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Abstract
Despite the fact that large-scale shared-memory multipro-
cessors have been commercially available for several years,
system software that fully utilizes all their features is still
not available, mostly due to the complexity and cost of mak-
ing the required changes to the operating system. A recently
proposed approach, called Disco, substantially reduces this
development cost by using a virtual machine monitor that
leverages the existing operating system technology.

In this paper we present a system called Cellular Disco
that extends the Disco work to provide all the advantages of
the hardware partitioning and scalable operating system
approaches. We argue that Cellular Disco can achieve these
benefits at only a small fraction of the development cost of
modifying the operating system. Cellular Disco effectively
turns a large-scale shared-memory multiprocessor into a
virtual cluster that supports fault containment and hetero-
geneity, while avoiding operating system scalability bottle-
necks. Yet at the same time, Cellular Disco preserves the
benefits of a shared-memory multiprocessor by implement-
ing dynamic, fine-grained resource sharing, and by allow-
ing users to overcommit resources such as processors and
memory. This hybrid approach requires a scalable resource
manager that makes local decisions with limited informa-
tion while still providing good global performance and fault
containment.

In this paper we describe our experience with a Cellular
Disco prototype on a 32-processor SGI Origin 2000 system.
We show that the execution time penalty for this approach is
low, typically within 10% of the best available commercial
operating system for most workloads, and that it can man-
age the CPU and memory resources of the machine signifi-
cantly better than the hardware partitioning approach.

1 Introduction
Shared-memory multiprocessor systems with up to a few
hundred processors have been commercially available for

the past several years. Unfortunately, due to the development
cost and the complexity of the required changes, most oper-
ating systems are unable to effectively utilize these large
machines. Poor scalability restricts the size of machines that
can be supported by most current commercial operating sys-
tems to at most a few dozen processors. Memory allocation
algorithms that are not aware of the large difference in local
versus remote memory access latencies on NUMA (Non-
Uniform Memory Access time) systems lead to suboptimal
application performance. Resource management policies not
designed to handle a large number of resources can lead to
contention and inefficient usage. Finally, the inability of the
operating system to survive any hardware or system software
failure results in the loss of all the applications running on
the system, requiring the entire machine to be rebooted.

The solutions that have been proposed to date are either
based on hardware partitioning [4][21][25][28], or require
developing new operating systems with improved scalability
and fault containment characteristics [3][8][10][22]. Unfor-
tunately, both of these approaches suffer from serious draw-
backs. Hardware partitioning limits the flexibility with
which allocation and sharing of resources in a large system
can be adapted to dynamically changing load requirements.
Since partitioning effectively turns the system into a cluster
of smaller machines, applications requiring a large number
of resources will not perform well. New operating system
designs can provide excellent performance, but require a
considerable investment in development effort and time
before reaching commercial maturity.

A recently proposed alternative approach, called
Disco[2], uses a virtual machine monitor to run unmodified
commodity operating systems on scalable multiprocessors.
With a low implementation cost and a small run-time virtu-
alization overhead, the Disco work shows that a virtual
machine monitor can be used to address scalability and
NUMA-awareness issues. By running multiple copies of an
off-the-shelf operating system, the Disco approach is able to
leverage existing operating system technology to form the
system software for scalable machines.

Although Disco demonstrated the feasibility of this new
approach, it left many unanswered questions. In particular,
the Disco prototype lacked several major features that made
it difficult to compare Disco to other approaches. For exam-
ple, while other approaches such as hardware partitioning
support hardware fault containment, the Disco prototype
lacked such support. In addition, the Disco prototype lacked
the resource management mechanisms and policies required
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to make it competitive compared to a customized operating
system approach.

In this work we present a system called Cellular Disco
that extends the basic Disco approach by supporting hard-
ware fault containment and aggressive global resource man-
agement, and by running on actual scalable hardware. Our
system effectively turns a large-scale shared-memory
machine into avirtual cluster by combining the scalability
and fault containment benefits of clusters with the resource
allocation flexibility of shared-memory systems. Our experi-
ence with Cellular Disco shows that:

1. Hardware fault containment can be added to a virtual
machine monitor with very low run-time overheads and
implementation costs. With a negligible performance pen-
alty over the existing virtualization overheads, fault contain-
ment can be provided in the monitor at only a very small
fraction of the development effort that would be needed for
adding this support to the operating system.

2. The virtual cluster approach can quickly and effi-
ciently correct resource allocation imbalances in scalable
systems. This capability allows Cellular Disco to manage
the resources of a scalable multiprocessor significantly bet-
ter than a hardware partitioning scheme and almost as well
as a highly-tuned operating system-centric approach. Vir-
tual clusters do not suffer from the resource allocation con-
straints of actual hardware clusters, since large applications
can be allowed to use all the resources of the system,
instead of being confined to a single partition.

3. The small-scale, simulation-based results of Disco
appear to match the experience of running workloads on
real scalable hardware. We have built a Cellular Disco pro-
totype that runs on a 32-processor SGI Origin 2000[14] and
is able to host multiple instances of SGI’s IRIX 6.2 operat-
ing system running complex workloads. Using this system,
we have shown that Cellular Disco provides all the features
mentioned above while keeping the run-time overhead of
virtualization below 10% for most workloads.

This paper focuses on our experience with the mecha-
nisms and policies implemented in Cellular Disco for deal-
ing with the interrelated challenges of hardware fault
containment and global resource management:

Fault containment: Although a virtual machine monitor
automatically provides software fault containment in that a
failure of one operating system instance is unlikely to harm
software running in other virtual machines, the large poten-
tial size of scalable shared-memory multiprocessors also
requires the ability to contain hardware faults. Cellular Disco
is internally structured into a number of semi-independent
cells, or fault-containment units. This design allows the
impact of most hardware failures to be confined to a single
cell, a behavior very similar to that of clusters, where most
failures remain limited to a single node.

While Cellular Disco is organized in a cellular structure
similar to the one in the Hive operating system [3], providing
fault containment in Cellular Disco required only a fraction
of the development effort needed for Hive, and it does not
impact performance once the virtualization cost has been

factored out. A key design decision that reduced cost com-
pared to Hive was to assume that the code of Cellular Disco
itself is correct. This assumption is warranted by the fact that
the size of the virtual machine monitor (50K lines of C and
assembly) is small enough to be thoroughly tested.

Resource management: In order to support better
resource management than hardware clusters, Cellular Disco
allows virtual machines to overcommit the actual physical
resources present in the system. This offers an increased
degree of flexibility by allowing Cellular Disco to dynami-
cally adjust the fraction of the system resources assigned to
each virtual machine. This approach can lead to a signifi-
cantly better utilization of the system, assuming that
resource requirement peaks do not occur simultaneously.

Cellular Disco multiplexes physical processors among
several virtual machines, and supports memory paging in
addition to any such mechanism that may be provided by the
hosted operating system. These features have been carefully
implemented to avoid the inefficiencies that have plagued
virtual machine monitors in the past[20]. For example, Cel-
lular Disco tracks operating system memory usage and pag-
ing disk I/O to eliminate double paging overheads.

Cellular Disco must manage the physical resources in the
system while satisfying the often conflicting constraints of
providing good fault-containment and scalable resource load
balancing. Since a virtual machine becomes vulnerable to
faults in a cell once it starts using any resources from that
cell, fault containment will only be effective if all of the
resources for a given virtual machine are allocated from a
small number of cells. However, a naive policy may subop-
timally use the resources due to load imbalance. Resource
load balancing is required to achieve efficient resource utili-
zation in large systems. The Cellular Disco implementation
of both CPU and memory load balancing was designed to
preserve fault containment, avoid contention, and scale to
hundreds of nodes.

In the process of virtualizing the hardware, Cellular
Disco can also make many of the NUMA-specific resource
management decisions for the operating system. The physi-
cal memory manager of our virtual machine monitor imple-
ments first-touch allocation and dynamic migration or
replication of “hot” memory pages [29]. These features are
coupled with a physical CPU scheduler that is aware of
memory locality issues.

By virtualizing the underlying hardware, Cellular Disco
provides an additional level of indirection that offers an eas-
ier and more effective alternative to changing the operating
system. For instance, we have added support that allows
large applications running across multiple virtual machines
to interact directly through shared memory by registering
their shared memory regions directly with the virtual
machine monitor. This support allows a much more efficient
interaction than through standard distributed-system proto-
cols and can be provided transparently to the hosted operat-
ing system.

