual
2 The Ce”UIar D|SCO aI’ChIteC'[ure machine resources.

Compared to previous work on virtual machine monitors, The operating system executing inside a virtual machine
Cellular Disco introduces a number of novel features: sup-does not have enough access privilege to perform 1/O opera-
port for hardware fault containment, scalable resource man-ions. When attempting to access an I/O device, a CPU will
agement mechanisms and policies that are aware of faultrap into the virtual machine monitor, which checks the
containment constraints, and support for large, memory-validity of the I/O request and either forwards it to the real
intensive applications. For completeness, we first present d/O device or performs the necessary actions itself in the case
high-level overview of hardware virtualization that parallels of devices such as the virtual paging disk (see Sebti®)n
the descriptions given in [2] and [5]. We then discuss each ofMemory is managed in a similar way. While the operating
the distinguishing new features of Cellular Disco in turn. ~ system inside a virtual machine allocates physical memory
to satisfy the needs of applications, Cellular Disco allocates
2.1 Overview of hardware virtualization machine memory as needed to back the physical memory
requirements of each virtual machinepmapdata structure
Cellular Disco is a virtual machine monitor [5] that can exe- similar to the one in Mach [18] is used by the virtual machine
cute multiple instances of an operating system by runningmonitor to map physical addresses to actual machine
each instance inside its own virtual machine (see Fijure addresses. In addition to the pmap, Cellular Disco needs to
Since the virtual machines export an interface that is similarmaintain anemmaystructure that allows it to translate back
to the underlying hardware, the operating system instancegrom machine to physical pages; this structure is used for
need not be aware that they are actually running on top ofdynamic page migration and replication, and for fault recov-
Cellular Disco. ery (see Sectiof).

For each newly created virtual machine, the user speci-  Performing the physical-to-machine translation using the
fies the amount of resources that will be visible to that virtual pmap at every software reload of the MIPS TLB can lead to
machine by indicating the number of virtual CPUs (VCPUSs), very high overheads. Cellular Disco reduces this overhead
the amount of memory, and the number and type of 1/O by maintaining for every VCPU a 1024-entry translation
devices. The resources visible to a virtual machine are calleccache called theecond level software TL&2TLB). The
physical resourcesCellular Disco allocates the actual entries in the L2TLB correspond to complete virtual-to-
machine resourcee each virtual machine as required by the machine translations, and servicing a TLB miss from the
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. . able to continue unaffected. We designed the system to favor
V§ | M Virtual Machine a smaller overhead during normal execution but a higher cost
- —— - when a component fails, hopefully an infrequent occurrence.
f f Cellular Disco f The details of the fault recovery algorithm are covered in
: : : Section6.
Nodé| [Node][Nodd| [Nodd|j/Nodd| [Nodd One of our basic assumptions when designing Cellular
' L1 L Disco was that the monitor can be kept small enough to be
I nter connect ' thoroughly tested so that its probability of failure is
. " : extremely low. Cellular Disco is thus considered to be a
\ T / trusted system software layéthis assumption is warranted
Cell boundaries by the fact that with a size of less than 50K lines, the monitor

is about as complex as other trusted layers in the shared-
memory machine (e.g., the cache coherence protocol imple-
mentation), and it is about two orders of magnitude simpler

than modern operating systems, which may contain up to

. . . . several million lines of code.
L2TLB is much faster than generating a virtual exception to

be handled by the operating system inside the virtual ~ The trusted layer decision can lead to substantially
machine. smaller overheads compared to a design in which the system

software layer cannot be trusted due to its complexity, such

. as in the case of the Hive operating system [3]. If cells do not
2.2 Support for hardware fault containment trust each other, they have to use expensive distributed pro-
As the size of shared-memory machines increases, reliabilitytocols to communicate and to update their data structures.
becomes a key concern for two reasons. First, one can expedthis is substantially less efficient than directly using shared
to see an increase in the failure rate of large systems: a techmemory. The overheads become evident when one considers
nology that fails once a year for a small workstation corre- the case of a single virtual machine straddling multiple cells,
sponds to a failure rate of once every three days when usedll of which need to update the monitor data structures cor-
in a 128-processor system. Second, since a failure will usuresponding to the virtual machine. An example of a structure
ally bring down the entire system, it can cause substantiallyrequiring frequent updates is the pmap address translation
more state loss than on a small machine. Fault tolerance doesble.

not necessarily offer a satisfactory answer for most users,
due to the system cost increase and to the fact that it does neg,
prevent operating system crashes from bringing down the
entire machine.

Figure 2. The cellular structure of Cellular Disco allows
the impact of a hardware fault to be contained within
the boundary of the cell where the fault occurred.

Although Cellular Disco cells can use shared memory
updating virtual machine-specific data structures, they
are not allowed to directly touch data structures in other
cells that are essential for the survival of those cells. For
Support forsoftware fault containmergof faults occur- those cases, as well as when the monitor needs to request
ring in the operating systems running inside the virtual that operations be executed on a given node or VCPU, a
machines) is a straightforward benefit of any virtual machine carefully designed communication mechanism is provided
monitor, since the monitor can easily restrict the resourcesin Cellular Disco that offers low latency and exactly-once
that are visible to each virtual machine. If the operating sys-semantics.
tem running inside a virtual machine crashes, this will not

. . ! The basic communication primitive is a fast inter-proces-
impact any other virtual machines.

sor RPC (Remote Procedure Call). For our prototype Origin
To address the reliability concerns for large machines, 2000 implementation, we measured the round-trip time for
we designed Cellular Disco to suppbdrdware fault con- an RPC carrying a cache line-sized argument and reply (128
tainment a technique that can limit the impact of faults to bytes) at 16us. Simulation results indicate that this time can
only a small portion of the system. After a fault, only a small be reduced to under if appropriate support is provided
fraction of the machine will be lost, together with any appli- in the node controller, such as in the case of the FLASH mul-
cations running on that part of the system, while the rest oftiprocessor [13].
_the_sy_stem can continue_ e_xecuting una_ff_ected. This behavior A second communication primitive, calledressaggis
is similar to the one exhibited by Qtradmonal cluster, wh(_are rovided for executing an action on the machine CPU that
hardware and system software failures tend to stay localized, ety owns a virtual CPU. This obviates most of the need
to the node on which they occurred. for locking, since per-VCPU operations are serialized on the
To support hardware fault containment, Cellular Disco is owner. The cost of sending a message is on average the same
internally structured as a set of semi-independetis as as that of an RPC. Messages are based on a fault tolerant, dis-
shown in Figure. Each cell contains a complete copy of the tributed registry that is used for locating the current owner of
monitor text and manages all the machine memory pagesa VCPU given the ID of that VCPU. Since the registry is
belonging to its nodes. A failure in one cell will only bring completely rebuilt after a failure, VCPUs can change owners
down the virtual machines that were using resources from(that is, migrate around the system) without having to
that cell, while virtual machines executing elsewhere will be depend on a fixed home. Our implementation guarantees
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exactly-once message semantics in the presence of conten- An important aspect of our memory balancing policies is

tion, VCPU migration, and hardware faults. that they carefully weigh the performance gains obtained by
allocating borrowed memory versus the implications for
2.3 Resource management under constraints fault containment, since using memory from a remote cell

