
Publish/Subscribe Tree Construction in Wireless
Ad-Hoc Networks

Yongqiang Huang and Hector Garcia-Molina

Stanford University, Stanford, CA 94305
{yhuang, hector }@cs.stanford.edu

Abstract. Wireless ad-hoc publish/subscribe systems combine a publish/sub-
scribe mechanism with wireless ad-hoc networking. The combination, although
very attractive, has not been studied extensively in the literature. This paper ad-
dresses an important problem of such systems: how to construct an optimal pub-
lish/subscribe tree for routing information from the source to all interested re-
cipients. First we precisely define the optimality of a publish/subscribe tree by
developing a metric to evaluate its “efficiency.” The optimality metric takes into
account both the goal of a publish/subscribe system (i.e., to route a set of events),
and the characteristics of an ad-hoc network (for example, devices are resource
limited). We propose a greedy algorithm, SHOPPARENT, which builds the pub-
lish/subscribe tree in a fully distributed fashion. A key feature is that this al-
gorithm can be “subscription-aware”, allowing it to use publication/subscription
information in order to find a better outcome. Our simulations show that SHOP-
PARENT’s performance is within 15% of optimal under normal configurations.
We also study the effect of geographically localized subscriptions.

1 Introduction

A publish/subscribesystem connects information providers with consumers by deliver-
ing eventsfrom sources to interested users. A user expresses interest in receiving certain
types of events by submitting a predicate defined on the event contents. The predicate is
called the user’ssubscription. When a new event is generated andpublishedto the sys-
tem, the publish/subscribe infrastructure is responsible for checking the event against
all current subscriptions and delivering it efficiently and reliably to all users whose sub-
scriptions match the event.

Many problems related to publish/subscribe have been tackled and solved. How-
ever, almost all of the research so far has concentrated on publish/subscribe systems
in a fixed network. With increasing popularity of wireless handheld devices, there is
a pressing need to extend publish/subscribe to a wireless environment [1,2,3,4]. In this
paper, we study publish/subscribe systems in a wireless ad-hoc network. Such a network
is formed by wireless devices communicating without the benefit of a fixed network in-
frastructure, either because the infrastructure has been wiped out by a natural disaster,
or because it is impractical to build one. As an example, in a military battlefield, thou-
sands of wireless and mobile sensors such as satellites and equipment sensors report all
kinds of information ranging from the location of enemy troops to whether the engine
of a tank has overheated. There are also many parties interested in receiving certain
types of information. An individual soldier may need to know the location of the near-
est enemy troops, or whenever a missile has been fired. The above scenario requires the



deployment of a highly scalable and efficient communication infrastructure, for which
publish/subscribe is an ideal candidate.

In a wireless ad-hoc publish/subscribe system, nodes cooperate to deliver events
from their publishers to interested subscribers. In this paper, we focus on constructing
apublish/subscribe treefor such a system. A publish/subscribe tree is a node hierarchy
along which new publications are sent in order to reach their subscribers. A tree con-
struction algorithm produces such a tree, given information such as how the nodes are
interconnected, and what each node has subscribed to.

A publish/subscribe tree is similar in function to a multicast tree in traditional multi-
cast networks. Existing multicast protocols often aim to produce an “optimal” multicast
tree which seeks to optimize one of a few possible metrics. For example, in order to
minimize the total number of nodes participating in multicast, some protocols generate
(or heuristically approximate) Steiner trees. In this paper we propose a new optimality
criterion suitable for wireless publish/subscribe systems. Our metric measures how “ef-
ficiently” a publish/subscribe tree can transmit all publications to the interested nodes.
Efficiency is important because wireless devices in ad-hoc networks typically have very
limited resources, such as battery power. Hence it is desirable to accomplish the same
goal with minimum work. Furthermore, our metric is tailored to a publish/subscribe
system because it takes into account information such as user subscriptions and events,
which are not applicable in regular multicast.

We present tree construction algorithms to produce efficient publish/subscribe trees
based on the above metric. Our algorithms exploit knowledge of expected traffic on the
publish/subscribe tree. For example, if a new node can connect to the tree in say two
ways, it will select the connection that generates less new traffic for its parent, given
the current subscriptions. As we will see, this “intelligent” tree construction can yield
significant gains.

In addition to the algorithms, our other contribution is their evaluation. In particular,
we devise models to simulate subscription and publication so that we can compare the
performance of various algorithms.

We define the problem and our optimality metric in Section 2. We then give our
algorithms for tree construction (Section 3). Finally, we discuss our evaluation model
(Section 4) and present our results (Section 5).

2 Framework

Figure 1 illustrates a wireless ad-hoc publish/subscribe system. It consists ofN wire-
less nodes, each identified by a globally unique id. The nodes communicate with each
other wirelessly using radio, and cooperate to send, relay, and receiveevents(i.e., pub-
lications).

We define theconnectivity graphG of a system as the graph whose vertices are the
wireless nodes, and where an edge exists between two vertices if the two corresponding
nodes are “neighbors.” Two nodes are neighbors if they can talk to each other directly
via radio, i.e., if they are a single hop away. See Figure 1 for an exampleG. Note that,
as in [5], the connectivity graph is assumed to be undirected, precluding the situation
where one node can hear another, but not vice versa.

Each nodei has a subscriptionsi, called its inherent subscription, which is ex-
pressed as a predicate defined on the contents of an event. A nodei is interested in an



Fig. 1: A wireless ad-hoc publish/subscribe system. The lines form the connectivity graphG.

evente if and only if si(e) = true. Naturally, the inherent subscription is determined
by the particular applications that are running on that node. Note that we do not make
any assumptions about an event’s content.

Of all the nodes in the system, one is designated asroot of the publish/subscribe
mechanism. Without loss of generality, we assume that the root is always labeled node
1. We assume that only the root node can publish new events. That is, a new event has
to be generated at node1, and then forwarded to other interested nodes. Although this
seems like a limiting assumption, our algorithms can easily be modified when multiple
nodes are allowed to publish. For example, we can construct one tree per potential
publisher (per-source trees in multicast lingo). Alternatively, we can require any new
event to be passed to the root first via unicast. However, a better method is to forward
the event towards the root along the publish/subscribe tree itself, allowing shortcutting
to tree branches along the way. The user is referred to [6] for a relevant discussion in
the context of shared multicast trees.