This paper is structured as follows. We start by describ-
ing the Cellular Disco architecture in Section2. Section3
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describes the prototype implementation and the basic virtu-
alization and fault-containment overheads. Next, we discuss
our resource management mechanisms and policies: CPU
management in Section4 and memory management in
Section5. Section6 discusses hardware fault recovery. We
conclude after comparing our work to hardware- and oper-
ating system-centric approaches and discussing related
work.

2 The Cellular Disco architecture

Compared to previous work on virtual machine monitors,
Cellular Disco introduces a number of novel features: sup-
port for hardware fault containment, scalable resource man-
agement mechanisms and policies that are aware of fault
containment constraints, and support for large, memory-
intensive applications. For completeness, we first present a
high-level overview of hardware virtualization that parallels
the descriptions given in [2] and [5]. We then discuss each of
the distinguishing new features of Cellular Disco in turn.

2.1  Overview of hardware virtualization
Cellular Disco is a virtual machine monitor [5] that can exe-
cute multiple instances of an operating system by running
each instance inside its own virtual machine (see Figure1).
Since the virtual machines export an interface that is similar
to the underlying hardware, the operating system instances
need not be aware that they are actually running on top of
Cellular Disco.

For each newly created virtual machine, the user speci-
fies the amount of resources that will be visible to that virtual
machine by indicating the number of virtual CPUs (VCPUs),
the amount of memory, and the number and type of I/O
devices. The resources visible to a virtual machine are called
physical resources. Cellular Disco allocates the actual
machine resources to each virtual machine as required by the
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Figure 1. Cellular Disco architecture. Multiple
instances of an off-the-shelf operating system run
inside virtual machines on top of a virtual machine
monitor; each instance is only booted with as many
resources as it can handle well. In the Origin 2000
each node contains two CPUs and a portion of the
system memory (not shown in the figure).
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dynamic needs and the priority of the virtual machine, simi-
lar to the way an operating system schedules physical
resources based on the needs and the priority of user applica-
tions.

To be able to virtualize the hardware, the virtual
machine monitor needs to intercept all privileged opera-
tions performed by a virtual machine. This can be imple-
mented efficiently by using the privilege levels of the
processor. Although the complexity of a virtual machine
monitor depends on the underlying hardware, even com-
plex architectures such as the Intel x86 have been success-
fully virtualized [30]. The MIPS processor architecture
[11] that is supported by Cellular Disco has three privilege
levels:user mode (least privileged, all memory accesses are
mapped), supervisor mode (semi-privileged, allows
mapped accesses to supervisor and user space), andkernel
mode (most privileged, allows use of both mapped and
unmapped accesses to any location, and allows execution
of privileged instructions). Without virtualization, the
operating system runs at kernel level and applications exe-
cute in user mode; supervisor mode is not used. Under Cel-
lular Disco, only the virtual machine monitor is allowed to
run at kernel level, and thus to have direct access to all
machine resources in the system. An operating system
instance running inside a virtual machine is only permitted
to use the supervisor and user levels. Whenever a virtual-
ized operating system kernel executes a privileged instruc-
tion, the processor will trap into Cellular Disco where that
instruction is emulated. Since in supervisor mode all mem-
ory accesses are mapped, an additional level of indirection
thus becomes available to map physical resources to actual
machine resources.

The operating system executing inside a virtual machine
does not have enough access privilege to perform I/O opera-
tions. When attempting to access an I/O device, a CPU will
trap into the virtual machine monitor, which checks the
validity of the I/O request and either forwards it to the real
I/O device or performs the necessary actions itself in the case
of devices such as the virtual paging disk (see Section5.3).
Memory is managed in a similar way. While the operating
system inside a virtual machine allocates physical memory
to satisfy the needs of applications, Cellular Disco allocates
machine memory as needed to back the physical memory
requirements of each virtual machine. Apmap data structure
similar to the one in Mach [18] is used by the virtual machine
monitor to map physical addresses to actual machine
addresses. In addition to the pmap, Cellular Disco needs to
maintain amemmap structure that allows it to translate back
from machine to physical pages; this structure is used for
dynamic page migration and replication, and for fault recov-
ery (see Section6).

Performing the physical-to-machine translation using the
pmap at every software reload of the MIPS TLB can lead to
very high overheads. Cellular Disco reduces this overhead
by maintaining for every VCPU a 1024-entry translation
cache called thesecond level software TLB (L2TLB). The
entries in the L2TLB correspond to complete virtual-to-
machine translations, and servicing a TLB miss from the
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L2TLB is much faster than generating a virtual exception to
be handled by the operating system inside the virtual
machine.

2.2  Support for hardware fault containment
As the size of shared-memory machines increases, reliability
becomes a key concern for two reasons. First, one can expect
to see an increase in the failure rate of large systems: a tech-
nology that fails once a year for a small workstation corre-
sponds to a failure rate of once every three days when used
in a 128-processor system. Second, since a failure will usu-
ally bring down the entire system, it can cause substantially
more state loss than on a small machine. Fault tolerance does
not necessarily offer a satisfactory answer for most users,
due to the system cost increase and to the fact that it does not
prevent operating system crashes from bringing down the
entire machine.

Support for software fault containment (of faults occur-
ring in the operating systems running inside the virtual
machines) is a straightforward benefit of any virtual machine
monitor, since the monitor can easily restrict the resources
that are visible to each virtual machine. If the operating sys-
tem running inside a virtual machine crashes, this will not
impact any other virtual machines.

To address the reliability concerns for large machines,
we designed Cellular Disco to supporthardware fault con-
tainment, a technique that can limit the impact of faults to
only a small portion of the system. After a fault, only a small
fraction of the machine will be lost, together with any appli-
cations running on that part of the system, while the rest of
the system can continue executing unaffected. This behavior
is similar to the one exhibited by a traditional cluster, where
hardware and system software failures tend to stay localized
to the node on which they occurred.

To support hardware fault containment, Cellular Disco is
internally structured as a set of semi-independentcells, as
shown in Figure2. Each cell contains a complete copy of the
monitor text and manages all the machine memory pages
belonging to its nodes. A failure in one cell will only bring
down the virtual machines that were using resources from
that cell, while virtual machines executing elsewhere will be

Cellular Disco

Node Node Node Node Node Node Node Node

VM VM Virtual Machine

Figure 2. The cellular structure of Cellular Disco allows
the impact of a hardware fault to be contained within
the boundary of the cell where the fault occurred.
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able to continue unaffected. We designed the system to favor
a smaller overhead during normal execution but a higher cost
when a component fails, hopefully an infrequent occurrence.
The details of the fault recovery algorithm are covered in
Section6.

One of our basic assumptions when designing Cellular
Disco was that the monitor can be kept small enough to be
thoroughly tested so that its probability of failure is
extremely low. Cellular Disco is thus considered to be a
trusted system software layer. This assumption is warranted
by the fact that with a size of less than 50K lines, the monitor
is about as complex as other trusted layers in the shared-
memory machine (e.g., the cache coherence protocol imple-
mentation), and it is about two orders of magnitude simpler
than modern operating systems, which may contain up to
several million lines of code.

The trusted layer decision can lead to substantially
smaller overheads compared to a design in which the system
software layer cannot be trusted due to its complexity, such
as in the case of the Hive operating system [3]. If cells do not
trust each other, they have to use expensive distributed pro-
tocols to communicate and to update their data structures.
This is substantially less efficient than directly using shared
memory. The overheads become evident when one considers
the case of a single virtual machine straddling multiple cells,
all of which need to update the monitor data structures cor-
responding to the virtual machine. An example of a structure
requiring frequent updates is the pmap address translation
table.

Although Cellular Disco cells can use shared memory
for updating virtual machine-specific data structures, they
are not allowed to directly touch data structures in other
cells that are essential for the survival of those cells. For
those cases, as well as when the monitor needs to request
that operations be executed on a given node or VCPU, a
carefully designed communication mechanism is provided
in Cellular Disco that offers low latency and exactly-once
semantics.