. ) can make a virtual machine vulnerable to failures on that
Compared to traditional resource management issues, agg||.

additional requirement that increases complexity in Cellular
Disco is fault containment. The mechanisms and policies ot
used in our system must carefully balance the often conflict—2'4 Support f_or Iargg applications B

ing requirements of efficiently scheduling resources and !N order to avoid operating system scalability bottlenecks,
maintaining good fault containment. While efficient €ach operating system instance is given only as many
resource usage requires that every available resource in thEesources as it can handle well. Applications that need fewer
system be used when needed, good fault containment cafeSources than thos_e aIIoca;e_d to a virtual machine run as
only be provided if the set of resources used by any giventhey.nor_mally would in a traditional system. However, !arge
virtual machine is confined to a small number of cells. Addi- @Pplications are forced to run across multiple virtual
tionally, our algorithms had to be designed to scale to systeniMachines.

sizes of up to a few hundred nodes. The above requirements The solution proposed in Disco was to split large appli-
had numerous implications for both CPU and memory man-cations and have the instances on the different virtual
agement. machines communicate using distributed systems protocols

CPU management: Operating systems for shared-mem- that run over a fa}st shared-r_nemory_based _virtual ethernet
ory machines normally use a global run queue to performProvided by the virtual machine monitor. This approach is
load sharing; each idle CPU looking for work examines the Similar to the way such applications are run on a cluster or a
run queue to attempt to find a runnable task. Such anhardware partitioning  environment. Unfortuna}tely, this
approach is inappropriate for Cellular Disco because it vio- 2PProach  requires that shared-memory applications be
lates fault-containment requirements and because it is dSVitten, and incurs significant overhead introduced by
source of contention in large systems. In Cellular Disco, COMMunication protocols such as TCP/IP.
each machine processor maintaitss own run queueof Cellular Disco’s virtual cluster environment provides a
VCPUs. However, even with proper initial load placement, much more efficient sharing mechanism that allows large
separate run queues can lead to an imbalance among the prapplications to bypass the operating system and register
cessors due to variability in processor usage over the lifetimeshared-memory regions directly with the virtual machine
of the VCPUs. A load balancing scheme is used to avoid themonitor. Since every system call is intercepted first by the
situation in which one portion of the machine is heavily monitor before being reflected back to the operating system,
loaded while another portion is idle. The basic load balanc-it is easy to add in the monitor additional system call func-
ing mechanism implemented in Cellular DiscoMEPU tionality for mapping global shared-memory regions. Appli-
migratior; our system supports intra-node, intra-cell, and cations running on different virtual machines can
inter-cell migration of VCPUs. VCPU migration is used by communicate through these shared-memory regions without
a balancing policy module that decides when and whichany extra overhead because they simply use the cache-coher-
VCPU to migrate, based on the current load of the systemence mechanisms built into the hardware. The only draw-
and on fault containment restrictions. back of this mechanism is that it requires relinking the
application with a different shared-memory library, and pos-

scheduler is that all non-idle VCPUs belonging to the samesIbly a few small modifications to the operating system for

. i , g handling misbehaving applications.
virtual machine argang-scheduledince the operating sys- . ) }
tems running inside the virtual machines use spinlocks for ~ Since the operating system instances are not aware of
their internal synchronization, gang-scheduling is necessary@Pplication-level memory sharing, the virtual machine mon-

to avoid wasting precious cycles spinning for a lock held by itor needs to provide the appropriate paging mechanisms and
a descheduled VCPU. policies to cope with memory overload conditions. When

. ) paging out to disk, Cellular Disco needs to preserve the shar-
Memory management: Fault-containment requires that 4 information for pages belonging to a shared-memory
each Cellular Disco cell manage its own memory allocation. region, In addition to the actual page contents, the Cellular
However, this can lead to a case in which a cell running apjscqo pager writes out a list of virtual machines using that

memory-intensive virtual machine may run out of memory, page, so that sharing can be properly restored when the page
while other cells have free memory reserves. In a static paris tauited back in.

titioning scheme there would be no choice but to start paging
data out to disk. To avoid an inefficient use of the shared- .
memory system, Cellular Disco implementsiamory bor- 3 TheCellular Disco prototype

rowing mechanism through which a cell may temporarily In this section we start by discussing our Cellular Disco pro-
obtain memory from other cells. Since memory borrowing totype implementation that runs on actual scalable hardware.
may be limited by fault containment requirements, we also After describing the experimental setup, we provide evalua-
support paging as a fall-back mechanism. tions of our virtualization and fault containment overheads.

An additional feature provided by the Cellular Disco
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Virtual Machine | /O req Component Characteristics

é) A Processors 32 x MIPS R10000 @ 195 MHz

6 Node controllers 16 x SGI Hub @100 MHz
Cedllular Disco t](o?r\ward > [§_ Memor 3.5GB
2 L SO 5 L '
Host IRIX 6.4  [actual rl \(Nl L2 cache size 4 MB
(devicedrivers) [I/Ore A Disks 5 (total capacity: 40GB)
€ @ Table 4. SGI Origin 2000 configuration that was used
Hardware g lcompletion in for running most of the experiments in this paper.
Figure 3. I/O requests made by a virtual machine are exception vectors have been overwritten. To allow the host
handled using host IRIX device drivers. This is a six drivers to properly handle I/O completion the monitor reac-
step process that is fully described in the text. tivates the dormant IRIX, making it look as if the 1/O inter-
rupt had just been posted (5). Finally, Cellular Disco posts a

3.1 Prototype implementation virtual interrupt to the virtual machine to notify it of the com-

. . . . . pletion of its I/O request (6). Since some drivers require that
The Cellular Disco virtual machine monitor was designed to e kernel be aware of time, Cellular Disco forwards all

support shared-memory systems based on the MIPS R1000 mer interrupts in addition to device interrupts to the host

processor architecture [11]. Our prototype implementation IRIX

consists of about 50K lines of C and assembly and runsona ="~

32-processor SGI Origin 2000 [14]. Our piggybacking technique allowed us to bring up our
: : system on real hardware quickly, and enabled Cellular Disco

One of the main hurdles we had to overcome in the pro- . X

totype was the handling of I/O devices. Since coping with all :ﬁehzr;?éesagﬁpaﬁw:rﬁodsﬂgg(l Egnséulp\?v%rtfso.uBn%Tr?:%\j/ré??