Although neighbors of the root node can receive newly published events directly
from the root, other nodes will have to rely on the help of intermediate nodes to relay
events. For example, in Figure 1, node3 needs to forward those events of interest to
node4. We use the termpublish/subscribe tree(PST) to describe the tree rooted at node
1 that is formed by paths traveled by the events to reach their destinations.1 We observe
that the PST is a spanning tree of the connectivity graphG.2

We assume that every node in the system participates in the publish/subscribe proto-
col.3 In particular, nodes that are not interested in any event will simply have an empty
subscription. We believe that the above is a reasonable assumption if publish/subscribe
is used as a fundamental underlying communication mechanism for such a system. The
assumption also implies that our algorithms will not rely on a separate ad-hoc unicast
protocol to work. However, if the assumption does not hold, additional steps may be
necessary in the algorithms, which will be considered in extensions of this work. For

1 Similar to a multicast tree, the PST is a tree and not a graph because we force the events to
always travel the same route between the root node and any subscriber node.

2 The PST is a spanning tree and not a Steiner tree because, as explained next, all nodes partici-
pate in the publish/subscribe protocol.

3 This is a fundamentally different and much less limiting assumption than assuming that all
nodes are part of a particular multicast tree in traditional multicasting. While there may be
many concurrent active multicast groups at any time and only a small portion of nodes are
interested in any particular one, we envision a single publish/subscribe session where different
node interests are represented by different subscriptions.



example, new subscribers may need to perform expanding ring searches to look for the
nearest node that is also part of publish/subscribe.

Suppose nodei is the parent of another nodej in a PST. Then any event thatj
subscribes to will need to pass throughi first. We define nodei’s effective subscription
(Si) as the “combined” subscription of itself and all its children. Specifically, lets′i
denotei’s proxied subscription, which is the disjunction of the (effective) subscriptions
of all i’s children. ThenSi is simply the disjunction ofi’s inherent subscription (si)
and proxied subscription (s′i). In other words,Si(e) = si(e) ∨ s′i(e), wheres′i(e) =
Si1(e) ∨ Si2(e) . . . for all of i’s childreni1, i2, . . .

When a new evente is published at the root node, the wireless nodes run a dis-
tributedpublish/subscribe protocolto forwarde along the branches of the PST until it
reaches all nodes that have subscribed to it. Under the protocol, every nodei listens
for new events broadcast by its parent node in the tree. Then, depending on an event’s
content, some or all of a set of actions can be performed on it, as shown in Table 1.
In particular, receiving an event means capturing it in the air and transferring it to an
internal buffer, logging it, etc. Processing implies that an event has matchedi’s inherent
subscription and will be displayed to the user in a pop-up alert window, for example.
Finally, forwarding an event involves calculating the set of children nodes that will be
interested in the event and re-broadcasting it in the air for them. For example, the first
row of Table 1 shows that events satisfyingsi(e)∧¬s′i(e) are of interest to nodei only,
and not to its children. Consequently, these events will be received and processed, but
not forwarded.

SatisfiesOf interest to Recv Proc Fwd

si ∧ ¬s′
i i only

√ √
X

¬si ∧ s′
i i’s children only

√
X

√
si ∧ s′

i bothi & children
√ √ √

¬Si neither X X X

Table 1: Classification of new events seen by
node i and whether they will be “received”,
“processed”, and/or “forwarded”.

(a) “Good” PST (b) Not-as-good

Fig. 2: Two PSTs of the same connectivity
graph. Lines represent the connectivity graph,
while thick lines constitute a PST.

We do not focus on reliability in this paper. Instead, we develop best-effort algo-
rithms where nodes may occasionally miss events, especially when they move around
geographically. If desired, reliability can be added to our algorithms via logging and re-
tries, etc.[7] However, we suspect that such a guaranteed delivery system may be costly
in a dynamic wireless ad-hoc environment, and we leave a detailed study to future work.

2.1 PST evaluation metric

There usually can be many possible PSTs in any given system (actually, as many as
there are spanning trees in the connectivity graphG). Some trees can be “better” than
others, however, as the following example shows.



Example 1.Figure 2 shows a simple system with three nodes. Assume both nodes2
and3 can receive events directly from the root, node1. If they both do, the resulting
PST is given by the thick lines in Figure 2(a). If, on the other hand, node3 chooses to
rely on node2 to forward events, we have the PST in Figure 2(b). Intuitively, the PST
in Figure 2(a) is “better” than 2(b) since the extra work by node2 to forward events is
avoided.

In order to meaningfully compare different PSTs, we define a metric called thecost
of a publish/subscribe tree. A PST’s cost with respect to a setE of events, denoted
C(E), is the total amount of work performed by all tree nodes in order to publishE.
Cost measures the “efficiency” of a PST, as a tree with a lower cost will need less
overall work to deliver all the events inE. We believe that this is a useful and realistic
criterion due to severely limited resources in a wireless ad-hoc environment. We have
C(E) =

∑
i Ci(E), whereCi(E) is the amount of work nodei has to perform to

publishE, called the cost ofi.
Let us assume that receiving an event constitutesr units of work, and processing

and forwarding needp andf units, respectively. LetE(α) represent the subset ofE
satisfying the predicateα, and letΦE(α) denote the number of events in that subset.
According to Table 1, we getCi(E) = (r + p) · ΦE(si ∧ ¬s′i) + (r + f) · ΦE(¬si ∧
s′i) + (r + p + f) · ΦE(si ∧ s′i).

Note that, similar to some previous work on ad-hoc multicast/broadcast [5], we
have assumed the cost (f ) to forward an event to be constant, regardless of how many
of i’s children want this event. This is a reasonable assumption because of the broadcast
nature of radio. With one broadcast operation, a node can normally send a message to
all its neighbors. In our case, specifically, when nodei broadcasts an event in the air,
all nodes withini’s radio range will be able to hear the transmission. However, only the
intended recipients of the event will accept and receive it; others will simply ignore it.
Furthermore, since we concentrate on best-effort algorithms as noted before, we do not
assume the broadcast primitive to be reliable, which may be expensive to enforce.

