CS109A Notes for Lecture 2/12/96

Assignments With Replacements

- We are given n "items," to each of which we must assign one of k "values."
 - □ Each value may be used any number of times from 0 up.
 - \square Let W(n,k) be the number of ways.
- How many different ways may we assign values to the items?
 - □ "Different ways" means that one or more of the items get different values.

Basis: W(1,k) = k (assign the one item any of k values.

Induction: With n+1 items, assign the first in k ways, and the remaining n in W(n,k) ways.

• Recurrence:

$$W(1,k) = k$$

 $W(n+1,k) = k \times W(n,k)$

• k is "carried along"; induction is really on n, as if it were

$$T(1) = k$$

 $T(n) = k \times T(n-1)$

• Easy solution: $T(n) = k^n$.

Example: Are there more strings of length 5 built from three symbols or strings of length 3 built from five symbols?

- Consider strings of length 5 whose positions are chosen independently from symbols 0, 1, and 2.
 - \square Values = $\{0,1,2\}$ and "items" = the five positions.
 - \square Number of strings = $3^5 = 243$.

- Consider strings of length 3 with positions chosen independently from symbols 0, 1, 2, 3, and 4.
 - Values = $\{0, 1, 2, 3, 4\}$; "items" = three positions.
 - \square Number of strings = $5^3 = 125$.

Permutations

Suppose we are starting a Scrabble game with a rack of 7 different letters (tiles). In how many different ways might we form a 7-letter word (sequence of letters, regardless of whether it is a legal word)?

- We can pick the first letter to be any of the 7 tiles.
- For each choice of first letter, there are 6 choices of second letter, or 42 choices for the first 2 letters.
- Similarly, for each of these 42 choices there are 5 choices of third letter, and so on.
- Total number of choices = $7 \times 6 \times 5 \times \cdots \times 2 \times 1 = 7!$.
- In general, the orders (permutations) of n items is n!.
 - ☐ Inductive proof in book.

Ordered Selections

Suppose we want to begin the Scrabble game with a 4-letter word. In how many ways might we form the word from our 7 distinct tiles?

- The first letter is any of 7 tiles.
- For each choice of first letter there are 6 choices of second.
- For each choice of 1-2, there are 5 choices of third letter.
- For each choice of 1-2-3 there are 4 choices of fourth letter.

- Thus, there are $7 \times 6 \times 5 \times 4 = 840$ words of 4 letters out of 7.
- General rule: $\Pi(n,m)$, the number of ways to pick a sequence of m things out of n, is $n \times (n-1) \times (n-2) \times \cdots \times (n-m+1)$, i.e., the product of m integers from n downward.
 - \square An equivalent formula: n!/(n-m)!.

Combinations

Suppose we give up trying to make a word and want to throw 4 of our 7 tiles back in the pile.

- Order the 4 selected tiles in 7!/(7-4)! = 840 ways as above.
- However, the same 4 tiles are selected in as many ways as we can order 4 tiles: 4! = 24. Thus, the number of different choices of 4 tiles out of 7, ignoring the order of selection, is 7!/((7-4)!4!) = 7!/(3!4!) = 35.
- General rule: We can choose m items out of n, ignoring order of selection, in n!/((n-m)!m!) ways.
 - \square This function is usually written $\binom{n}{m}$ and spoken "n choose m."

A Recursive Definition for $\binom{n}{m}$

Key idea: If we want to choose m things out of n, we can either take or reject the first item.

- If we take the first, we can complete the choice by picking any m-1 of the remaining n-1.
 - \square We can do so in $\binom{n-1}{m-1}$ ways.
- If we reject the first item we must take any m out of the remaining n-1.
 - \square Do so in $\binom{n-1}{m}$ ways.
- Thus, we have an inductive definition of $\binom{n}{m}$:

Basis: $\binom{n}{0} = \binom{n}{n} = 1$ for all n.

• i.e., there is only one way to choose none or all of n elements.

Induction: $\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$ for 0 < m < n.

• The induction parameter is a little tricky: technically it is m(n-m), which is 0 for the basis (only) and decreases in the inductive step.

Inductive Definition = Direct Definition

- Use c(n,m) for the inductively defined $\binom{n}{m}$.
- Proof is a complete induction on m(n-m) that c(n,m) = n!/((n-m)!m!).

Basis: If m(n-m)=0 then m=0 or m=n.

- If m = 0, then n!/((n-m)!m!) = n!/n! = 1 = c(n,0).
 - \square Note 0! = 1 is the accepted definition.
- Similarly, if $m=n, n!/\big((n-m)!m!\big)=n!/n!=1=c(n,n).$

Induction: We know c(n,m) = c(n-1,m-1) + c(n-1,m) (inductive definition).

• Since the induction parameter m(n-m) is less in both terms on the right than on the left, we may assume

$$c(n-1,m-1) = (n-1)!/((n-m)!(m-1)!)$$

 $c(n-1,m) = (n-1)!/((n-m-1)!m!)$

- \square Adding the left sides: c(n,m).
- \square Adding right sides: n!/(n-m)!m!).