the details of the Origin 1/0O hardware was beyond our avail- d of hp iqavbacki h b 0 han 29

able resources, we decided to leverage the device drivelhfaﬁ] oft ?plgg.y ac 'n% app"ror?c bto ﬁsmi ,lesst a'rl]'h %

functionality already present in the SGI IRIX 6.4 operating oft edtotabrunkmr}g time for all the benck_ mar Ewe ran.h €

system for our prototype. Our Cellular Disco implementa- main drawback of our current piggybacking scheme Is that it

. : does not support hardware fault containment, given the
tion thus runpiggybackedn top of IRIX 6.4. monolithic design of the host operating system. While the

To run our Cellular Disco prototype, we first boot the fault containment experiments described in Sedido not
IRIX 6.4 operating system with a minimal amount of mem- yse the piggybacking scheme, a solution running one copy of
ory. Cellular Disco is implemented as a multi-threaded ker- the host operating system per Cellular Disco cell would be

nel process that spawns a thread on each CPU. The threagfossible with appropriate support in the host operating sys-
are pinned to their designated processors to prevent the IRIXem.

scheduler from interfering with the control of the virtual

machine monitor over the machine’s CPUs. Subsequent. ;

actions performed by the monitor violate the IRIX process 3.2 Experimental setup

abstraction, effectively taking over the control of the We evaluated Cellular Disco by executing workloads on a
machine from the operating system. After saving the kernel32-processor SGI Origin 2000 system configured as shown
registers of the host operating system, the monitor installs itsn Table4. The running times for our benchmarks range
own exception handlers and takes over all remaining systenfrom 4 to 6 minutes, and the noise is within 2%.

memory. The host IRIX 6.4 operating system remains dor-  on this machine we ran the following four workloads:
mant but can be reactivated any time Cellular Disco needs tatabase, Pmake, Raytrace, and Web server. These work-
use a device driver. loads, described in detail in Taldewere chosen because
Whenever one of the virtual machines created on top ofthey stress different parts of the system and because they are
Cellular Disco requests an 1/O operation, the request is hana representative set of applications that commercial users run
dled by the procedure illustrated in Fig@€The 1/0 request  on large machines.
causes a trap into Cellular Disco (1), which checks access
permissions and simply forwards the request to the host3 3 Virtualization over heads
IRIX (2) by restoring the saved kernel registers and excep-
tion vectors, and requesting the host kernel to issue th
appropriate 1/0 request (3). From the perspective of the hos
operating system, it looks as if Cellular Disco had been run-
ning all the time just like any other well-behaved kernel pro-
cess. After IRIX initiates the 1/O request, control returns to
Cellular Disco, which puts the host kernel back into the dor-  To measure the impact of virtualization we compared the
mant state. Upon I/O completion the hardware raises anperformance of the workloads executing under two different
interrupt (4), which is handled by Cellular Disco because the setups. First, we ran the workloads on IRIX6.4 executing

The performance penalty that must be paid for virtualization
argely depends on the processor architecture of the virtual-
ized system. The dominant portion of this overhead is the
cost of handling the traps generated by the processor for each
privileged instruction executed by the kernel.
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Workload | Description

Decision support workload based on the TPC-D [27] query suite on Informix Relational Database version 7.1.2 us
200MB and a 1GB databasee\Weasure the sum of the run times of the 17 non-update queries.

Pmake I/O intensive parallel compilation of the SGI IRIX 5.3 operating system (about 500K lines of C and assembly code

CPU intensive ray tracer from the SPLASH-2 [31] parallel benchmark suiteiséd the balls4 data set with varying
amounts of anti-aliasing so that it runs four to six minutes for single- and multi-process configurations.

Kernel intensive web server workload. SpecWEB96 [23] running on an Apache web Akhaergh the workload alway:
runs for 5 minutes, we scaled the execution times so that each run performs the same number of requests.

Database

Raytrace

Web

Table 5. Workloads. The execution times reported in this paper are the average of two stable runs after an initial
warm-up run. The running times range from 4 to 6 minutes, with a noise of 2%.
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Figure 6. Virtualization overheads. For each workload, the left bar shows the execution time separated into various
modes for the benchmark running on IR1X6.4 on top of the bare hardware. The right bar shows the same bench-
mark running on IRIX6.2 on top of Cellular Disco. The time spent in IRIX6.4 device drivers is included in the
Cellular Disco portion of each right bar. For multiprocessor runs, the idle time under Cellular Disco increases due to
the virtualization overheads in the serial parts of the workload. The reduction in user time for some workloads is
due to better memory placement. Note that for most workloads, the overheads are within 10%.

directly on top of the bare hardwafiéhen, we ran the same down into time spent in idle mode, in the virtual machine
workloads on IRIX6.2 executing on top of the Cellular Disco monitor (this portion also includes the time spent in the host
virtual machine monitor. We used two different versions of kernel's device drivers), in the operating system kernel, and
IRIX to demonstrate that Cellular Disco can leverage an off- in user mode. This breakdown was measured by using the
the-shelf operating system that has only limited scalability to hardware counters of the MIPS R10000 processors.

provide esse_ntially the same_f_unctionali_ty and performance Figure6 also shows the virtualization overheads for 8
as an operating system specifically designed for large-scale,ng 32 processor systems executing a single virtual machine
machines. IRIX6.2 was designed for small-scale Challenge {hat spans all the processors. We have included two cases
bus-based multiprocessors [7], while IREX4 was the latest  (jpaded and unloaded) for the Web workload because the
operating system available for the Origin 2000 when we o systems perform very differently depending on the load.
started our experimental work. Another reason for using tWo The ynloaded case limits the number of server and client pro-
different versions of IRIX is that IRIX6.2 does not run on the cegses to 16 each (half the number of processors), while the
Origin 2000. Except for scalability fixes in IRIX6.4, the tWo |5aded case starts 32 clients and does not limit the number of
versions are fairly similar; therefore, the uniprocessor num- garyer processes (the exact value is determined by the web
bers presented in this section provide a good estimate of thgeryer). IRIX6.4 uses blocking locks in the networking code,
virtualization cost. However, multiprocessor numbers may yyich results in better performance under heavy load, while
also be distorted by the scalability limitations of IRIX6.2. IRIX6.2 uses spin locks, which increases kernel time but
The Cellular Disco virtualization overheads are shown in performs better under light load. The Database, Pmake, and
Figure6. As shown in the figure, the worst-case uniproces- Web benchmarks have a large amount of idle time due to
sor virtualization penalty is only 9%. For each workload, the their inability to fully exploit the available parallelism; a sig-
bar on the left shows the time (normalized to 100) needed tonificant fraction of those workloads is serialized on a single
complete the run on IRIX 6.4, while the bar on the right processor. Note that on a multiprocessor virtual machine,
shows the relative time to complete the same run on IRIX 6.2any virtualization overheads occurring in the serial part of a
running on top of the monitor. The execution time is broken workload aremagnifiedsince they increase the idle time of
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migration, each providing a different tradeoff between per-