The cost calculation not only depends onE, the set of events being published, but
also on the connectivity graph and user subscriptions. We will propose models to simu-
lation these factors in Section 4. In general, if treeT1 has a lower cost thanT2, T1 will
incur less overall work given the user subscriptions and event distribution that are used
to calculate the cost.

Although the cost metric can be used directly to compare two PSTs, we observe
that a component in the cost formula is unchanged in all possible trees. Specifically,
regardless ofi’s children, the work needed to receive and process the setsE(si ∧ ¬s′i)
andE(si ∧ s′i) is always needed. Therefore, to highlight the differences between two
PSTs and to simplify calculation, we next define another derivative metric, the overhead
of a PST.

Nodei’s overheadwith respect toE, denotedOi(E), is the additional amount of
work that i needs to perform on behalf of its children in a PST (i.e., extra work in
addition to whati would always need to do even without any children). In other words,
the overhead is the cost of a node minus the amount of work it needs to do for itself.
Theoverheadof a publish/subscribe tree,O(E), is simply the sum of overheads of all
nodes, namely,O(E) =

∑
i Oi(E).

Based on above analysis, we getOi(E) = (r+ f) ·ΦE(¬si∧s′i)+ f ·ΦE(si∧s′i).
Without loss of generality, we assume thatf corresponds to one unit of work, i.e.,f =



1. To simply calculation, we also assume thatr = 1. That is, it takes the same amount of
work to receive an event as to transmit one. This is reasonable if “work” is measured in
terms of processing time, for example. On the other hand, since radio transmission often
consumes much more energy than reception, we will also study the impact of letting
r � f in Section 5. Givenr = f = 1, we have,Oi(E) = 2ΦE(¬si∧s′i)+ΦE(si∧s′i).

Example 2.Referring back to Figure 2, we assumeE = {e1, e2}, wheree1 matches
node2’s subscription, whilee2 matches node3’s. For the PST in Figure 2(a), we have
O2(E) = 2ΦE(¬s2 ∧ s′2)+ ΦE(s2 ∧ s′2) = 2 · 0 +0 = 0 since node2 has no children.
Likewise,O3(E) = 0. Also,O1(E) = 2ΦE(¬s1 ∧ s′1)+ΦE(s1 ∧ s′1) = 2 · 2+0 = 4.
Hence,O(E) =

∑
i Oi(E) = 4 + 0 + 0 = 4.

In Figure 2(b), however, node 3 is node 2’s child. Thus node 2’s effective subscrip-
tion includes that of 3. We getO2(E) = 2ΦE(¬s2∧s′2)+ΦE(s2∧s′2) = 2 ·1+0 = 2.
As before, we also haveO1(E) = 4 andO3(E) = 0. Overall,O(E) =

∑
i Oi(E) =

4 + 2 + 0 = 6. Hence, the left PST is indeed “better” according to our metric.

3 Algorithms

A tree construction algorithmis the protocol run by the nodes of a wireless pub-
lish/subscribe system in order to determine which PST to use. The algorithm aims to
produce anoptimal PST, namely, to minimize the overhead of the resulting PST based
on the metric presented earlier. In this section, we give several such algorithms.

Our first algorithm, OPT, is a centralized algorithm that is guaranteed to be optimal.
Specifically, Algorithm OPT runs on a single node with global knowledge about the
system. That is, a controller node gathers all inputs needed, including the entire con-
nectivity graphG and user subscription information, before it calculates the optimal
PST, and distributes the tree structure back to other nodes.

When finding the optimal PST, OPT exhaustively searches through all spanning
trees of the connectivity graphG, and selects the one with the smallest overhead. Since
a PST must be a spanning tree ofG, OPT guarantees optimality of the resulting PST.
Note that an optimal PST differs from a minimum spanning tree ofG in the graph
theoretical sense, because the “weight” of an edge is not fixed, but is dependent on
what events flow through it, which in turn depends on the shape of other parts of the
tree. Hence one cannot use the more efficient minimum spanning tree algorithms in this
step. Due to space limitations, we will omit further details of this algorithm.

Because of its exhaustive and centralized nature, OPT is very inefficient, which
makes it particularly unsuitable to a wireless ad-hoc operating environment. Neverthe-
less, we have included it here to establish a basis for comparison, because OPT gives
the best case of what any tree construction algorithm can achieve. Next, we follow with
a distributed algorithm, which, although not optimal, is efficient and practical.

3.1 Algorithm SHOPPARENT

Algorithm SHOPPARENT is a greedy distributed algorithm that avoids the disadvan-
tages of the centralized OPT. The PST is constructed by each node running one in-
stance of the algorithm and making its own decision about which other node to select
as its parent. The parent is chosen from all the node’s neighbors according to criteria



aimed to minimize overhead. No node needs global knowledge about the system, only
information (e.g., subscriptions) about itself and its parent or children.

When a new nodei comes into an existing system, it broadcasts a PARENT-PROBE

to all its immediate neighbors, looking for the “best” potential parent. If a recipient of
the probe, say nodek, currently has a route to the root publisher,k will reply with a
PARENT-ADVERTISE message. The reply contains information which allows nodei to
calculate arouting metric, which we will discuss promptly. For example, in addition
to k’s id, PARENT-ADVERTISE may containk’s current route to the root (to avoid a
routing loop), and its effective subscription etc.

From all the PARENT-ADVERTISE replies it receives, nodei selects the one, say
nodek’s, that gives the smallest routing metric, and connects to that node as its parent
in the publish/subscribe tree. Nodek, in turn, may need to notify its own parent (or
even “shop around” for a new one) ifSk has been expanded by the joining of node
i. On the other hand, if nodei does not receive any PARENT-ADVERTISE from its
PARENT-PROBE, that means it is currently partitioned from the publishing tree, and it
will periodically re-attempt to connect later.

To deal with connectivity changes in the network as a result of nodes’ moving
around or failing, for example, each nodei periodically broadcasts its PARENT-ADVER-
TISE message. At the same time, it constantly listens for these messages from neigh-
boring nodes, and calculates the routing metric and compares against that of the current
parent. This periodic “beaconing” serves two purposes. First, if a new potential parent
comes into range that offers a “better” route to the root, nodei can take advantage of it
by initiating a procedure to switch its parent in the PST to the new node. The switching
may involve notifying the new and old parents, and possiblyi’s descendants. Second,
if a child does not receive PARENT-ADVERTISE from its current parent during some
timeout period, it expires the parent because the parent must have failed or gone out of
range. After expiration, the node probes for a new parent, essentially as if it had just
joined the network.