The basic communication primitive is a fast inter-proces-
sor RPC (Remote Procedure Call). For our prototype Origin
2000 implementation, we measured the round-trip time for
an RPC carrying a cache line-sized argument and reply (128
bytes) at 16µs. Simulation results indicate that this time can
be reduced to under 7µs if appropriate support is provided
in the node controller, such as in the case of the FLASH mul-
tiprocessor [13].

A second communication primitive, called amessage, is
provided for executing an action on the machine CPU that
currently owns a virtual CPU. This obviates most of the need
for locking, since per-VCPU operations are serialized on the
owner. The cost of sending a message is on average the same
as that of an RPC. Messages are based on a fault tolerant, dis-
tributed registry that is used for locating the current owner of
a VCPU given the ID of that VCPU. Since the registry is
completely rebuilt after a failure, VCPUs can change owners
(that is, migrate around the system) without having to
depend on a fixed home. Our implementation guarantees
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exactly-once message semantics in the presence of conten-
tion, VCPU migration, and hardware faults.

2.3  Resource management under constraints
Compared to traditional resource management issues, an
additional requirement that increases complexity in Cellular
Disco is fault containment. The mechanisms and policies
used in our system must carefully balance the often conflict-
ing requirements of efficiently scheduling resources and
maintaining good fault containment. While efficient
resource usage requires that every available resource in the
system be used when needed, good fault containment can
only be provided if the set of resources used by any given
virtual machine is confined to a small number of cells. Addi-
tionally, our algorithms had to be designed to scale to system
sizes of up to a few hundred nodes. The above requirements
had numerous implications for both CPU and memory man-
agement.

CPU management: Operating systems for shared-mem-
ory machines normally use a global run queue to perform
load sharing; each idle CPU looking for work examines the
run queue to attempt to find a runnable task. Such an
approach is inappropriate for Cellular Disco because it vio-
lates fault-containment requirements and because it is a
source of contention in large systems. In Cellular Disco,
each machine processor maintainsits own run queue of
VCPUs. However, even with proper initial load placement,
separate run queues can lead to an imbalance among the pro-
cessors due to variability in processor usage over the lifetime
of the VCPUs. A load balancing scheme is used to avoid the
situation in which one portion of the machine is heavily
loaded while another portion is idle. The basic load balanc-
ing mechanism implemented in Cellular Disco isVCPU
migration; our system supports intra-node, intra-cell, and
inter-cell migration of VCPUs. VCPU migration is used by
a balancing policy module that decides when and which
VCPU to migrate, based on the current load of the system
and on fault containment restrictions.

An additional feature provided by the Cellular Disco
scheduler is that all non-idle VCPUs belonging to the same
virtual machine aregang-scheduled. Since the operating sys-
tems running inside the virtual machines use spinlocks for
their internal synchronization, gang-scheduling is necessary
to avoid wasting precious cycles spinning for a lock held by
a descheduled VCPU.

Memory management: Fault-containment requires that
each Cellular Disco cell manage its own memory allocation.
However, this can lead to a case in which a cell running a
memory-intensive virtual machine may run out of memory,
while other cells have free memory reserves. In a static par-
titioning scheme there would be no choice but to start paging
data out to disk. To avoid an inefficient use of the shared-
memory system, Cellular Disco implements amemory bor-
rowing mechanism through which a cell may temporarily
obtain memory from other cells. Since memory borrowing
may be limited by fault containment requirements, we also
support paging as a fall-back mechanism.

An important aspect of our memory balancing policies is
that they carefully weigh the performance gains obtained by
allocating borrowed memory versus the implications for
fault containment, since using memory from a remote cell
can make a virtual machine vulnerable to failures on that
cell.

2.4  Support for large applications
In order to avoid operating system scalability bottlenecks,
each operating system instance is given only as many
resources as it can handle well. Applications that need fewer
resources than those allocated to a virtual machine run as
they normally would in a traditional system. However, large
applications are forced to run across multiple virtual
machines.

The solution proposed in Disco was to split large appli-
cations and have the instances on the different virtual
machines communicate using distributed systems protocols
that run over a fast shared-memory based virtual ethernet
provided by the virtual machine monitor. This approach is
similar to the way such applications are run on a cluster or a
hardware partitioning environment. Unfortunately, this
approach requires that shared-memory applications be
rewritten, and incurs significant overhead introduced by
communication protocols such as TCP/IP.

Cellular Disco’s virtual cluster environment provides a
much more efficient sharing mechanism that allows large
applications to bypass the operating system and register
shared-memory regions directly with the virtual machine
monitor. Since every system call is intercepted first by the
monitor before being reflected back to the operating system,
it is easy to add in the monitor additional system call func-
tionality for mapping global shared-memory regions. Appli-
cations running on different virtual machines can
communicate through these shared-memory regions without
any extra overhead because they simply use the cache-coher-
ence mechanisms built into the hardware. The only draw-
back of this mechanism is that it requires relinking the
application with a different shared-memory library, and pos-
sibly a few small modifications to the operating system for
handling misbehaving applications.

Since the operating system instances are not aware of
application-level memory sharing, the virtual machine mon-
itor needs to provide the appropriate paging mechanisms and
policies to cope with memory overload conditions. When
paging out to disk, Cellular Disco needs to preserve the shar-
ing information for pages belonging to a shared-memory
region. In addition to the actual page contents, the Cellular
Disco pager writes out a list of virtual machines using that
page, so that sharing can be properly restored when the page
is faulted back in.

3 The Cellular Disco prototype
In this section we start by discussing our Cellular Disco pro-
totype implementation that runs on actual scalable hardware.
After describing the experimental setup, we provide evalua-
tions of our virtualization and fault containment overheads.
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3.1  Prototype implementation
The Cellular Disco virtual machine monitor was designed to
support shared-memory systems based on the MIPS R10000
processor architecture [11]. Our prototype implementation
consists of about 50K lines of C and assembly and runs on a
32-processor SGI Origin 2000 [14].

One of the main hurdles we had to overcome in the pro-
totype was the handling of I/O devices. Since coping with all
the details of the Origin I/O hardware was beyond our avail-
able resources, we decided to leverage the device driver
functionality already present in the SGI IRIX 6.4 operating
system for our prototype. Our Cellular Disco implementa-
tion thus runspiggybacked on top of IRIX 6.4.

To run our Cellular Disco prototype, we first boot the
IRIX 6.4 operating system with a minimal amount of mem-
ory. Cellular Disco is implemented as a multi-threaded ker-
nel process that spawns a thread on each CPU. The threads
are pinned to their designated processors to prevent the IRIX
scheduler from interfering with the control of the virtual
machine monitor over the machine’s CPUs. Subsequent
actions performed by the monitor violate the IRIX process
abstraction, effectively taking over the control of the
machine from the operating system. After saving the kernel
registers of the host operating system, the monitor installs its
own exception handlers and takes over all remaining system
memory. The host IRIX 6.4 operating system remains dor-
mant but can be reactivated any time Cellular Disco needs to
use a device driver.

Whenever one of the virtual machines created on top of
Cellular Disco requests an I/O operation, the request is han-
dled by the procedure illustrated in Figure3. The I/O request
causes a trap into Cellular Disco (1), which checks access
permissions and simply forwards the request to the host
IRIX (2) by restoring the saved kernel registers and excep-
tion vectors, and requesting the host kernel to issue the
appropriate I/O request (3). From the perspective of the host
operating system, it looks as if Cellular Disco had been run-
ning all the time just like any other well-behaved kernel pro-
cess. After IRIX initiates the I/O request, control returns to
Cellular Disco, which puts the host kernel back into the dor-
mant state. Upon I/O completion the hardware raises an
interrupt (4), which is handled by Cellular Disco because the

Figure 3. I/O requests made by a virtual machine are
handled using host IRIX device drivers. This is a six
step process that is fully described in the text.
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exception vectors have been overwritten. To allow the host
drivers to properly handle I/O completion the monitor reac-
tivates the dormant IRIX, making it look as if the I/O inter-
rupt had just been posted (5). Finally, Cellular Disco posts a
virtual interrupt to the virtual machine to notify it of the com-
pletion of its I/O request (6). Since some drivers require that
the kernel be aware of time, Cellular Disco forwards all
timer interrupts in addition to device interrupts to the host
IRIX.