100 101 100 g 100 101 100 101 E e Jar Disco formance and cost.

i Kerel The simplest VCPU migration case occurs when a

VCPU is moved to a different processor on the same node
(the Origin 2000 has two CPUs per node). Although the time
required to update the internal monitor data structures is only
37 us, the real cost is paid gradually over time due to the loss
of CPU cache affinity. To get a rough estimate of this cost,

let us assume that half of the 128-byte lines in the 4 MB sec-
ond-level cache are in use, with half of the active lines local

i and the other half remote. Refilling this amount of cached

information on the destination CPU requires abous3

The second type of migration occurs when a VCPU is
moved to a processor on a different node within the same
cell. Compared to the cost of intra-node migration, this case
Figure 7. Overhead of fault-containment. The left bar, incurs the added cost of copying the second level software
normalized to 100, shows the execution breakdown in TLB (described in SectioR.1) which is always kept on the
a single cell configuration. The right bar shows the same node as the VCPU since it is accessed very frequently.
execution profile on an 8 cell system. In both cases, At 520 s, the cost for copying the entire L2TLB (32 KB) is
we ran a single 32-processor virtual machine spanning still much smaller than the gradual cost of refilling the CPU
the entire system. cache. However, inter-node migration has a higher long-
term cost because the migrated VCPU is likely to access

the unused VCPUs. Even under such circumstances, Cellulamachine memory pages allocated on the previous node.

Disco introduces only 20% overhead in the worst case. ~ Unlike the cost of cache affinity loss which is only paid once,
accessing remote memory is a continuous penalty that is

3.4 Fault-containment over heads incurred every time the processor misses on a remote cache
' line. Cellular Disco alleviates this penalty by dynamically

structure of Cellular Disco, we ran our benchmarks on top of hode generating the cache misses [29].

the virtual machine monitor using two configurations. First,
the monitor was run as a single cell spanning all 32 proces- d I boundary: thi L
sors in the machine, corresponding to a setup that does ndfp_ Moved across a cell boundary; this migration costs

provide any fault containment. Second, we booted Cellular 1220HS including the time to copy the L2TLB. Besides los-
Disco in an 8-cell configuration, with 4 processors per cell. ing cache and node affinity, this type of migration may also

We ran our workloads inside a 32-processor virtual machinelncrease the fault vulnerability of the VCPU. If the latter has
that was completely contained in the single cell in the first "€Ver before run on the destination cell and has not been

case, and that spanned all 8 cells in the second one using any resources from it, migrating it to the new cell will
! ’ make it vulnerable to faults in that cell. However, Cellular

Figure7 shows that the running time for virtual pisco provides a mechanism through which dependencies to
machines spanning cell boundaries is practically the same age o|d cell can be entirely removed by moving all the data

when executing in a single cell (except for some small differ- ;5o by the virtual machine over to the new cell; this process
ences due to scheduling artifacts). This result shows that ing covered in detail in Sectighs.

Cellular Disco, hardware fault containment can be provided
at practically no loss in performance once the virtualization
overheads have been factored out. This result stands in sha
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The third type of VCPU migration occurs when a VCPU

rg.z CPU balancing policies

contrast to earlier fault containment work [3]. Cellular Disco employs two separate CPU load balancing
policies: the idle balancer and the periodic balancer. The idle
4 CPU management balancer runs whenever a processor becomes idle, and per-

) ) ] ) ~ forms most of the balancing work. The periodic balancer
In this section, we first describe the processor load balancingedistributes those VCPUs that are not handled well by the
mechanisms provided in Cellular Disco. We then discuss thejdle balancer.

policies we use to actually balance the system. Next we dis-
cuss our implementation of gang scheduling. We conclude
with an evaluation of the performance of the system and with
comments on some interesting issues regarding inter-cel
migration.

When a processor becomes idle, the idle balancer runs on
that processor to search for VCPUs that can be “stolen” from
Ithe run queues of neighboring processors in the same cell,
starting with the closest neighbor. However, the idle bal-
ancer cannot arbitrarily select any VCPU on the remote
. . ueues due to gang scheduling constraints. Cellular Disco
4.1 CPU balancing mechanisms \?vill schedule a \g/]CPgl]J only Wheg all the non-idle VCPUs of
Cellular Disco supports three different types of VCPU that virtual machine are runnable. Annotations on the idle
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To reduce memory contention the tree nodes are physically
spread across the machine. Starting from its corresponding
leaf, each processor updates the tree on evemgslimer
interrupt. Cellular Disco reduces the contention on higher
level nodes by reducing the number of processors that can
update a level by half at every level greater than three.

1 0 2 1 The periodic balancer traverses this tree depth first,
checking the load disparity between the two children. If the
disparity is larger than one VCPU, The balancer will try to

find a VCPU from the loaded side that is a good candidate for
migration. Gang scheduling requires that two VCPUs of the

lvcaol |vcai

VC BO VC B1 same VM not be scheduled on the same processor, therefore,
one of the requirements for a good candidate is that the less
| dle balancer loaded side must have a processor that does not already have

another VCPU of the same virtual machine. If the two sides
belong to different cells, then migrating a VCPU will make it

Figure 8. CPU balancing scenario. The numbers inside

the nodes of the tree represent the CPU load on the vulnerable to faults in the new cell. To prevent VCPUs from
corresponding portion of the machine. The letter in the being vulnerable to faults in many cells, Cellular Disco keeps
VCPU name specifies the virtual méchine while the track of the list of cells each VCPU is vulnerable to, and the

periodic balancer prefers migrating VCPUs that are already
vulnerable to faults on the less-loaded cell.

Executing the periodic balancer across the entire system
loop of the kernel inform Cellular Disco when a VCPU can be expensive for large machines; therefore we left this as
becomes idle. The idle balancer checks the remote queue% t“’ﬁab'e parameter, currently set atn&{)_ However,
for VCPUs that, if moved, would allow that virtual machine eavily loaded systems can have local load |mbalances'that
to run. For example, consider the case showFiguires. are not be handle_:d by idle balancer due to the lack of |c_1le
VCPUs in the top row are currently executing on the actual cycles. Ce_llul_ar Disco addresses this problem by also addl_ng
machine CPUs; CPU 0 is idle due to gang scheduling con-2 local periodic load ba_lanqerthat runs on each 8 CPU region
straints. After checking the remote queues, the idle balancef Ve 20ms. The combination of these schemes results in an
running on CPU 1 will migrate VCPU B1 because the migra- efficient adaptive system.
tion will allow VCPUs B0 and B1 to run on CPUs 0 and 1, . .
respectively. Although migrating VCPU B1 would allow to 4.3 Scheduling policy
it start executing right away, it may have enough cache andBoth of the balancing schemes described in the previous sec-
node affinity on CPU 2 to cancel out the gains. Cellular tion would be ineffective without a scalable gang scheduler.
Disco tries to match the benefits with the cost of migration Most gang schedulers use either space or time partitioning,
by delaying migration until a VCPU has been descheduledbut these schemes require a centralized manager that
for some time depending on the migration distances4or becomes a scalability bottleneck. Cellular Disco’s scheduler
intra-node, and @ns for inter-node. These were the optimal uses a distributed algorithm similar to the IRIX gang sched-
values after testing a range froorms to 10ms; however, the  uler [1].
overall performance only varies by 1-2% in this range.

number designates the virtual processor. VCPUSs in
the top row are currently scheduled on the processors.