We introduce three variations of algorithm SHOPPARENT, each using a different
routing metric when “shopping” for the best parent. The first, called SP-NHOP, uses
Hk as the routing metric for nodek. Hk is k’s distance to the root node, measured in
number of hops. This algorithm is designed to mimic some existing distributed network
routing protocols, and results in a shortest-path spanning tree of the connectivity graph.
Note that for this to work, each node should keep track of its own hop count, which can
be propagated and refreshed by PARENT-ADVERTISE messages.

The routing metric used by SP-OVHD isO+i
k (E)−O−i

k (E), whereO+i
k (E) is node

k’s overhead ifk takes oni as one of its children, whileO−i
k (E) is if it does not. The

metric measures the increase inOk(E) if k becomesi’s parent. SinceOk(E) is part of
the PST overhead, this metric indirectly estimates the impact ofk’s parentingi.

Note that in order to calculate the overhead metric above, the algorithm needs the
“event distribution” of the setE of events to be published. Essentially, an event distri-
bution allows one to calculateΦE(α), the expected number of events inE matching
the subscription predicateα. This distribution can be computed fairly accurately in
certain applications, e.g., if the events of interest to a user are generated by a sensor
with a regular pattern. In situations where the precise distribution is not known a priori,
however, we often find that the absolute numbers are not needed to run the algorithm
correctly. Because the node only uses this information to choose among several alterna-
tive parents, it is usually sufficient to know the relative distribution of events in several



categories. For example, even though the exact rate of new postings in each newsgroup
varies over time, the relative frequencies of different newsgroups may well stay com-
paratively fixed, especially over longer periods of time. Thus, for example, the groups
in comp.os.linux will always have more traffic thancomp.os.mach . Finally,
nodes can also project future event distributions using recorded history of past events.
Section 5 studies the resilience of the algorithm to skew in the approximation.

(a) (b)

Fig. 3: Two PSTs of the same connectivity graph.

The last algorithm, SP-COMBO,
simply uses the product of the two met-
rics used above ((O+i

k (E) − O−i
k (E)) ·

Hk). Intuitively, SP-OVHD underesti-
mates the impact on the overall PST
overhead ifk parentsi, since not only
k, but some of its ancestors as well, are
likely going to be affected. SP-COMBO
is intended as a better estimate by assum-
ing that allHk nodes on the path from
k to the root are equally affected. Natu-
rally, SP-COMBO may overestimate in
some cases. Section 5 studies the actual
performance of the three SHOPPARENT

algorithms in detail.

Example 3.Figure 3 shows a simple system with 5 nodes. Node4 is joining the system,
and is trying to select either node5 (Figure 3(a)) or node3 (Figure 3(b)) as its parent.
Let E contain 10 events, all of which matchs2 ands4, while half of which (5 events)
matchs5. Moreover, assume no events matchs1 or s3.

When node4 sends out its PARENT-PROBE, it will receive two replies, from nodes
3 and5, respectively. Assume SP-COMBO is being used. The routing metric calculated
from 3’s PARENT-ADVERTISE will be (O+4

3 (E)−O−4
3 (E)) ·H3 = (20− 0) · 2 = 40

because, for example,O+4
3 (E) = 2ΦE(¬s3 ∧ s4) + ΦE(s3 ∧ s4) = 2 · 10 + 0 = 20.

On the other hand,(O+4
5 (E) − O−4

5 (E)) · H5 = (15 − 0) · 1 = 15. Therefore, node
4 will eventually pick5 as its parent, resulting in the PST of Figure 3(a). (Note that, in
this particular instance, all three SHOPPARENT variants give the same outcome.) The
reader can verify that this is indeed the best PST in this scenario.

SHOPPARENT is a greedy local algorithm because each node makes its own de-
cision without global information. Omitted here due to space, examples can indeed be
constructed to show that the resulting publish/subscribe tree may not always be optimal.
Section 5 will investigate how close the algorithm comes to the global optimum.

For comparison purposes, we introduce another simple algorithm called RANDOM.
RANDOM is a distributed algorithm similar to SHOPPARENT. However, each node
randomly selects its parent from the pool of candidates. Effectively, the algorithm gen-
erates a random spanning tree ofG as the PST. This behavior is similar in nature to
techniques used in some existing ad-hoc multicast tree protocols [8] and fixed network
publish/subscribe systems [9,10,11], where a new node joining the system often con-
nects to a random existing member.



4 Evaluation Model

We use simulation to study the effectiveness of our algorithms. Recall that the algo-
rithms need as inputs the connectivity graphG, each node’s subscription and the dis-
tribution of the setE of events to be published. In this section, we present models to
simulate these factors.

4.1 Connectivity graph

To obtain the connectivity graphG, we first place a total ofN wireless nodes in a
two-dimensional space. Instead of randomly generating an x- and a y-coordinate for
each node, we use a clustered model, which we believe is more representative of a real
wireless ad-hoc deployment. In particular, the nodes are partitioned intoNc clusters,
and each cluster consists ofNn nodes, so thatN = Nc · Nn. Nodes belonging to the
same cluster are expected to be geographically closer to each other in general.

Each cluster has a cluster center, which is a point in the x-y plane. The set of all
cluster centers are generated with respect to the origin in a polar coordinate system.
The angleρ of all the centers follows a uniform random distribution between0 and2π.
The distancer to the origin follows a normal distribution with meanDc.

Once we have the cluster centers, the node coordinates in each cluster are generated
in a similar fashion. In particular, the nodes’ρ relative to their cluster center also follows
a uniform distribution, while theirr follows a normal distribution with meanDn.

Finally, we obtain the connectivity graphG by picking a value forR, which denotes
the transmissionradio rangeof the wireless devices. A pair of nodes are neighbors (i.e.,
they are adjacent inG) if the distance between them in the x-y plane is less thanR. We
assume thatR is the same for all wireless devices to ensure thatG is undirected.