Our piggybacking technique allowed us to bring up our
system on real hardware quickly, and enabled Cellular Disco
to handle any hardware device IRIX supports. By measuring
the time spent in the host IRIX kernel, we found the over-
head of the piggybacking approach to be small, less than 2%
of the total running time for all the benchmarks we ran. The
main drawback of our current piggybacking scheme is that it
does not support hardware fault containment, given the
monolithic design of the host operating system. While the
fault containment experiments described in Section6 do not
use the piggybacking scheme, a solution running one copy of
the host operating system per Cellular Disco cell would be
possible with appropriate support in the host operating sys-
tem.

3.2  Experimental setup
We evaluated Cellular Disco by executing workloads on a
32-processor SGI Origin 2000 system configured as shown
in Table4. The running times for our benchmarks range
from 4 to 6 minutes, and the noise is within 2%.

On this machine we ran the following four workloads:
Database, Pmake, Raytrace, and Web server. These work-
loads, described in detail in Table5, were chosen because
they stress different parts of the system and because they are
a representative set of applications that commercial users run
on large machines.

3.3  Virtualization overheads
The performance penalty that must be paid for virtualization
largely depends on the processor architecture of the virtual-
ized system. The dominant portion of this overhead is the
cost of handling the traps generated by the processor for each
privileged instruction executed by the kernel.

To measure the impact of virtualization we compared the
performance of the workloads executing under two different
setups. First, we ran the workloads on IRIX6.4 executing

Component Characteristics

Processors 32 x MIPS R10000 @ 195 MHz

Node controllers 16 x SGI Hub @100 MHz

Memory 3.5 GB

L2 cache size 4 MB

Disks 5 (total capacity: 40GB)

Table 4. SGI Origin 2000 configuration that was used
for running most of the experiments in this paper.
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directly on top of the bare hardware.Then, we ran the same
workloads on IRIX6.2 executing on top of the Cellular Disco
virtual machine monitor. We used two different versions of
IRIX to demonstrate that Cellular Disco can leverage an off-
the-shelf operating system that has only limited scalability to
provide essentially the same functionality and performance
as an operating system specifically designed for large-scale
machines. IRIX6.2 was designed for small-scale Challenge
bus-based multiprocessors [7], while IRIX6.4 was the latest
operating system available for the Origin 2000 when we
started our experimental work. Another reason for using two
different versions of IRIX is that IRIX6.2 does not run on the
Origin 2000. Except for scalability fixes in IRIX6.4, the two
versions are fairly similar; therefore, the uniprocessor num-
bers presented in this section provide a good estimate of the
virtualization cost. However, multiprocessor numbers may
also be distorted by the scalability limitations of IRIX6.2.

The Cellular Disco virtualization overheads are shown in
Figure6. As shown in the figure, the worst-case uniproces-
sor virtualization penalty is only 9%. For each workload, the
bar on the left shows the time (normalized to 100) needed to
complete the run on IRIX 6.4, while the bar on the right
shows the relative time to complete the same run on IRIX 6.2
running on top of the monitor. The execution time is broken

Workload Description

Database Decision support workload based on the TPC-D [27] query suite on Informix Relational Database version 7.1.2 using a
200MB and a 1GB database. We measure the sum of the run times of the 17 non-update queries.

Pmake I/O intensive parallel compilation of the SGI IRIX 5.3 operating system (about 500K lines of C and assembly code).

Raytrace CPU intensive ray tracer from the SPLASH-2 [31] parallel benchmark suite. We used the balls4 data set with varying
amounts of anti-aliasing so that it runs four to six minutes for single- and multi-process configurations.

Web Kernel intensive web server workload. SpecWEB96 [23] running on an Apache web server. Although the workload always
runs for 5 minutes, we scaled the execution times so that each run performs the same number of requests.

Table 5. Workloads. The execution times reported in this paper are the average of two stable runs after an initial
warm-up run. The running times range from 4 to 6 minutes, with a noise of 2%.

100
�

IRIX�

105
�

CD

Database
�

100
�

IRIX�

109
�

CD

Pmake�

100
�

IRIX�

102
�

CD

Raytrace�

100
�

IRIX�

107
�

CD

Web�

0

20

40

60

80

100
�

120
�

N
o

rm
a

li
ze

d
 E

x
e

c
u

ti
o

n
 T

im
e

�
Idle

�
Cellular Disco

�
Irix Kernel

�
User

	100


IRIX

109


CD

Database

100


IRIX

112�

CD

Pmake�

100


IRIX

103


CD

Raytrace


100


IRIX

106


CD

Web�

0

20

40

60

80

100

120

N
o

rm
a

li
ze

d
 E

x
e

c
u

ti
o

n
 T

im
e

Idle
�
Cellular Disco

�
Irix Kernel

�
User

�

Figure 6. Virtualization overheads. For each workload, the left bar shows the execution time separated into various
modes for the benchmark running on IRIX6.4 on top of the bare hardware. The right bar shows the same bench-
mark running on IRIX6.2 on top of Cellular Disco. The time spent in IRIX6.4 device drivers is included in the
Cellular Disco portion of each right bar. For multiprocessor runs, the idle time under Cellular Disco increases due to
the virtualization overheads in the serial parts of the workload. The reduction in user time for some workloads is
due to better memory placement. Note that for most workloads, the overheads are within 10%.
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down into time spent in idle mode, in the virtual machine
monitor (this portion also includes the time spent in the host
kernel’s device drivers), in the operating system kernel, and
in user mode. This breakdown was measured by using the
hardware counters of the MIPS R10000 processors.

Figure6 also shows the virtualization overheads for 8
and 32 processor systems executing a single virtual machine
that spans all the processors. We have included two cases
(loaded and unloaded) for the Web workload because the
two systems perform very differently depending on the load.
The unloaded case limits the number of server and client pro-
cesses to 16 each (half the number of processors), while the
loaded case starts 32 clients and does not limit the number of
server processes (the exact value is determined by the web
server). IRIX6.4 uses blocking locks in the networking code,
which results in better performance under heavy load, while
IRIX6.2 uses spin locks, which increases kernel time but
performs better under light load. The Database, Pmake, and
Web benchmarks have a large amount of idle time due to
their inability to fully exploit the available parallelism; a sig-
nificant fraction of those workloads is serialized on a single
processor. Note that on a multiprocessor virtual machine,
any virtualization overheads occurring in the serial part of a
workload aremagnified since they increase the idle time of



161

the unused VCPUs. Even under such circumstances, Cellular
Disco introduces only 20% overhead in the worst case.

3.4  Fault-containment overheads
In order to gauge the overheads introduced by the cellular
structure of Cellular Disco, we ran our benchmarks on top of
the virtual machine monitor using two configurations. First,
the monitor was run as a single cell spanning all 32 proces-
sors in the machine, corresponding to a setup that does not
provide any fault containment. Second, we booted Cellular
Disco in an 8-cell configuration, with 4 processors per cell.
We ran our workloads inside a 32-processor virtual machine
that was completely contained in the single cell in the first
case, and that spanned all 8 cells in the second one.

Figure7 shows that the running time for virtual
machines spanning cell boundaries is practically the same as
when executing in a single cell (except for some small differ-
ences due to scheduling artifacts). This result shows that in
Cellular Disco, hardware fault containment can be provided
at practically no loss in performance once the virtualization
overheads have been factored out. This result stands in sharp
contrast to earlier fault containment work [3].

4 CPU management
In this section, we first describe the processor load balancing
mechanisms provided in Cellular Disco. We then discuss the
policies we use to actually balance the system. Next we dis-
cuss our implementation of gang scheduling. We conclude
with an evaluation of the performance of the system and with
comments on some interesting issues regarding inter-cell
migration.

4.1 CPU balancing mechanisms
Cellular Disco supports three different types of VCPU
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Figure 7. Overhead of fault-containment. The left bar,
normalized to 100, shows the execution breakdown in
a single cell configuration. The right bar shows the
execution profile on an 8 cell system. In both cases,
we ran a single 32-processor virtual machine spanning
the entire system.

migration, each providing a different tradeoff between per-
formance and cost.

The simplest VCPU migration case occurs when a
VCPU is moved to a different processor on the same node
(the Origin 2000 has two CPUs per node). Although the time
required to update the internal monitor data structures is only
37 µs, the real cost is paid gradually over time due to the loss
of CPU cache affinity. To get a rough estimate of this cost,
let us assume that half of the 128-byte lines in the 4 MB sec-
ond-level cache are in use, with half of the active lines local
and the other half remote. Refilling this amount of cached
information on the destination CPU requires about 8ms.

