CS109A Notes for Lecture 1/24/96

Proving Recursive Programs Work

¢ When a program is recursive, we can often
find a natural inductive proof that it works.

O The induction is often on the number of
recursive calls that must be made by a
given call to the recursive function — or
some equivalent parameter.

Example: Let’s consider our recursive binary-
converter:

void convert(int i) {
(1) i£(i>0) {
(2) convert(i/2);
(3) putchar(?0’ + i%2);

Statement to be proved:

S(i): convert produces the binary represen-
tation of integer ¢ > 0.

O Note that € is the correct binary repre-
sentation of 0 in this context.

Basis: 7 = 0. The test of line (1) fails, so € is
printed.

Induction: Assume S(j) for 0 < j < ¢ and prove
S(i) for ¢ > 0.

O Note, we are breaking our habit of prov-
ing S(¢ + 1) from smaller cases; but it
doesn’t matter whether we call the next
case to be proven i + 1 or 1.

e If ¢ is even, say ¢ = 2j, then convert prints
the binary representation of j at line (2) fol-
lowed by 0 at line (3).

O Appending the final 0 multiplies the
value printed by 2, which gives the rep-
resentation of 27, or 1.

If 7 is odd, say ¢ = 2j + 1, then line (2) again
prints the binary representation of j (because
i/2 throws away the remainder), and line (3)
prints 1.

O Appending 1 has the effect of multiplying
the value printed by 2 and then adding
1. Again, the result is 7, since 1 =25 + 1
in this case.

Sorting

To sort a list = to reorder its elements so each

precedes the next according to some ordering <.
That is, (a1,a2,...,as) is sorted if

a; <az;<az<---<a,

Mergesort

A recursive sorting algorithm:

Basis: A list of length 1 is already sorted.

Induction: For lists of > 1 element

1.
2.

Split the list into two equal-as-possible parts.
Recursively sort each part.

Merge the results by repeatedly pulling the
smaller element from the fronts of the two
sorted lists.

Mergesort is the preferred method for ezter-
nal sorting (sorting of lists so large that disks
must be used).

Example: (3,1,4,1,5,9,2,6).

1. Split, say (3,1,4,1) and (5,9,2,6).

2. Sort recursively (details omitted): (1,1,3,4)
and (2,5,6,9).

3. Merge: (1,1,2,3,4,5,6,9).

Splitting

We could split in many ways, e.g.

1. Count the list; say n elements. Put the first
n/2 in one sublist and the remainder in the
other.

2. Iteratively “deal” the elements to the two sub-
lists, keeping track of which list gets the next
element.

3. Both FCS and EMLP give a recursive algo-
rithm that deals the elements two at a time.
This approach avoids having to remember the
“state” (whose turn it is).

Basis: If there are 0 elements, do nothing. If
there is 1 element, give it to the first sublist.

Induction: If there are n > 2 elements, deal one
to each sublist and recursively split the remaining
n — 2 elements.

Merging

Basis: If one list is empty, the other list is the
sorted result.

Induction: If neither list is empty, pick the
smaller of the head elements. The result is the
selected element followed by the result of merging
the remaining lists.

Example:
List1 List2 Result
(1,1,3,4) (2,5,6,9) —
(1,3,4) (2,5,6,9) (1)
(3,4) (2,5,6,9) (1,1)
(3,4) (5,6,9) (1,1,2)
(4) (5,6,9) (1,1,2,3)
— (5,6,9) (1,1,2,3,4)
— — (1,1,2,3,4,5,6,9)