Our evaluation will assume thatG is connected, since otherwise, some nodes will
not be able to receive all necessary events simply because no route exists to the pub-
lisher. Consequently, we only use values ofR large enough to guarantee the connected-
ness ofG.

By varyingR, we can obtain multiple connectivity graphs with differing degrees
of “connectedness.” A more connected graph implies a scenario where users are more
clustered together, while a less connected one means they are farther apart. Figure 4
shows twoG’s obtained from the same set of nodes, but with different values forR.

(a)R = 60 (b) R = 140

Fig. 4: A biggerR results in a more“connected”G.

Fig. 5: The Number Intervals subscrip-
tion model, with 3 sample subscrip-
tions (intervals) and 3 events (points).
As shown,e1 matchess1 and s3, e2

matches nothing, whilee3 matchess3.



4.2 Subscription model

We next present models to simulate each node’s inherent subscription,si. The subscrip-
tion model should allow for diverse interests for different users. Otherwise, if every user
subscribes to the same things, the system essentially performs broadcast flooding. On
the other hand, the model should also allow for overlap of interests between different
users. Just like in the real world, there is often some sharing of interest between users.
Note that we are not trying to model specific applications. We want simple models that,
with few parameters, capture the essential features of subscriptions. With such mod-
els, we can understand why a particular algorithm works well, or what is the nature of
overhead.

Our first subscription model (Figure 5), called Number Intervals (NI), represents a
user’s subscription by an interval on the number axis, e.g.,[3.0, 4.0], or [−100,∞). An
event is represented by a real number. An evente matches nodei’s subscription if and
only if e’s number falls within rangesi. For example, ifsi = [3.0, 4.0], and a new event
e1 is published as the number3.2, thene1 matches. On the other hand, ife2 = 5.2, then
e2 does not match.

The NI model can be mapped directly to many real world applications. For example,
in a nuclear reactor temperature monitoring application, new events report the current
temperature of the reactor. Interested users want to receive these temperature readings
only when they fall within a certain range. For instance, an overheating warning system
is interested in receiving new readings only when they are above 2000 degrees. In such
case, the subscription interval of the warning system is[2000,∞).

Within the NI model, the actual interval of nodei is generated by picking a center
and a length. The lengths of the intervals are selected randomly according to a normal
distribution. The NI model is further divided into several submodels depending on how
the centers ofsi’s are determined. In the first submodel, calledrandom-center(NI-R),
we pick a random number (within a certain range) assi’s center. Thex-center(NI-X)
submodel uses nodei’s x-coordinate (in the plane used to generateG) as the center.
The idea is to introduce some correlation between a user’s interest and its geographical
location, so nodes that are nearby subscribe to similar events. The impact of such “geo-
graphical correlation of subscriptions” will be inspected in detail in Section 5. Finally,
the modified x-centersubmodel (NI-Xmod) adds a random offset toi’s x-coordinate
before using it as the center. The offset is picked randomly from a normal distribution
with mean 0 and standard deviationσ. By increasingσ, we can dilute the geographi-
cal correlation of subscriptions in NI-Xmod. Therefore, NI-Xmod represents a middle
ground between NI-R and NI-X. When comparing the submodels, we use the same set
of random numbers as the interval lengths. This way the total overhead of the system
under different submodels should be comparable.

We feel that the NI model is fairly general and flexible enough to capture many im-
portant tradeoffs. Specifically, different users can have subscriptions of different sizes,
corresponding to different lengths of the intervals. Moreover, we can simulate the dif-
ferent amount of overlap between two users’ interests by adjusting the overlap of their
two corresponding intervals. Nevertheless, our studies also use a second subscription
model, the Topic Tree (TT), which simulates a newsgroup type of environment with a
hierarchical tree of topics. We omit the details of the TT model in this paper since the
conclusions drawn from the TT experiments are similar to those from the NI model.



4.3 Event distribution model

For simplification, we assume that an event has an equal probability of being repre-
sented by any real number (within a range of possible numbers) in the Number Intervals
model. Although we realize that in practice this assumption does not always hold (e.g.,
a nuclear reactor has a higher probability of being in a certain temperature range), we
also believe that a skewed event distribution function will not affect our conclusions.4

Based on the assumption, the number of events inE matching a subscriptionα, i.e.,
ΦE(α), is proportional to the length ofα’s interval.

For most of our simulations, we assume that the event distribution used by the nodes
when running the algorithm will be the same as that of events actually published during
the simulation. In Section 5, however, we will also study what happens if this assump-
tion does not hold.

Table 2 lists all the parameters used in the simulation, and their default values.

Sym Meaning Base value

Nc # clusters 3
Nn # nodes per cluster 10
N total # nodes = Nc · Nn

Dc avg. dist. btw. cluster centers & origin100
Dn avg. dist. btw. nodes & cluster center80
R radio transmission range 80
l avg. interval length (NI) 25

Table 2: Parameters used in analysis

5 Results

In this section we study and compare the performance of different algorithms. Due to
space limitations, we will not present all of the studies we have done, but only give
a few representative results. We have opted to run simulation at a higher level than
the detailed MAC-layer simulators used, for example, by some earlier performance
studies to compare multicast protocols [8]. As a result, we have not studied aspects of
the systems such as control overhead or link contention. We believe, however, that our
simulator is adequate given the high level issues we are trying to study at this stage,
such as the appropriateness of our new metric and the fundamental difference between
optimal PST algorithms and traditional multicast protocols.

For every algorithm except OPT, we do several simulation runs and take the average
as the final performance number for that algorithm in that particular configuration. Dur-
ing each run, nodes take turn to execute the algorithm, i.e., to send messages and receive
replies. The order in which nodes take turn is random, and is different for each run. This

4 In a sense, the effect of a skewed event distribution can also be modeled by a skew in the
subscription interval length, for example.



simulates, for example, nodes joining the publish/subscribe system in different orders.
We run the simulation long enough to reach a steady state, when nodes stop switching
to better parents between successive iterations. We then take a snapshot of the PST to
calculate our evaluation metric: total tree overheadO. Since we do not simulate node
mobility or failures except for our dynamics study in Section 5.6, the tree structure is
guaranteed to eventually converge.