The second type of migration occurs when a VCPU is
moved to a processor on a different node within the same
cell. Compared to the cost of intra-node migration, this case
incurs the added cost of copying the second level software
TLB (described in Section2.1) which is always kept on the
same node as the VCPU since it is accessed very frequently.
At 520µs, the cost for copying the entire L2TLB (32 KB) is
still much smaller than the gradual cost of refilling the CPU
cache. However, inter-node migration has a higher long-
term cost because the migrated VCPU is likely to access
machine memory pages allocated on the previous node.
Unlike the cost of cache affinity loss which is only paid once,
accessing remote memory is a continuous penalty that is
incurred every time the processor misses on a remote cache
line. Cellular Disco alleviates this penalty by dynamically
migrating or replicating frequently accessed pages to the
node generating the cache misses [29].

The third type of VCPU migration occurs when a VCPU
is moved across a cell boundary; this migration costs
1520µs including the time to copy the L2TLB. Besides los-
ing cache and node affinity, this type of migration may also
increase the fault vulnerability of the VCPU. If the latter has
never before run on the destination cell and has not been
using any resources from it, migrating it to the new cell will
make it vulnerable to faults in that cell. However, Cellular
Disco provides a mechanism through which dependencies to
the old cell can be entirely removed by moving all the data
used by the virtual machine over to the new cell; this process
is covered in detail in Section4.5.

4.2  CPU balancing policies
Cellular Disco employs two separate CPU load balancing
policies: the idle balancer and the periodic balancer. The idle
balancer runs whenever a processor becomes idle, and per-
forms most of the balancing work. The periodic balancer
redistributes those VCPUs that are not handled well by the
idle balancer.

When a processor becomes idle, the idle balancer runs on
that processor to search for VCPUs that can be “stolen” from
the run queues of neighboring processors in the same cell,
starting with the closest neighbor. However, the idle bal-
ancer cannot arbitrarily select any VCPU on the remote
queues due to gang scheduling constraints. Cellular Disco
will schedule a VCPU only when all the non-idle VCPUs of
that virtual machine are runnable. Annotations on the idle
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loop of the kernel inform Cellular Disco when a VCPU
becomes idle. The idle balancer checks the remote queues
for VCPUs that, if moved, would allow that virtual machine
to run. For example, consider the case shown inFigure8.
VCPUs in the top row are currently executing on the actual
machine CPUs; CPU 0 is idle due to gang scheduling con-
straints. After checking the remote queues, the idle balancer
running on CPU 1 will migrate VCPU B1 because the migra-
tion will allow VCPUs B0 and B1 to run on CPUs 0 and 1,
respectively. Although migrating VCPU B1 would allow to
it start executing right away, it may have enough cache and
node affinity on CPU 2 to cancel out the gains. Cellular
Disco tries to match the benefits with the cost of migration
by delaying migration until a VCPU has been descheduled
for some time depending on the migration distance: 4ms for
intra-node, and 6ms for inter-node. These were the optimal
values after testing a range from 1ms to 10ms; however, the
overall performance only varies by 1-2% in this range.

The idle balancer performs well even in a fairly loaded
system because there are usually still a few idle cycles avail-
able for balancing decisions due to the fragmentation caused
by gang scheduling. However, by using only local load
information to reduce contention, the idle balancer is not
always able to take globally optimal decisions. For this rea-
son, we included in our system a periodic balancer that uses
global load information to balance load in heavily loaded
systems and across different cells. Querying each processor
individually is impractical for systems with hundreds of pro-
cessors. Instead, each processor periodically updates the
load tree, a low-contention distributed data structure that
tracks the load of the entire system.

The load tree, shown in Figure8, is a binary tree encom-
passing the entire machine. Each leaf of the tree represents a
processor, and stores the load on that processor. Each inner
node in the tree contains the sum of the loads of its children.

Periodic balancer

Idle balancer

Figure 8. CPU balancing scenario. The numbers inside
the nodes of the tree represent the CPU load on the
corresponding portion of the machine. The letter in the
VCPU name specifies the virtual machine, while the
number designates the virtual processor. VCPUs in
the top row are currently scheduled on the processors.

0

VC A1VC A0

1 2 1

1 3

4

VC B0 VC B1

CPU0 CPU1 CPU2 CPU3

Load tree

To reduce memory contention the tree nodes are physically
spread across the machine. Starting from its corresponding
leaf, each processor updates the tree on every 10ms timer
interrupt. Cellular Disco reduces the contention on higher
level nodes by reducing the number of processors that can
update a level by half at every level greater than three.

The periodic balancer traverses this tree depth first,
checking the load disparity between the two children. If the
disparity is larger than one VCPU, The balancer will try to
find a VCPU from the loaded side that is a good candidate for
migration. Gang scheduling requires that two VCPUs of the
same VM not be scheduled on the same processor; therefore,
one of the requirements for a good candidate is that the less
loaded side must have a processor that does not already have
another VCPU of the same virtual machine. If the two sides
belong to different cells, then migrating a VCPU will make it
vulnerable to faults in the new cell. To prevent VCPUs from
being vulnerable to faults in many cells, Cellular Disco keeps
track of the list of cells each VCPU is vulnerable to, and the
periodic balancer prefers migrating VCPUs that are already
vulnerable to faults on the less-loaded cell.

Executing the periodic balancer across the entire system
can be expensive for large machines; therefore we left this as
a tunable parameter, currently set at 80ms. However,
heavily loaded systems can have local load imbalances that
are not be handled by idle balancer due to the lack of idle
cycles. Cellular Disco addresses this problem by also adding
a local periodic load balancer that runs on each 8 CPU region
every 20ms. The combination of these schemes results in an
efficient adaptive system.

4.3  Scheduling policy
Both of the balancing schemes described in the previous sec-
tion would be ineffective without a scalable gang scheduler.
Most gang schedulers use either space or time partitioning,
but these schemes require a centralized manager that
becomes a scalability bottleneck. Cellular Disco’s scheduler
uses a distributed algorithm similar to the IRIX gang sched-
uler [1].

When selecting the next VCPU to run on a processor, our
scheduler always picks the highest-priority gang-runnable
VCPU that has been waiting the longest. A VCPU becomes
gang-runnable when all the non-idle VCPUs of that virtual
machine are either running or waiting on run queues of pro-
cessors executing lower priority virtual machines. After
selecting a VCPU, the scheduler sends RPCs to all the pro-
cessors that have VCPUs belonging to this virtual machine
waiting on the run queue. On receiving this RPC, those pro-
cessors deschedule the VCPU they were running, follow the
same scheduling algorithm, and converge on the desired vir-
tual machine. Each processor makes its own decisions, but
ends up converging on the correct choice without employing
a central global manager.

4.4  CPU management results
We tested the effectiveness of the complete CPU manage-
ment system by running the following three-part experiment.
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First, we ran a single virtual machine with 8VCPUs execut-
ing an 8-process raytrace, leaving 24 processors idle. Next,
we ran four such virtual machines, each one running an 8-
process raytrace. Finally, we ran eight virtual machines con-
figured the same way, a total of 64VCPUs running raytrace
processes. An ideal system would run the first two configu-
rations in the same time, while the third case should take
twice as long. We measured only a 0.3% increase in the sec-
ond case, and the final configuration took 2.17 times as long.
The extra time can be attributed to migration overheads,
cache affinity loss due to scheduling, and some load imbal-
ance. To get a baseline number for the third case, we ran the
same experiment on IRIX6.4 and found that IRIX actually
exhibits a higher overhead of 2.25.

