
CS109B Notes for Lecture 4/28/95Why Grammars?� Useful for describing programming languages.� First great use of a theory to design bettersoftware | a multi-person-year job (parsingin original Fortran compiler) became an af-ternoon's work using tools like YACC.GrammarsA notation for inductive de�nition of certain lan-guages.� Syntactic categories = symbols that representone of perhaps several recursively de�ned lan-guages.Denoted by triangular brackets and a de-scriptive term, e.g., <exp> for the syn-tactic category of strings that are arith-metic expressions.� Terminals = symbols that may appear in thestrings of the language(s) de�ned by the syn-tactic category(ies).Represented by characters or italicwords, e.g., 0 or digit.� Productions = rules about how strings of ter-minals in the language of one SC are formedfrom constant strings and strings in certainSC's by concatenation.Form is head ! body. head is a SC andbody is a sequence of zero or more termi-nals and SC's.Example: The gross structure of ML matchescan be described by the following grammar.(1) <match> ! <pat exp> | <match>(2) <match> ! <pat exp>(3) <pat exp> ! pattern => exp1

� A more detailed description would makepattern and exp be SC's and give them suit-able productions.LanguagesEach SC de�nes a language. These languages arede�ned recursively by:Basis: If SC A is the head of a production withonly terminals in the body, then the body is inL(A).Induction: Consider every production with atleast one SC in its body. Replace the SC's of thebody by strings known already to be in their lan-guage(s) in all possible ways.� Each resulting string is in the language of thehead.Example: For ML match grammar:Basis: (Round 1) The string \pattern => exp" (astring of length 4) is in L(<pat exp>) by produc-tion (3).Induction: Round 2: That string is also inL(<match>) by production (2). Production (1)yields nothing.Round 3: Production (1) yieldspattern => exp | pattern => expfor L(<match>), and so on.� In round i, production (1) yields forL(<match>) a string with i � 1 pattern-expression pairs and i� 2 bars.Class ProblemWe could de�ne the language consisting of only thestring 01000 (one thousand 0's) by a single produc-tion <goal> ! 00� � �0 (1000 of them)Can you propose a grammar that can be writtendown more succinctly, even if it is more \com-plex"? 2