5.1 Overhead of RANDOM

Figure 6 compares the performance of RANDOM with the three variants of SHOPPAR-
ENT. The y-axis gives the overhead metric (O) of the algorithms, while the x-axis isl,
the average interval length in the Number Intervals subscription model. Note that the
NI-R submodel is used, where subscriptions are random intervals on the number axis
that are of varying lengths. A lower y value, naturally, implies a more efficient PST. A
largerl implies that users are interested in more things (larger intervals). Hence the to-
tal overhead (overall work) rises with increasingl. Moreover, larger intervals also mean
that there is more potential overlap between different user’s interests. For example, at
l = 1, the probability that two random user subscription intervals overlap is about 0.6%.
The same probability increases to 36% whenl = 50.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

O

l

RANDOM
SP-NHOP
SP-OVHD
SP-COMBO

Fig. 6: Total overhead vs. average interval
lengthl of NI-R.

1

1.1

1.2

1.3

1.4

1.5

60 70 80 90 100 110 120 130 140

O
/O

[S
P

-C
O

M
B

O
]

R

SP-NHOP
SP-OVHD

SP-COMBO

Fig. 7: Relative overhead of three SHOPPAR-
ENT algorithms vs. radio rangeR.

We see from the figure that RANDOM has a much larger overhead than the others.
Because resources are extremely limited in a wireless ad-hoc environment, an efficient
PST is especially important, and clearly RANDOM is not a good algorithm for this
environment. Instead, a node should be discriminating in choosing its parent, as is the
case with the SHOPPARENT algorithms.

Although all three SP algorithms work much better than RANDOM, SP-NHOP
is out-performed by SP-OVHD and SP-COMBO by a significant percentage. (Our next
figure highlights these differences.) We use the general term “subscription-aware” to de-
scribe algorithms that take into account user subscription information when construct-
ing PSTs. SP-OVHD and SP-COMBO are two such examples, because user subscrip-
tions are used in the routing metric to help a node select a “better” parent. SP-NHOP,
on the other hand, is not subscription-aware. Figure 6 suggests that it is advantageous to



use a subscription-aware algorithm. Furthermore, the advantage amplifies asl increases.
In other words, subscription-aware algorithms are better suited to take advantage of in-
creased overlap of user interests, marked by a biggerl. Intuitively, if a node can find
another node which shares much of its own interest as its parent, the overall overhead
is often reduced.

SP-COMBO is the best performing algorithm in the pack. We attribute SP-COMBO’s
superiority to its routing metric, which we believe more accurately estimates the impact
of a local decision on the overall global outcome. However, as shown in the figure, the
difference between SP-COMBO and SP-OVHD is usually quite small.

We also conducted the same set of experiments using different values forr in the
overhead metric formula. Atr = 0, for example, we ignore the cost of receiving a mes-
sage, and concentrate only on the cost to transmit (f ). We have found that, as expected,
the curves all have smaller y values with smallerr. Moreover, the relative difference
between them decreases (e.g., the difference between SP-COMBO and SP-NHOP is
reduced from about 30% atr = 1 to about 23% atr = 0). However, the shape of the
curves remains almost identical with varyingr, so our conclusions are still valid.

5.2 SHOPPARENT variants

Figure 7 compares the three SHOPPARENT algorithms as network connectivity varies.
Each curve represents the ratio ofO of the corresponding SP algorithm to that of SP-
COMBO, plotted againstR, the radio transmission range. We plot the overhead ratio
instead of absolute overhead numbers to more clearly show their relative performance.
SP-COMBO is chosen as the “base” algorithm because it has the best performance. For
example, we see in the graph that SP-NHOP generates about 30% more overhead than
SP-COMBO atR = 80. We still use the NI-R model. As before, we observe that the
curves follow the order SP-NHOP, SP-OVHD, and then SP-COMBO from worst to best
performance.

Recall that the radio rangeR affects the connectivity graphG, with a largerR
implying a more “connected”G. For example, atR = 60, each node in the 30-node
system has 5.2 immediate neighbors on average. The average increases to 21.3 atR =
140. A striking feature of Figure 7 is that the performance gap first widens and then
narrows asR increases. Initially, asG becomes more “connected”, it contains more
spanning trees, which are candidate PSTs, thereby giving a superior algorithm a better
chance at excelling. However, asR continues to grow,G approaches a fully connected
graph. In such case, nodes can simply broadcast events, and all algorithms can perform
equally well.

5.3 Near-optimality of SP-COMBO

Figure 8 compares SP-COMBO to OPT, plotting their overhead againstl, again using
the NI-R model. Algorithm OPT is globally optimal, always producing the best PST.
Because of the inherent intractability of OPT, we use, for this experiment only, a smaller
scale system setup. Specifically, we letR = 180 to limit the potential number of span-
ning trees inG, thus to allow OPT to finish in a reasonable time. The figure shows that
in many cases SP-COMBO comes fairly close to the optimal in terms of performance,
with difference not more than 8%. In fact, after running simulations for several con-
figurations, the most overhead we have observed is less than 15%. Of course, in larger



scenarios, the difference could be larger. Yet, we expect SP-COMBO to continue to do
very well, at a much lower computational cost.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40

O

l

SP-COMBO
OPT

Fig. 8: O versusl, comparing SP-COMBO
and OPT.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30 35 40 45 50

O
[S

P
-N

H
O

P
]/O

[S
P

-C
O

M
B

O
]

l

NI-R
NI-Xmod,σ=30
NI-Xmod,σ=20
NI-Xmod,σ=10

NI-X

Fig. 9: Relative overhead of SP-NHOP over
SP-COMBO, with different NI submodels.

5.4 Subscription geographical correlation

Figure 9 plots the overhead ratio of SP-NHOP over SP-COMBO, against average inter-
val lengthl. The curves use different submodels of the Number Intervals subscription
model. The y value indirectly reflects the advantage of subscription-aware algorithms,
represented by SP-COMBO, over non subscription-aware ones, represented by SP-
NHOP. A higher y value implies a bigger performance gap between them. In general,
performance difference magnifies asl increases, confirming the trend we had observed
in Figure 6.

However, Figure 9 shows a surprising phenomenon that ran contrary to our intuition.
We had originally expected the performance advantage of SP-COMBO to be bigger
(larger y values) with the NI-X model than with NI-R. Since subscriptions are geo-
graphically correlated in NI-X, nodes closer together would also share more common
interests. It seemed to us that the subscription-aware SP-COMBO should better be able
to take advantage of the situation, resulting in a bigger edge over SP-NHOP. However,
Figure 9 shows exactly the opposite. We explain this phenomenon next.