4.5  Inter-cell migration issues
Migrating VCPUs across cell boundaries raises a number of
interesting issues. One of these is when to migrate the data
structure associated with the entire virtual machine, not just
a single VCPU. The size of this data structure is dominated
by the pmap, which is proportional to the amount of physical
memory the virtual machine is allowed to use. Although the
L2TLB reduces the number of accesses to the pmap, it is still
desirable to place the pmap close to the VCPUs so that soft-
ware reloaded TLB misses can be satisfied quickly. Also, if
all the VCPUs have migrated out of a cell, keeping the pmap
in the old cell leaves the virtual machine vulnerable to faults
in the old cell. We could migrate the virtual machine-wide
data structures when most of the VCPUs have migrated to a
new cell, but the pmap is big enough that we do not want to
move it that frequently. Therefore, we migrate it only when
all the VCPUs have migrated to a different cell. We have
carefully designed this mechanism to avoid blocking the
VCPUs, which can run concurrently with this migration.
This operation takes 80ms to copy I/O-related data struc-
tures other than the pmap, and copying the pmap takes
161µs per MB of physical memory the virtual machine is
allowed to use.

Although Cellular Disco migrates the virtual machine
data structures when all the VCPUs have moved away from
a cell, this is not sufficient to remove vulnerability to faults
occurring in the old cell. To become completely independent
from the old cell, any data pages being used by a virtual
machine must be migrated as well. This operation takes
25ms per MB of memory being used by the virtual machine
and can be executed without blocking any of the VCPUs.

5 Memory management
In this section, we focus on the problem of managing
machine memory across cells. We will present the mecha-
nisms to address this problem, policies that uses those mech-
anisms, and an evaluation of the performance of the
complete system. The section concludes by looking at issues
related to paging.

5.1  Memory balancing mechanism
Before describing the Cellular Disco memory balancing

mechanism, it is important to discuss the memory allocation
module. Each cell maintains its ownfreelist (list of free
pages) indexed by the home node of each memory page. Ini-
tially, the freelist entries for nodes not belonging to this cell
are empty, as the cell has not yet borrowed any memory.
Every page allocation request is tagged with a list of nodes
that can supply the memory (this list is initialized when a vir-
tual machine is created). When satisfying a request, a higher
preference is given to memory from the local node, in order
to reduce the memory access latency on NUMA systems
(first-touch allocation strategy).

The memory balancing mechanism is fairly straightfor-
ward. A cell wishing to borrow memory issues a fast RPC to
a cell which has available memory. The loaner cell allocates
memory from its freelist and returns a list of machine pages
as the result of the RPC. The borrower adds those pages to
its freelist, indexed by their home node. This operation takes
758µs to borrow 4MB of memory.

5.2  Memory balancing policies
A cell starts borrowing memory when its number of free
pages reaches a low threshold, but before completely run-
ning out of pages. This policy seeks to avoid forcing small
virtual machines that fit into a single cell to have to use
remote memory. For example, consider the case of a cell
with two virtual machines: one with a large memory foot-
print, and one that entirely fits into the cell. The large virtual
machine will have to use remote memory to avoid paging,
but the smaller one can achieve good performance with just
local memory, without becoming vulnerable to faults in
other cells. The cell must carefully decide when to allocate
remote memory so that enough local memory is available to
satisfy the requirements of the smaller virtual machine.

Depending on their fault containment requirements,
users can restrict the set of cells from which a virtual
machine can use borrowed memory. Paging must be used as
a last recourse if free memory is not available from any of the
cells in this list. To avoid paging as much as possible, a cell
should borrow memory from cells that are listed in the allo-
cation preferences of the virtual machines it is executing.
Therefore, every cell keeps track of the combined allocation
preferences of all the virtual machines it is executing, and
adjusts that list whenever a virtual machine migrates into or
out of the cell.

A policy we have found to be effective is the following:
when the local free memory of a cell drops below 16MB, the
cell tries to maintain at least 4MB of free memory from each
cell in its allocation preferences list; the cell borrows 4MB
from each cell in the list from which it has less than 4MB
available. This heuristic biases the borrowing policy to
solicit memory from cells that actively supply pages to at
least one virtual machine. Cells will agree to loan memory as
long as they have more than 32MB available. The above
thresholds are all tunable parameters. These default values
were selected to provide hysteresis for stability, and they are
based on the number of pages that can be allocated during
the interval between consecutive executions of the policy,
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every 10ms. In this duration, each CPU can allocate at most
732KB, which means that a typical cell with 8CPUs can
only allocate 6MB in 10ms if all the CPUs allocate memory
as fast as possible, a very unlikely scenario; therefore, we
decided to borrow 4MB at a time. Cells start borrowing
when only 16MB are left because we expect the resident size
of small virtual machines to be in 10-15MB range.

We measured the effectiveness of this policy by running
a 4-processor Database workload. First, we ran the bench-
mark with the monitor configured as a single cell, in which
case there is no need for balancing. Next, we ran in an 8-cell
configuration, with 4 CPUs per cell. In the second configu-
ration, the cell executing the Database virtual machine did
not have enough memory to satisfy the workload and ended
up borrowing 596MB of memory from the other cells. Bor-
rowing this amount of memory had a negligible impact on
the overall execution time (less than 1% increase).

5.3  Issues related to paging
If all the cells are running low on memory, there is no choice
but to page data out to disk. In addition to providing the basic
paging functionality, our algorithms had to solve three addi-
tional challenges: identifying actively used pages, handling
memory pages shared by different virtual machines, and
avoiding redundant paging.

Cellular Disco implements a second-chance FIFO queue
to approximate LRU page replacement, similar to VMS
[15]. Each virtual machine is assigned a resident set size that
is dynamically trimmed when the system is running low on
memory. Although any LRU approximation algorithm can
find frequently used pages, it cannot separate the infre-
quently used pages into pages that contain active data and
unallocated pages that contain garbage. Cellular Disco
avoids having to write unallocated pages out to disk by non-
intrusively monitoring the physical pages actually being
used by the operating system. Annotations on the operating
system’s memory allocation and deallocation routines pro-
vide the required information to the virtual machine moni-
tor.

A machine page can be shared by multiple virtual
machines if the page is used in a shared memory region as
described in Section2.4, or as a result of a COW (Copy-On-
Write) optimization. The sharing information is usually kept
in memory in the control data structures for the actual
machine page. However, this information cannot remain
there once the page has been written out if the machine page
is to be reused. In order to preserve the sharing, Cellular
Disco writes the sharing information out to disk along with
the data. The sharing information is stored on a contiguous
sector following the paged data so that it can be written out
using the same disk I/O request; this avoids the penalty of an
additional disk seek.

Redundant paging is a problem that has plagued early
virtual machine implementations [20]. This problem can
occur since there are two separate paging schemes in the sys-
tem: one in Cellular Disco, the other in the operating systems
running in the virtual machines. With these schemes making

independent decisions, some pages may have to be written
out to disk twice, or read in just to be paged back out. Cellu-
lar Disco avoids this inefficiency by trapping every read and
write to the kernel’s paging disk, identified by designating
for every virtual machine a special disk that acts as the vir-
tual paging disk. Figure9 illustrates the problem and the way
Cellular Disco avoids it. In both cases shown, the virtual
machine kernel wishes to write a page to its paging disk that
Cellular Disco has already paged out to its own paging disk.
Without the paging disk, as shown in Case A, the kernel’s
pageout request appears to the monitor as a regular disk write
of a pagethat has been paged out to Cellular Disco’s paging
disk. Therefore, Cellular Disco will first fault that page in
from its paging disk, and then issue the write for the kernel’s
paging disk. Case B shows the optimized version with the
virtual paging disk.When the operating system issues a write
to this disk, the monitor notices that it has already paged out
the data, so it simply updates an internal data structure to
make the sectors of the virtual paging disk point to the real
sectors on Cellular Disco’s paging disk. Any subsequent
operating system read from the paging disk is satisfied by
looking up the actual sectors in the indirection table and
reading them from Cellular Disco’s paging disk.

We measured the impact of the paging optimization by
running the following micro-benchmark, called stressMem.
After allocating a very large chunk of memory, stressMem
writes a unique integer on each page; it then loops through
all the pages again, verifying that the value it reads is the
same as what it wrote out originally. StressMem ran for 258
seconds when executing without the virtual paging disk opti-
mization, but it took only 117 seconds with the optimization
(a 55% improvement).

6 Hardware fault recovery

Due to the tight coupling provided by shared-memory hard-
ware, the effects of any single hardware fault in a multipro-
cessor can very quickly ripple through the entire system.
Current commercial shared-memory multiprocessors are
thus extremely likely to crash after the occurrence of any
hardware fault. To resume operation on the remaining good
resources after a fault, these machines require a hardware
reset and a reboot of the operating system.

