
CS109A Notes for Lecture 1/24/96Proving Recursive Programs Work� When a program is recursive, we can often�nd a natural inductive proof that it works.The induction is often on the number ofrecursive calls that must be made by agiven call to the recursive function | orsome equivalent parameter.Example: Let's consider our recursive binary-converter:void convert(int i) {(1) if(i>0) {(2) convert(i/2);(3) putchar('0' + i%2);}}Statement to be proved:S(i): convert produces the binary represen-tation of integer i � 0.Note that � is the correct binary repre-sentation of 0 in this context.Basis: i = 0. The test of line (1) fails, so � isprinted.Induction: Assume S(j) for 0 � j < i and proveS(i) for i � 0.Note, we are breaking our habit of prov-ing S(i + 1) from smaller cases; but itdoesn't matter whether we call the nextcase to be proven i + 1 or i.� If i is even, say i = 2j, then convert printsthe binary representation of j at line (2) fol-lowed by 0 at line (3).Appending the �nal 0 multiplies thevalue printed by 2, which gives the rep-resentation of 2j, or i.1



� If i is odd, say i = 2j + 1, then line (2) againprints the binary representation of j (becausei/2 throws away the remainder), and line (3)prints 1.Appending 1 has the e�ect of multiplyingthe value printed by 2 and then adding1. Again, the result is i, since i = 2j + 1in this case.SortingTo sort a list = to reorder its elements so eachprecedes the next according to some ordering �.That is, (a1; a2; : : : ; an) is sorted ifa1 � a2 � a3 � � � � � anMergesortA recursive sorting algorithm:Basis: A list of length 1 is already sorted.Induction: For lists of � 1 element1. Split the list into two equal-as-possible parts.2. Recursively sort each part.3. Merge the results by repeatedly pulling thesmaller element from the fronts of the twosorted lists.� Mergesort is the preferred method for exter-nal sorting (sorting of lists so large that disksmust be used).Example: (3; 1; 4; 1; 5; 9; 2; 6).1. Split, say (3; 1; 4; 1) and (5; 9; 2; 6).2. Sort recursively (details omitted): (1; 1; 3; 4)and (2; 5; 6; 9).3. Merge: (1; 1; 2; 3; 4; 5; 6; 9).SplittingWe could split in many ways, e.g.2



1. Count the list; say n elements. Put the �rstn=2 in one sublist and the remainder in theother.2. Iteratively \deal" the elements to the two sub-lists, keeping track of which list gets the nextelement.3. Both FCS and EMLP give a recursive algo-rithm that deals the elements two at a time.This approach avoids having to remember the\state" (whose turn it is).Basis: If there are 0 elements, do nothing. Ifthere is 1 element, give it to the �rst sublist.Induction: If there are n � 2 elements, deal oneto each sublist and recursively split the remainingn� 2 elements.MergingBasis: If one list is empty, the other list is thesorted result.Induction: If neither list is empty, pick thesmaller of the head elements. The result is theselected element followed by the result of mergingthe remaining lists.Example:List1 List2 Result(1; 1; 3; 4) (2; 5; 6; 9) �(1; 3; 4) (2; 5; 6; 9) (1)(3; 4) (2; 5; 6; 9) (1; 1)(3; 4) (5; 6; 9) (1; 1; 2)(4) (5; 6; 9) (1; 1; 2; 3)� (5; 6; 9) (1; 1; 2; 3; 4)� � (1; 1; 2; 3; 4; 5; 6; 9)
3