With geographical correlation of subscriptions, such as that provided by NI-X, a
node has a much higher chance of finding that nodes around it share more or less the
same interests as itself. This is a valid assumption for certain applications, e.g., one
where a user subscribes to events pertaining to its local surroundings. Since the set of
neighboring nodes is also where a node “shops” for a parent, geographical correlation
increases the chance that a node’s subscription overlaps with that of its parent. How-
ever, although this correlation results in less total overhead in the PST, surprisingly, it
alsoreducesthe advantage of a subscription-aware algorithm such as SP-COMBO over
a non subscription-aware algorithm such as SP-NHOP. In other words, SP-NHOP is
actually able to benefit more from geographical correlation. The reason is that, because
there is no longer as much variation between the subscriptions of a node’s neighbors,
(after all, they are all similar to this node’s) the potential benefit that can be reaped by



a subscription-aware algorithm diminishes. In particular, picking a candidate with the
fewest hop to the root is often just the right thing to do.

The above explanation is further validated by the three middle curves in Figure 9,
which represent NI-Xmod submodels with differentσ parameters. An NI-Xmod model
is the same as NI-X except that the geographical correlation is diluted by subjecting
the subscriptions to an arbitrary perturbation with standard deviationσ. The bigger the
σ, the less geographical correlation there remains. As predicted by our hypothesis, the
advantage of subscription-aware algorithms increases (larger y values) with decreas-
ing amount of geographical correlation (largerσ). Moreover, as correlation gradually
diminishes, the curve for NI-Xmod approaches that of a random model like NI-R.

5.5 Event distribution skew

An event distribution is used by certain SHOPPARENT algorithms such as SP-COMBO
to calculate the routing metric, which in turn determines the best parent to attach to.
So far our simulations have assumed that the projected event distribution is the same
as the real published one. Next we study the resilience of SP-COMBO to skew in the
projected event distribution, which can occur if, e.g., the characteristics of published
events suddenly changes.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
/O

[S
P

-C
O

M
B

O
]

σε

SP-NHOP
SP-COMBOerr

Fig. 10: Relative overhead of SP-COMBOerr
and SP-NHOP over SP-COMBO vs.σε, the
standard deviation of injected error.

We introduce a variation of SP-
COMBO called SP-COMBOerr, which
is the same as SP-COMBO except that
we deliberately inject a random error to
the event distribution projection. Specifi-
cally, if the real value of anO∗

k(E) term
is v, we will substitutev(1 + ε) with a
randomε. The percentage error,ε, fol-
lows a normal distribution with mean 0,
and standard deviationσε. For example,
if σε = 0.1, there is only a 68% chance5

that ε will lie between [−0.1, 0.1], and
thus the actual value used to calcu-
late the routing metric will be between
[0.9v, 1.1v].

Figure 10 plots the relative overhead
of SP-COMBOerr over SP-COMBO,
againstσε. We also plot SP-NHOP over
SP-COMBO for comparison. Whenσε =

0, there is no error, hence no difference between SP-COMBOerr and SP-COMBO (y
value is 1). At small errors, the curve rises slowly withσε. At σε = 0.2, e.g., SP-
COMBOerr is still within 10% of SP-COMBO. The two curves cross at aboutσε = 0.4.
Therefore, for a relatively wide range of errors (σε between 0 and 0.4), SP-COMBO out-
performs SP-NHOP. That is, even when expected traffic predictions can be off quite a
bit, the predictions can still be helpful. On the other hand, ifσε > 0.4, one is better off
switching to SP-NHOP instead. Note that, however, even if significantly incorrect infor-
mation is used at first with SP-COMBO, adaptive prediction methods can allow a node

5 According to definition of standard deviation.



to detect shifts in event distribution based on observed events, and the SHOPPARENT

algorithm enables a node to easily switch to a better parent when conditions change.

5.6 System dynamics

We conducted experiments to gauge how the algorithms cope with dynamism in the
wireless ad-hoc environment, such as node mobility and failures. Here we report on our
experience with mobility, as the conclusion is similar for other types of tests. We envi-
sion a mobility pattern where a node can move around occasionally, but it settles down
for a period of time between moves. The settled period should be long enough (e.g., on
the order of minutes) to allow the publish/subscribe tree to adapt and stabilize, and also
to allow the nodes to take advantage of the new efficient tree. We do not consider, for
example, scenarios where most of the nodes move constantly at high speeds. In fact,
it has been shown in multicast research [12] that flooding usually is the most effective
method of communication given such “fast mobility.”

For our experiment, after all the nodes have joined the system and the tree has stabi-
lized, we randomly select one node and move it to another random location. Naturally,
while the move is taking place, old links time out, and some nodes will likely miss
events as a result. Event losses are acceptable since, as stated before, we only deal with
best-effort algorithms. For each experiment, we try to answer the following questions:
whether the system eventually stabilizes after the node moves to its new location; how
long it takes the system to converge to a new PST; and whether an efficient new PST is
always formed.

We inject mobility as described above to a range of systems with different parame-
ters. We find that in all cases the new system eventually converges to a new PST. The
stabilization time varies, but is roughly proportional to the timeout period in SHOPPAR-
ENT (i.e., the time it takes for a child to realize that the parent has gone out of range),
and also to the distance between the node in question and the root (i.e., the more hops
the node is from the root, the longer it takes the PST to recover). Additionally, we are
able to verify that in all cases, the overhead of the newly formed PST is comparable to
that if the mobile node had originally been placed at its new location when it joined the
system. In summary, we find that our algorithms perform very well in our target mobile
environment.

6 Related work

Our work combines a publish/subscribe mechanism with wireless ad-hoc networking.
Naturally, we draw upon previous research in both areas. Yet, our work also differs from
each in significant ways.