Figure 9. Redundant paging. Disk activity is shown in
bold. Case A illustrates the problem, which results in 3
disk accesses, while Case B shows the way Cellular
Disco avoids it, requiring just one disk access.
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As shown in [26], it is possible to design multiprocessors
that limit the impact of most faults to a small portion of the
machine, called a hardware fault containment unit. Cellular
Disco requires that the underlying hardware be able to
recover itself with such a recovery mechanism. After detect-
ing a hardware fault, the fault recovery support described in
[26] diagnoses the system to determine which resources are
still operational and reconfigures the machine in order to
allow the resumption of normal operation on the remaining
good resources. An important step in the reconfiguration
process is to determine which cache lines have been lost as a
result of the failure. Following a failure, cache lines can be
either coherent (lines that were not affected by the fault) or
incoherent (lines that have been lost because of the fault).
Since the shared-memory system is unable to supply valid
data for incoherent cache lines, any cache miss to these lines
must be terminated by raising an exception.

After completing hardware recovery, the hardware
informs Cellular Disco that recovery has taken place by post-
ing an interrupt on all the good nodes. This interrupt will
cause Cellular Disco to execute its own recovery sequence to
determine the set of still-functioning cells and to decide
which virtual machines can continue execution after the
fault. This recovery process is similar to that done in Hive
[3], but our design is much simpler for two reasons: we did
not have to deal with operating system data structures, and
we can use shared-memory operations because cells can trust
each other. Our simpler design results in a much faster
recovery time.

In the first step of the Cellular Disco recovery sequence,
all cells agree on aliveset (set of still-functioning nodes) that
forms the basis of all subsequent recovery actions. While
each cell can independently obtain the current liveset by
reading hardware registers [26], the possibility of multiple
hardware recovery rounds resulting from back-to-back hard-
ware faults requires the use of a standard n-round agreement
protocol [16] to guarantee that all cells operate on a common
liveset.

The agreed-upon liveset information is used in the sec-
ond recovery step to “unwedge” the communication system,
which needs to be functional for subsequent recovery
actions. In this step, any pending RPC’s or messages to
failed cells are aborted; subsequent attempts to communicate
with a failed cell will immediately return an error.

The final recovery step determines which virtual
machines had essential dependencies on the failed cells and
terminates those virtual machines. Memory dependencies
are determined by scanning all machine memory pages and
checking for incoherent cache lines; the hardware provides a
mechanism to perform this check. Using the memmap data
structure, bad machine memory pages are translated back to
the physical memory pages that map to them, and then to the
virtual machines owning those physical pages. A tunable
recovery policy parameter determines whether a virtual
machine that uses a bad memory page will be immediately
terminated or will be allowed to continue running until it
tries to access an incoherent cache line. I/O device depen-

dencies are treated similarly to memory dependencies.

The experimental setup used throughout the rest of this
paper could not be used for testing the Cellular Disco fault
recovery support, since the necessary hardware fault con-
tainment support required by Cellular Disco is not imple-
mented in the Origin 2000 multiprocessor, and since in the
piggybacking solution of Section3.1 the host operating sys-
tem represents a single point of failure. Fortunately, Cellular
Disco was originally designed to run on the FLASH multi-
processor [13], for which the hardware fault containment
support described in [26] was designed. When running on
FLASH, Cellular Disco can fully exploit the machine’s hard-
ware fault containment capabilities. The main difference
between FLASH and the Origin 2000 is the use in FLASH of
a programmable node controller called MAGIC. Most of the
hardware fault containment support in FLASH is imple-
mented using MAGIC firmware.

We tested the hardware fault recovery support in Cellular
Disco by using a simulation setup that allowed us to perform
a large number of fault injection experiments. We did not use
the FLASH hardware because the current FLASH prototype
only has four nodes and because injecting multiple con-
trolled faults is extremely difficult and time consuming on
real hardware. The SimOS [19] and FlashLite [13] simula-
tors provide enough detail to accurately observe the behavior
of the hardware fault containment support and of the system
software after injecting any of a number of common hard-
ware faults into the simulated FLASH system.

Figure10 shows the setup used in our fault injection
experiments. We simulated an 8-node FLASH system run-
ning Cellular Disco. The size of the Cellular Disco cells was
chosen to be one node, the same as that of the FLASH hard-
ware fault containment units. We ran 8 virtual machines,
each with essential dependencies on two different cells. Each
virtual machine executed a parallel compile of a subset of the
GnuChess source files.

N0

R0

N1

R1

N2

R2

N3

R3

N4

R4

N5

R5

N6

R6

N7

R7

Figure 10. Experimental setup used for the fault-
containment experiments shown in Table 11. Each
virtual machine has essential dependencies on two
Cellular Disco cells. The fault injection experiments
were performed on a detailed simulation of the FLASH
multiprocessor [13].
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On the configuration shown in Figure10 we performed
the fault injection experiments described in Table11. After
injecting a hardware fault, we allowed the FLASH hardware
recovery and the Cellular Disco recovery to execute, and ran
the surviving virtual machines until their workloads com-
pleted. We then checked the results of the workloads by
comparing the checksums of the generated object files with
the ones obtained from a reference run. An experiment was
deemed successful if exactly one Cellular Disco cell and the
two virtual machines with dependencies on that cell were
lost after the fault, and if the surviving six virtual machines
produced the correct results. Table11 shows that the Cellu-
lar Disco hardware fault recovery support was 100% effec-
tive in 1000 experiments that covered router, interconnect
link, node, and MAGIC firmware failures.

In order to evaluate the performance impact of a fault on
the surviving virtual machines, we measured the recovery
times in a number of additional experiments. Figure12
shows how the recovery time varies with the number of
nodes in the system and the amount of memory per node.
The figure shows that the total recovery time is small (less
than half a second) for all tested hardware configurations.
While the recovery time only shows a modest increase with
the number of nodes in the system, there is a steep increase
with the amount of memory per node. For large memory
configurations, most of the time is spent in two places. First,
to determine the status of cache lines after a failure, the hard-
ware fault containment support must scan all node coherence
directories. Second, Cellular Disco uses MAGIC firmware
support to determine which machine memory pages contain
inaccessible or incoherent cache lines. Both of these opera-
tions involve expensive directory scanning operations that
are implemented using MAGIC firmware. The cost of these
operations could be substantially reduced in a machine with
a hardwired node controller.

7 Comparison to other approaches

In the previous sections we have shown that Cellular Disco
combines the features of both hardware partitioning and tra-
ditional shared-memory multiprocessors. In this section we
compare the performance of our system against both hard-
ware partitioning and traditional operating system-centric
approaches. The hardware partitioning approach divides a
large scale machine into a set of small scale machines and a
separate operating system is booted on each one, similar to a

Simulated hardware fault
Number of

experiments
Success Rate

Node power supply failure 250 100%

Router power supply failure 250 100%

Link cable or connector failure 250 100%

MAGIC firmware failure 250 100%

Table 11. For all the fault injection experiments shown,
the simulated system recovered and produced correct
results.

cluster of small machines with a fast interconnect. This
approach is also similar to Cellular Disco without inter-cell
resource sharing. In fact, because IRIX6.2 does not run on
the SGI Origin, we evaluated the performance of this
approach using Cellular Disco without inter-cell sharing. We
used IRIX6.4 as the representative of operating system-cen-
tric approaches.

Small applications that fit inside a single hardware parti-
tion run equally well on all three systems, except for the
small virtualization overheads of Cellular Disco. Large
resource-intensive applications that don’t fit inside a single
partition, however, can experience significant slowdown
when running on a partitioned system due to the lack of
resource sharing. In this section we evaluate all three sys-
tems using such a resource-intensive workload to demon-
strate the need for resource sharing.

For our comparison, we use a workload consisting of a
mix of applications that resembles the way large-scale
machines are used in practice: we combine an 8-process
Database workload with a 16-process Raytrace run. By
dividing the 32-processor Origin system into 4 cells (each
with 8 processors), we obtain a configuration in which there
is neither enough memory in any single cell to satisfy Data-
base, nor enough CPUs in any cell to satisfy Raytrace.
Because the hardware partitioning approach cannot automat-
ically balance the load, we explicitly placed the two applica-
tions on different partitions. In all three cases, we started
both applications at the same time, and measured the time it
took them to finish, along with the overall CPU utilization.
Table13 summarizes the results of our experimental com-
parison. As expected, the performance of our virtual clusters
solution is very close to that of the operating system-centric
approach as both applications are able to access as many
resources as they need. Also, as expected, the hardware par-
titioning approach suffers serious performance degradation
due to the lack of resource sharing.