When selecting the next VCPU to run on a processor, our

The idle balancer performs well even in a fairly loaded scheduler always picks the highest-priority gang-runnable
system because there are usually still a few idle cycles avail VCPU that has been waiting the longest. A VCPU becomes
able for balancing decisions due to the fragmentation causedyang-runnable when all the non-idle VCPUs of that virtual
by gang scheduling. However, by using only local load machine are either running or waiting on run queues of pro-
information to reduce contention, the idle balancer is not cessors executing lower priority virtual machines. After
always able to take globally optimal decisions. For this rea- selecting a VCPU, the scheduler sends RPCs to all the pro-
son, we included in our system a periodic balancer that usesessors that have VCPUs belonging to this virtual machine
global load information to balance load in heavily loaded waiting on the run queue. On receiving this RPC, those pro-
systems and across different cells. Querying each processatessors deschedule the VCPU they were running, follow the
individually is impractical for systems with hundreds of pro- same scheduling algorithm, and converge on the desired vir-
cessors. Instead, each processor periodically updates thtal machine. Each processor makes its own decisions, but
load tree a low-contention distributed data structure that ends up converging on the correct choice without employing
tracks the load of the entire system. a central global manager.

The load tree, shown in Figueis a binary tree encom-
passing the entire machine. Each leaf of the tree represents&4 CPU management results
processor, and stores the load on that processor. Each inn&We tested the effectiveness of the complete CPU manage-
node in the tree contains the sum of the loads of its childrenment system by running the following three-part experiment.
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First, we ran a single virtual machine witV8PUs execut- mechanism, it is important to discuss the memory allocation
ing an 8-process raytrace, leaving 24 processors idle. Nextmodule. Each cell maintains its owreelist (list of free

we ran four such virtual machines, each one running an 8-pages) indexed by the home node of each memory page. Ini-
process raytrace. Finally, we ran eight virtual machines con-tially, the freelist entries for nodes not belonging to this cell
figured the same way, a total of €PUs running raytrace  are empty, as the cell has not yet borrowed any memory.
processes. An ideal system would run the first two configu- Every page allocation request is tagged with a list of nodes
rations in the same time, while the third case should takethat can supply the memory (this list is initialized when a vir-
twice as long. We measured only a 0.3% increase in the sectual machine is created). When satisfying a request, a higher
ond case, and the final configuration took 2.17 times as long.preference is given to memory from the local node, in order
The extra time can be attributed to migration overheads,to reduce the memory access latency on NUMA systems
cache affinity loss due to scheduling, and some load imbal-(first-touch allocation strategy).

ance. To get a baseline number for the third case, we ran the
same experiment on IRIX6.4 and found that IRIX actually
exhibits a higher overhead of 2.25.

The memory balancing mechanism is fairly straightfor-
ward. A cell wishing to borrow memory issues a fast RPC to
a cell which has available memory. The loaner cell allocates
. L memory from its freelist and returns a list of machine pages
4.5 Inter-cell migration issues as the result of the RPC. The borrower adds those pages to
Migrating VCPUs across cell boundaries raises a number ofits freelist, indexed by their home node. This operation takes
interesting issues. One of these is when to migrate the data58ps to borrow 4MB of memory.

structure associated with the entire virtual machine, not just

a single VCPU. The size of this data structure is dominateds 2 Memory balancing policies

by the pmap, which is proportional to the amount of physical _ .

memory the virtual machine is allowed to use. Although the A C€ll starts borrowing memory when its number of free
L2TLB reduces the number of accesses to the pmap, it is stilP29es reaches a low threshold, but before completely run-
desirable to place the pmap close to the VCPUs so that soft?ing out of pages. This policy seeks to avoid forcing small
ware reloaded TLB misses can be satisfied quickly. Also, if Virtual machines that fit into a single cell to have to use
all the VCPUs have migrated out of a cell, keeping the pmap€moté memory. For example, consider the case of a cell
in the old cell leaves the virtual machine vulnerable to faults With two virtual machines: one with a large memory foot-
in the old cell. We could migrate the virtual machine-wide Print, and one that entirely fits into the cell. The large virtual
data structures when most of the VCPUs have migrated to gnachine will have to use remote memory to avoid paging,
new cell, but the pmap is big enough that we do not want toPUt the smaller one can achieve good performance with just
move it that frequently. Therefore, we migrate it only when 10¢@l memory, without becoming vulnerable to faults in

all the VCPUs have migrated to a different cell. We have other cells. The cell must carefully decide when to allocate
carefully designed this mechanism to avoid blocking the remote memory so that enough local memory is available to

VCPUs, which can run concurrently with this migration. satisfy the requirements of the smaller virtual machine.

This operation takes 8@s to copy I/O-related data struc- Depending on their fault containment requirements,
tures other than the pmap, and copying the pmap takesisers can restrict the set of cells from which a virtual
161ps per MB of physical memory the virtual machine is machine can use borrowed memory. Paging must be used as
allowed to use. a last recourse if free memory is not available from any of the

Although Cellular Disco migrates the virtual machine cells in this list. To avoid paging as much as possible, a cell
data structures when all the VCPUs have moved away fromshould borrow memory from cells that are listed in the allo-
a cell, this is not sufficient to remove vulnerability to faults Ccation preferences of the virtual machines it is executing.
occurring in the old cell. To become completely independent Therefore, every cell keeps track of the combined allocation
from the old cell, any data pages being used by a virtualpreferences of all the virtual machines it is executing, and
machine must be migrated as well. This operation takesadjusts that list whenever a virtual machine migrates into or
25ms per MB of memory being used by the virtual machine out of the cell.

and can be executed without blocking any of the VCPUs. A policy we have found to be effective is the following:
when the local free memory of a cell drops below 16MB, the
5 Memory management cell tries to maintain at least 4MB of free memory from each

in i secton, we focus on the problem of managing £ 1 15 acatio references i e cel borows e
machine memory across cells. We will present the mecha-

nisms to address this problem, policies that uses those mec pvailable. This heuristic biases the borrowing policy to

anisms, and an evaluation of the performance of thesohcn memory from cells that actively supply pages to at