Publish/subscribe systems [13,14,10,11,15,16] have been researched and developed
for many years, but as far as we know in fixed networks. Making them work in a wire-
less ad-hoc environment introduces new challenges [1,2,3]. Our system differs from
fixed network systems in two major aspects. First, our algorithms take full advantage
of the broadcast nature of wireless radio by building directly on top of lower level radio
broadcast primitives. Traditional publish/subscribe systems are often built as overlay
server networks over an IP-like networking infrastructure, which allows them to as-
sume universal connectivity between any two nodes in the system, and at a roughly



constant cost. Although this assumption is reasonable in fixed networks, it is wasteful
in our environment because it hides the fact that a unicast is actually implemented with
multi-hop broadcasts. Second, the goal of our system is different from most traditional
publish/subscribe systems. Our algorithm tries to find the most “efficient” tree so that
the least amount of work is needed to publish events. This is a direct result of the char-
acteristics of a wireless ad-hoc environment. In contrast, publish/subscribe systems in
the past have not traditionally been too concerned with this measure because of the
relative low cost of communication in a fixed network.

Multicast routing protocols for traditional networks have been well studied. In re-
cent years protocols have also been proposed for multicast in wireless ad-hoc networks
[8]. Due to the “many-cast” nature of publish/subscribe, it is not surprising that our
algorithm resembles some of these protocols to a certain extent, especially tree based
protocols without unicast support [6]. The optimality criterion of [5] resembles to a
certain extent the metric defined in this paper, while in many other cases, especially
in fixed networks, the efficiency of the resulting multicast tree has not been a primary
design consideration. While the combination of the publish/subscribe paradigm and
wireless ad-hoc networks has allowed our algorithm to be simpler in certain respects
(e.g., every node participates in publish/subscribe), it has also raised new challenges
which have not been fully addressed in prior work. For example, our algorithm is able
to take advantage of information unique to the publish/subscribe paradigm, such as user
subscription information. As our simulation shows, subscription-aware algorithms can
have significant benefits in certain situations.

Some ad-hoc multicast protocols use a mesh-based approach instead of tree-based,
to increase route reliability. These systems trade efficiency of the routing structure for
resilience in a highly dynamic and mobile environment. Our algorithms can deal with
mobility as shown in Section 5.6, but we are not focusing on “unstable” systems. That
is, our target operating environment is one with occasional reconfigurations, followed
by periods of stability. In such an environment, our experiments have shown that a good
routing tree can yield significant advantages.

Distributed sensor networks [4,17] coordinate a large array of small wireless sensors
that monitor and interact with the physical world. Because such systems face many of
the same challenges as our target environment, such as energy constraints and lack of
existing infrastructure, their solutions have similarities with our algorithms.

7 Conclusion

In this paper we have studied the tree construction problem in wireless ad-hoc pub-
lish/subscribe systems. We have proposed a distributed algorithm SHOPPARENT, and
developed an evaluation metric, total overhead of a publish/subscribe tree, to study it.
We have found via simulations that our algorithm, despite being a non-optimal greedy
algorithm, works quite well in normal situations. We have also found that subscription-
aware variants of the algorithm give further performance improvements by considering
user subscription information during tree construction. Furthermore, the effectiveness
of this subscription-awareness depends on multiple factors such as the overall amount
of overlap between user subscriptions, and the existence of geographical correlation.



References

1. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile enviroment. In: Proceedings
of the Second ACM International Workshop on Data Engineering for Wireless and Mobile
Access. (2001) 27–34

2. Cugola, G., Nitto, E.D., Picco, G.P.: Content-based dispatching in a mobile environment. In:
Workshop su Sistemi Distribuiti: Algoritmi, Architetture e Linguaggi. (2000)

3. Meier, R., Cahill, V.: STEAM: Event-based middleware for wireless ad hoc networks. In:
Proceedings of the International Workshop on Distributed Event-Based Sytems. (2002) 639–
644

4. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable coor-
dination in sensor networks. In: Proceedings of the Fifth Annual ACM/IEEE International
Conference on Mobile Computing and Networking. (1999) 263–270

5. Lim, H., Kim, C.: Multicast tree construction and flooding in wireless ad hoc networks. In:
Proceedings of the 3rd ACM International Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems. (2000) 61–68

6. Wu, C., Tay, Y., C.-K.Toh: Ad hoc Multicast Routing protocol utilizing Increasing id-
numberS (AMRIS) functional specification. Internet Draft (1998)

7. Garcia-Molina, H., Kogan, B.: An implementation of reliable broadcast using an unreli-
able multicast facility. In: Proceedings of the 7th IEEE Symposium on Reliable Distributed
Systems. (1988) 101–111

8. Lee, S.J., Su, W., Hsu, J., Gerla, M., Bagrodia, R.: A performance comparison study of
ad hoc wireless multicast protocols. In: Proceedings of the IEEE Conference on Computer
Communications (INFOCOM). (2000) 565–574

9. Kantor, B., Lapsley, P.: Network News Transfer Protocol: A proposed standard for the
stream-based transmission of news. Request for Comments: 977 (1986)

10. Banavar, G., Kaplan, M., Shaw, K., Strom, R.E., Sturman, D.C., Tao, W.: Information flow
based event distribution middleware. In: Proceedings of the 1999 ICDCS Workshop on
Electronic Commerce and Web-Based Applications. (1999)

11. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressiveness in an
Internet-scale event notification service. In: Proceedings of the 19th Annual ACM Sympo-
sium on Principles of Distributed Computing. (2000) 219–227

12. Ho, C., Obraczka, K., Tsudik, G., Viswanath, K.: Flooding for reliable multicast in multi-hop
ad hoc netowrks. In: Proceedings of the 3rd International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications (DIAL-M’99). (1999) 64–71

13. Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The Information Bus - an architecture for exten-
sible distributed systems. Operating Systems Review27.5(1993) 58–68

14. Segall, B., Arnold, D.: Elvin has left the building: A publish/subscribe notification service
with quenching. In: Proceedings of the 1997 Australian UNIX Users Group Technical Con-
ference. (1997) 243–255

15. TIBCO Software Inc.: TIBCO Rendezvous. (http://www.tibco.com/solutions/
products/active_enterprise/rv/ )

16. Cabrera, L.F., Jones, M.B., Theimer, M.: Herald: Achieving a global event notification ser-
vice. In: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems (HotOS-
VIII). (2001)

17. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Proceedings of the
2nd International Conference on Mobile Data Management. (2001) 3–14