The hardware partitioning and cluster approaches typi-
cally avoid such serious problems by allocating enough
resources in each partition to meet the expected peak
demand; for example, the database partition would have
been allocated with more memory and the raytrace partition
with more processors. However, during normal operation
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Figure 12. Fault-recovery times shown as a function of
the number of nodes in the system and the amount of
memory per node. The total time includes both hard-
ware and Cellular Disco recovery.
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this configuration wastes resources, and prevents efficient
resource utilization because a raytrace workload will not per-
form well on the partition configured for databases and sim-
ilarly, a database workload will not perform well on the
partition configured for raytrace.

8 Related work
In this section we compare Cellular Disco to other projects
that have some similarities to our work: virtual machines,
hardware partitioning, operating system based approaches,
fault containment, and resource load balancing.

8.1  Virtual machines
Virtual machines are not a new idea: numerous research
projects in the 1970’s [9], as well as commercial product
offerings [5][20] attest to the popularity of this concept in its
heyday. The VAX VMM Security Kernel [12] used virtual
machines to build a compatible secure system at a low devel-
opment cost. While Cellular Disco shares some of the funda-
mental framework and techniques of these virtual machine
monitors, it is quite different in that it adapts the virtual
machine concept to address new challenges posed by mod-
ern scalable shared memory servers.

Disco [2] first proposed using virtual machines to pro-
vide scalability and to hide some of the characteristics of the
underlying hardware from NUMA-unaware operating sys-
tems. Compared to Disco, Cellular Disco provides a com-
plete solution for large scale machines by extending the
Disco approach with the following novel aspects: the use of
a virtual machine monitor for supporting hardware fault con-
tainment; the development of both NUMA- and fault con-
tainment-aware scalable resource balancing and
overcommitment policies; and the development of mecha-
nisms to support those policies. We have also evaluated our
approach on real hardware using long-running realistic
workloads that more closely resemble the way large
machines are currently used.

8.2  Hardware-centric approaches
Hardware partitioning has been proposed as a way to solve
the system software issues for large-scale shared-memory
machines. Some of the systems that support partitioning are
Sequent’s Application Region Manager [21], Sun Microsys-
tems’ Dynamic System Domains [25], and Unisys’ Cellular

Approach Raytrace Database CPU util.

Operating system 216 s 231 s 55%

Virtual cluster 221 s 229 s 58%

Hardware partitioning 434 s 325 s 31%

Table 13. Comparison of our virtual cluster approach to
operating system- and hardware-centric approaches
using a combination of Raytrace and Database
applications. We measured the wall clock time for
each application and the overall CPU utilization.

MultiProcessing (CMP) architecture [28]. The benefits of
this approach are that it only requires very small operating
system changes, and that it provides limited fault isolation
between partitions [25][28]. The major drawback of parti-
tioning is that it lacks resource sharing, effectively turning a
large and expensive machine into a cluster of smaller sys-
tems that happen to share a fast network. As shown in
Section7, the lack of resource sharing can lead to serious
performance degradation.

To alleviate the resource sharing problems of static par-
titioning, dynamic partitioning schemes have been proposed
that allow a limited redistribution of resources (CPUs and
memory) across partitions [4][25][28]. Unfortunately, repar-
titioning is usually a very heavyweight operation requiring
extensive hardware and operating system support. An addi-
tional drawback is that even though whole nodes can be
dynamically reassigned to a different partition, the resources
within a node cannot be multiplexed at a fine granularity
between two partitions.

8.3  Software-centric approaches
Attempts to provide the support for large-scale multiproces-
sors in the operating system can be divided into two strate-
gies: tuning of an existing SMP operating system to make it
scale to tens or hundreds of processors, and developing new
operating systems with better scalability characteristics.

The advantage of adapting an existing operating system
is backwards compatibility and the benefit of an existing siz-
able code base, as illustrated by SGI’s IRIX 6.4 and IRIX6.5
operating systems. Unfortunately, such an overhaul usually
requires a significant software development effort. Further-
more, adding support for fault containment is a daunting task
in practice, since the base operating system is inherently vul-
nerable to faults.

New operating system developments have been pro-
posed to address the requirements of scalability (Tornado [8]
and K42 [10]) and fault containment (Hive [3]). While these
approaches tackle the problem at the basic level, they require
a very significant development time and cost before reaching
commercial maturity. Compared to these approaches, Cellu-
lar Disco is about two orders of magnitude simpler, while
providing almost the same performance.

8.4  Fault-containment
While a considerable amount of work has been done on fault
tolerance, this technique does not seem to be very attractive
for large-scale shared-memory machines, due to the increase
in cost and to the fact that it does not defend well against
operating system failures. An alternative approach that has
been proposed is fault-containment, a design technique that
can limit the impact of a fault to a small fraction of the sys-
tem. Fault containment support in the operating system has
been explored in the Hive project [3], while the necessary
hardware and firmware support has been implemented in the
FLASH multiprocessor [13]. Cellular Disco requires the
presence of hardware fault containment support such as that
described in [26], and is thus complementary. Hive and Cel-
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lular Disco are two attempts to provide fault containment
support in the system software; the main advantage of Cellu-
lar Disco is its extreme simplicity when compared to Hive.
Our approach is the first practical demonstration that end-to-
end hardware fault containment can be provided at a realistic
cost in terms of implementation effort. Cellular Disco also
shows that if the basic system software layer can be trusted,
fault containment does not add any performance overhead.

8.5  Load balancing
CPU and memory load balancing have been studied exten-
sively in the context of networks of workstations, but not on
single shared-memory systems. Traditional approaches to
process migration [17] that require support in the operating
system are too complex and fragile, and very few have made
it into the commercial world so far. Cellular Disco provides
a much simpler approach to migration that does not require
any support in the operating system, while offering the flex-
ibility of migrating at the granularity of individual CPUs or
memory pages.

Research projects such as GMS [6] have investigated
using remote memory in the context of clusters of machines,
where remote memory is used as a fast cache for VM pages
and file system buffers. Cellular Disco can directly use the
hardware support for shared memory, thus allowing substan-
tially more flexibility.

9 Conclusions
With a size often exceeding a few million lines of code, cur-
rent commercial operating systems have grown too large to
adapt quickly to the new features that have been introduced
in hardware. Off-the-shelf operating systems currently suffer
from poor scalability, lack of fault containment, and poor
resource management for large systems. This lack of good
support for large-scale shared-memory multiprocessors
stems from the tremendous difficulty of adapting the system
software to the new hardware requirements.

Instead of modifying the operating system, our approach
inserts a software layer between the hardware and the oper-
ating system. By applying an old idea in a new context, we
show that our virtual machine monitor (called Cellular
Disco) is able to supplement the functionality provided by
the operating system and to provide new features. In this
paper, we argue that Cellular Disco is a viable approach for
providing scalability, scalable resource management, and
fault containment for large-scale shared-memory systems at
only a small fraction of the development cost required for
changing the operating system. Cellular Disco effectively
turns those large machines into “virtual clusters” by combin-
ing the benefits of clusters and those of shared-memory sys-
tems.

Our prototype implementation of Cellular Disco on a 32-
processor SGI Origin 2000 system shows that the virtualiza-
tion overhead can be kept below 10% for many practical
workloads, while providing effective resource management
and fault containment. Cellular Disco is the first demonstra-
tion that end-to-end fault containment can be achieved in

practice with a reasonable implementation effort. Although
the results presented in this paper are based on virtualizing
the MIPS processor architecture and on running the IRIX
operating system, our approach can be extended to other pro-
cessor architectures and operating systems. A straightfor-
ward extension of Cellular Disco could support the
simultaneous execution on a scalable machine of several
operating systems, such as a combination of Windows NT,
Linux, and UNIX.

Some of the remaining problems that have been left open
by our work so far include efficient virtualization of low-
latency I/O devices (such as fast network interfaces), system
management issues, and checkpointing and cloning of whole
virtual machines.
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