: : ; east one virtual machine. Cells will agree to loan memory as
rcglr;[gftt% if));s;nrg' The section concludes by looking at |ssue%ong as they have more than 32MB available. The above

thresholds are all tunable parameters. These default values
. . were selected to provide hysteresis for stability, and they are
5.1 Memory balancing mechanism based on the number of pages that can be allocated during
Before describing the Cellular Disco memory balancing the interval between consecutive executions of the policy,
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every 10ms. In this duration, each CPU can allocate at most Case Awithout Case Bwith
732KB, which means that a typical cell with 8CPUs can virtual paging disk virtual paging disk

only allocate 6MB in 10ns if all the CPUs allocate memory Collular Disco vageoldt [Callular Disco bageol
as fast as possible, a very unlikely scenario; therefore, we Disk write pag Disk write pag
decided to borrow 4MB at a time. Cells start borrowing § 0S pageout 0S pageout
when only 16MB are left because we expect the resident size @ Page fault in Update mapping
of small virtual machines to be in 10-15MB range. Disk write

We measured the effectiveness of this policy by running ,

. Total disk

a 4-processor Database workload. First, we ran the bench- _occoe 3 1

mark with the monitor configured as a single cell, in which _ i , L ,
case there is no need for balancing. Next, we ran in an 8-celFigure 9. Redundant paging. Disk activity is shown in
configuration, with 4 CPUs per cell. In the second configu- P0ld- Case A illustrates the problem, which results in 3
ration, the cell executing the Database virtual machine diddiSk accesses, while Case B shows the way Cellular
not have enough memory to satisfy the workload and endecPiSco avoids it, requiring just one disk access.

up borrowing 596 MB of memory from the other cells. Bor-

rowing this amount of memory had a negligible impact on independent decisions, some pages may have to be written
the overall execution time (less than 1% increase). out to disk twice, or read in just to be paged back out. Cellu-

lar Disco avoids this inefficiency by trapping every read and

: write to the kernel's paging disk, identified by designating
5.3 Issuesrelated t.O paging . _ for every virtual machine a special disk that acts as the vir-
If all the cells are running low on memory, there is no choice tyal paging disk. Figur@ illustrates the problem and the way
but to page data out to disk. In addition to providing the basicCellular Disco avoids it. In both cases shown, the virtual
paging functionality, our algorithms had to solve three addi- machine kernel wishes to write a page to its paging disk that
tional challenges: identifying actively used pages, handling Cellular Disco has already paged out to its own paging disk.
memory pages shared by different virtual machines, andwithout the paging disk, as shown in Case A, the kernel's
avoiding redundant paging. pageout request appears to the monitor as a regular disk write

Cellular Disco implements a second-chance FIFO queueOf a pagehat has been paged out to Cellular Disquging

to approximate LRU page replacement, similar to VMS disk. Therefore, Cellular Disco will first fault that page in
[15]. Each virtual machine is assigned a resident set size thafrom its paging disk, and then issue the write for the kesnel
is dynamically trimmed when the system is running low on paging disk. Case B shows the optimized version with the
memory. Although any LRU approximation algorithm can Virtual paging diskWhen the operating system issues a write
find frequently used pages, it cannot separate the infre-to this disk, the monitor notices that it has already paged out
quently used pages into pages that contain active data anthe data, so it simply updates an internal data structure to
unallocated pages that contain garbage. Cellular Discomake the sectors of the virtual paging disk point to the real
avoids having to write unallocated pages out to disk by non-sectors on Cellular Disco’s paging disk. Any subsequent
intrusively monitoring the physical pages actually being operating system read from the paging disk is satisfied by
used by the operating system. Annotations on the operatindOOking up the actual sectors in the indirection table and
system’s memory allocation and deallocation routines pro-reading them from Cellular Disco’s paging disk.

vide the required information to the virtual machine moni- We measured the impact of the paging optimization by

tor. running the following micro-benchmark, called stressMem.
A machine page can be shared by multiple virtual After allocating a very large chunk of memory, stressMem

machines if the page is used in a shared memory region agrites a unique integer on each page; it then loops through

described in Sectiop.4, or as a result of a COW (Copy-On- all the pages again, verifying that the value it reads is the

Write) optimization. The sharing information is usually kept same as what it wrote out originally. StressMem ran for 258

in memory in the control data structures for the actual seconds when executing without the virtual paging disk opti-

machine page. However, this information cannot remain mization, but it took only 117 seconds with the optimization

there once the page has been written out if the machine pagga 55% improvement).

is to be reused. In order to preserve the sharing, Cellular

Disco writes the sharing information out to disk along with 6 Hard fault

the data. The sharing information is stored on a contiguous ardwarefault recovery

sector following t_he paged data so that i'_[ can be written outp, e tg the tight coupling provided by shared-memory hard-
using the same disk I/O request; this avoids the penalty of any 56 the effects of any single hardware fault in a multipro-
additional disk seek. cessor can very quickly ripple through the entire system.

Redundant paging is a problem that has plagued earlyCurrent commercial shared-memory multiprocessors are
virtual machine implementations [20]. This problem can thus extremely likely to crash after the occurrence of any
occur since there are two separate paging schemes in the sybardware fault. To resume operation on the remaining good
tem: one in Cellular Disco, the other in the operating systemsresources after a fault, these machines require a hardware
running in the virtual machines. With these schemes makingreset and a reboot of the operating system.
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As shown in [26], it is possible to design multiprocessors
that limit the impact of most faults to a small portion of the
machine, called a hardware fault containment unit. Cellular
Disco requires that the underlying hardware be able to VMg VM3 VM4 VMg
recover itself with such a recovery mechanism. After detect-
ing a hardware fault, the fault recovery support described in : : .Cellular Disco,
[26] diagnoses the system to determine which resources ar
still operational and reconfigures the machine in order to ; ; ; ; ; ; ;
allow the resumption of normal operation on the remaining [No| ; [N ; [N | ; [N ; [ Ne | ; [N | ; [N | ; [N
good resources. An important step in the reconfiguration
process is to determine which cache lines have been lost as
result of the failure. Following a failure, cache lines can be
either coherent (lines that were not affected by the fault) or
incoherent (lines that have been lost because of the fault)!

Since the shared-memory system is unable to supply validrigyre 10. Experimental setup used for the fault-
data for incoherent cache lines, any cache miss to these linecontainment experiments shown in Table 11. Each

must be terminated by raising an exception. virtual machine has essential dependencies on two

After completing hardware recovery, the hardware Cellular Disco cells. The_ fault_ injec_tion experiments
informs Cellular Disco that recovery has taken place by post-Were performed on a detailed simulation of the FLASH
ing an interrupt on all the good nodes. This interrupt will Multiprocessor [13].
cause Cellular Disco to execute its own recovery sequence to
determine the set of still-functioning cells and to decide dencies are treated similarly to memory dependencies.
which virtual machines can continue execution after the

fault. This recovery process is similar to that done in Hive paper could not be used for testing the Cellular Disco fault

[3], but our design is much simpler for two reasons: we did .o e support, since the necessary hardware fault con-
not have to deal with operating system data structures, anq

; inment support required by Cellular Disco is not imple-
WE can use shared-'memory operations beqause cells can tru?ﬁented in the Origin 2000 multiprocessor, and since in the
each other. Our simpler design results in a much faster '

recovery time piggybacking solution of Sectidhl the host operating sys-
' tem represents a single point of failure. Fortunately, Cellular

In the first step of the Cellular Disco recovery sequence, Disco was originally designed to run on the FLASH multi-
all cells agree onlaveset(set of still-functioning nodes) that  processor [13], for which the hardware fault containment
forms the basis of all subsequent recovery actions. Whilesupport described in [26] was designed. When running on
each cell can independently obtain the current liveset byFLASH, Cellular Disco can fully exploit the machine’s hard-
reading hardware registers [26], the possibility of multiple ware fault containment capabilities. The main difference
hardware recovery rounds resulting from back-to-back hard-between FLASH and the Origin 2000 is the use in FLASH of
ware faults requires the use of a standard n-round agreemerat programmable node controller called MAGIC. Most of the
protocol [16] to guarantee that all cells operate on a commonhardware fault containment support in FLASH is imple-
liveset. mented using MAGIC firmware.

[Re]:[Ra ]! [Ra]:[Rs]:[Re]: [Rr]

' Interconnect

The experimental setup used throughout the rest of this

The agreed-upon liveset information is used in the sec- We tested the hardware fault recovery support in Cellular
ond recovery step to “unwedge” the communication system, Disco by using a simulation setup that allowed us to perform
which needs to be functional for subsequent recoverya large number of fault injection experiments. We did not use
actions. In this step, any pending RPC’s or messages tdhe FLASH hardware because the current FLASH prototype
failed cells are aborted; subsequent attempts to communicatenly has four nodes and because injecting multiple con-
with a failed cell will immediately return an error. trolled faults is extremely difficult and time consuming on
The final recovery step determines which virtual real hard_ware. The S'mQS [19] and FlashLite [13] S|mulq-

tors provide enough detail to accurately observe the behavior

e e et o the hardware fautcontanment support and o the syser
) y dep oftware after injecting any of a number of common hard-

are determined by scanning all machine memory pages ang . o taits into the simulated FLASH system.
checking for incoherent cache lines; the hardware provides a

mechanism to perform this check. Using the memmap data Figure1l0 shows the setup used in our fault injection
structure, bad machine memory pages are translated back texperiments. We simulated an 8-node FLASH system run-
the physical memory pages that map to them, and then to thaing Cellular Disco. The size of the Cellular Disco cells was
virtual machines owning those physical pages. A tunablechosen to be one node, the same as that of the FLASH hard-
recovery policy parameter determines whether a virtual ware fault containment units. We ran 8 virtual machines,
machine that uses a bad memory page will be immediatelyeach with essential dependencies on two different cells. Each
terminated or will be allowed to continue running until it virtual machine executed a parallel compile of a subset of the
tries to access an incoherent cache line. I/O device depen&nuChess source files.
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500 500
- Number of total —— total ——
Simulated hardware fault experiments Success Rate HW e HW
Node power supply failure 250 100% 2 30016 MB/node 300
Router power supply failure 250 100% aé
Link cable or connector failure 250 100% =
- - 100 100
MAGIC firmware failure 250 100%
Table 11. For all the fault injection experiments shown, 2 8 16 32 16 64 128 256 MB
the simulated system recovered and produced correct f (number of nodes) f (memory per node)

results. ) ]
Figure 12. Fault-recovery times shown as a function of

_ ) o the number of nodes in the system and the amount of
On the configuration shown in Figut® we performed  memory per node. The total time includes both hard-
the fault injection experiments described in Talle After ware and Cellular Disco recovery.
injecting a hardware fault, we allowed the FLASH hardware
recovery gnd the Cellular Disco recovery to execute, and "8Mcluster of small machines with a fast interconnect. This
g}gtesgrvxgggh\g:ucﬂergfgg'?ﬁs ruer;[lljllttsh'":)'; mgrlf,ll%?g% ;gsmi)yapproach is also similar to Cellular Disco without inter-cell
- . ; ~’resource sharing. In fact, because IRIX6.2 does not run on
Cr? mparmgghej chde;:ksums Off the generatgd ObJeCt. files WIththe SGl Origing we evaluated the performance of this
the ones obtained from a reference run. An experiment was = . , ! ,
. . approach using Cellular Disco without inter-cell sharing. We
deemed successful if exactly one Cellular Disco cell and the . .
two virtual machines with dependencies on that cell were ;Jrisceg IR:é(aEBéﬁeaSs the representative of operating system-cen-
lost after the fault, and if the surviving six virtual machines P - o ] ]
produced the correct results. Tableshows that the Cellu-  Small applications that fit inside a single hardware parti-
lar Disco hardware fault recovery support was 100% effec-tion run equally well on all three systems, except for the

tive in 1000 experiments that covered router, interconnectsmall virtualization overheads of Cellular Disco. Large
link, node, and MAGIC firmware failures. resource-intensive applications that don't fit inside a single

partition, however, can experience significant slowdown
when running on a partitioned system due to the lack of
resource sharing. In this section we evaluate all three sys-

tlﬂwes '?} a nrl:mber of ad(_jltlonal _exper_lr;:erk]]ts. Flglge ftems using such a resource-intensive workload to demon-
shows how the recovery time varies with the number of i o+ the need for resource sharing.

nodes in the system and the amount of memory per node. ) -
The figure shows that the total recovery time is small (less _FOr our comparison, we use a workload consisting of a
than half a second) for all tested hardware configurations.Mix Of applications that resembles the way large-scale
While the recovery time only shows a modest increase withmachines are used in practice: we combine an 8-process
the number of nodes in the system, there is a steep increasgaFa_base workload with a 16-process Raytrace run. By
with the amount of memory per node. For large memory dividing the 32-processor Origin system into 4 cells (each
configurations, most of the time is spent in two places. First, With 8 processors), we obtain a configuration in which there
to determine the status of cache lines after a failure, the hardiS N€ither enough memory in any single cell to satisfy Data-
ware fault containment support must scan all node coherenc&ase, nor enough CPUs in any cell to satisfy Raytrace.
directories. Second, Cellular Disco uses MAGIC firmware Because the hardware partitioning approach cannot automat-
support to determine which machine memory pages contaif€ally balance the load, we explicitly placed the two applica-
inaccessible or incoherent cache lines. Both of these operalions on different partitions. In all three cases, we started
tions involve expensive directory scanning operations thatPOth applications at the same time, and measured the time it
are implemented using MAGIC firmware. The cost of these took them to finish, along with the overall CPU utilization.

operations could be substantially reduced in a machine with! 2Pl€13 summarizes the results of our experimental com-
a hardwired node controller. parison. As expected, the performance of our virtual clusters

solution is very close to that of the operating system-centric
. approach as both applications are able to access as many
7 Comparison to other approaches resources as they need. Also, as expected, the hardware par-

In the previous sections we have shown that Cellular Discolitioning approach suffers serious performance degradation
combines the features of both hardware partitioning and tra-du€ to the lack of resource sharing.

ditional shared-memory multiprocessors. In this section we  The hardware partitioning and cluster approaches typi-

compare the performance of our system against both hardeally avoid such serious problems by allocating enough

ware partitioning and traditional operating system-centric resources in each partition to meet the expected peak
approaches. The hardware partitioning approach divides ademand; for example, the database partition would have
large scale machine into a set of small scale machines and been allocated with more memory and the raytrace partition
separate operating system is booted on each one, similar towith more processors. However, during normal operation

In order to evaluate the performance impact of a fault on
the surviving virtual machines, we measured the recovery
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MultiProcessing (CMP) architecture [28]. The benefits of

Approach Raytrace | Database | CPU util. . . . )

. 5 this approach are that it only requires very small operating
Operating system 216s 231s 5% system changes, and that it provides limited fault isolation
Virtual cluster 221s 229s 58% between partitions [25][28]. The major drawback of parti-
Hardware partitioning 434 s 325s 31% tioning is that it lacks resource sharing, effectively turning a

Table 13. C . f irtual clust ht large and expensive machine into a cluster of smaller sys-
able 13. Lomparison ot our virtual cluster approach to tems that happen to share a fast network. As shown in

operating system- and hardware-centric approaches Section?, the lack of resource sharing can lead to serious
using a combination of Raytrace and Database performance degradation.

appllcat|or_15. _We measured the wall (_:l_OCk_ time for To alleviate the resource sharing problems of static par-
each application and the overall CPU utilization. titioning, dynamic partitioning schemes have been proposed
that allow a limited redistribution of resources (CPUs and

this configuration wastes resources, and prevents efficientmemory) across partitions [4][25][28]. Unfortunately, repar-
resource utilization because a raytrace workload will not per-titioning is usually a very heavyweight operation requiring

form well on the partition configured for databases and sim- €xtensive hardware and operating system support. An addi-
ilarly, a database workload will not perform well on the tional drawback is that even though whole nodes can be

partition configured for raytrace. dynamically reassigned to a different partition, the resources
within a node cannot be multiplexed at a fine granularity
8 Related work between two partitions.

In this section we compare Cellular Disco to other projects 8.3 Softwar e-centric approaches

that have some similarities to our work: virtual machines, . .
hardware partitioning, operating system based approaches’g‘étén?mshéoopprg:g%ﬁéhsy:?eﬁogggogéag?\%sggﬁ t@?wgrgtﬁzfé-
fault containment, and resource load balancing. gies: tuning of an existing SMP operating system to make it
scale to tens or hundreds of processors, and developing new

8.1 Virtual machines operating systems with better scalability characteristics.

Virtual machines are not a new idea: numerous research The advantage of adapting an existing operating system
projects in the 1970's [9], as well as commercial product js backwards compatibility and the benefit of an existing siz-

offerings [5][20] attest to the popularity of this conceptin its able code base, as illustrated by SGI's IRIX 6.4 and IRIX6.5

heyday. The VAX VMM Security Kernel [12] used virtual ~ gperating systems. Unfortunately, such an overhaul usually
machines to build a compatible secure system at a low develrequires a significant software development effort. Further-

opment cost. While Cellular Disco shares some of the funda-more, adding support for fault containment is a daunting task
mental framework and techniques of these virtual machinein practice, since the base operating system is inherently vul-
monitors, it is quite different in that it adapts the virtual nerable to faults.

machine concept to address new challenges posed by mod- New operating system developments have been pro-

ern scalable shared memory servers. posed to address the requirements of scalability (Tornado [8]
Disco [2] first proposed using virtual machines to pro- and K42 [10]) and fault containment (Hive [3]). While these

vide scalability and to hide some of the characteristics of theapproaches tackle the problem at the basic level, they require

underlying hardware from NUMA-unaware operating sys- a very significant development time and cost before reaching

tems. Compared to Disco, Cellular Disco provides a com- commercial maturity. Compared to these approaches, Cellu-

plete solution for large scale machines by extending thelar Disco is about two orders of magnitude simpler, while

Disco approach with the following novel aspects: the use of providing almost the same performance.

a virtual machine monitor for supporting hardware fault con-

tainment; the development of both NUMA- and fault con- g 4 Fault-containment

tainment-aware  scalable resource balancing and

overcommitment policies; and the development of mecha—Wh"e a considerable amount of work has been done on fault

nisms to support those policies. We have also evaluated OuFolerance, this technique does not seem to be very a_ttractive
approach on real hardware using long-running realistic for large-scale shared-memory machines, due to the increase

workloads that more closely resemble the way large " cost and to the fact that it does not defend well against
machines are currently used. operating system failures. An alternative approach that has

been proposed is fault-containment, a design technique that
. can limit the impact of a fault to a small fraction of the sys-
8.2 Hardware-centric approaches tem. Fault containment support in the operating system has
Hardware partitioning has been proposed as a way to solvdbeen explored in the Hive project [3], while the necessary
the system software issues for large-scale shared-memorpardware and firmware support has been implemented in the
machines. Some of the systems that support partitioning ard~LASH multiprocessor [13]. Cellular Disco requires the
Sequent’s Application Region Manager [21], Sun Microsys- presence of hardware fault containment support such as that
tems’ Dynamic System Domains [25], and Unisys’ Cellular described in [26], and is thus complementary. Hive and Cel-
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lular Disco are two attempts to provide fault containment practice with a reasonable implementation effort. Although
support in the system software; the main advantage of Celluthe results presented in this paper are based on virtualizing
lar Disco is its extreme simplicity when compared to Hive. the MIPS processor architecture and on running the IRIX
Our approach is the first practical demonstration that end-to-operating system, our approach can be extended to other pro-
end hardware fault containment can be provided at a realisticcessor architectures and operating systems. A straightfor-
cost in terms of implementation effort. Cellular Disco also ward extension of Cellular Disco could support the
shows that if the basic system software layer can be trustedsimultaneous execution on a scalable machine of several
fault containment does not add any performance overhead. operating systems, such as a combination of Windows NT,
Linux, and UNIX.

8.5 Load balancing Some of the remaining problems that have been left open
CPU and memory load balancing have been studied extenby our work so far include efficient virtualization of low-
sively in the context of networks of workstations, but not on latency I/O devices (such as fast network interfaces), system
single shared-memory systems. Traditional approaches tgnanagementissues, and checkpointing and cloning of whole
process migration [17] that require support in the operating virtual machines.

system are too complex and fragile, and very few have made

it into the commercial world so far. Cellular Disco provides Acknowledgments
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