Overview of topics

- Clustering
 - Agglomerative
 - k-means
- Classification
 - Rule based
 - Support Vector Machines
 - Naive Bayes
- Finding communities (aka Trawling)
- Summarization
- Recommendation systems

Supervised vs. unsupervised learning

- Unsupervised learning:
 - Given corpus, infer structure implicit in the docs, without prior training.
- Supervised learning:
 - Train system to recognize docs of a certain type (e.g., docs in Italian, or docs about religion)
 - Decide whether or not new docs belong to the class(es) trained on

Why cluster documents

- Given a corpus, partition it into groups of related docs
 - Recursively, can induce a tree of topics
- Given the set of docs from the results of a search (say jaguar), partition into groups of related docs
 - semantic disambiguation

Agglomerative clustering

- Given target number of clusters k.
- Initially, each doc viewed as a cluster
 - start with n clusters;
- Repeat:
 - **while** there are $> k$ clusters, find the “closest pair” of clusters and merge them.

k-means

- At the start of the iteration, we have k centroids.
 - Need not be docs, just some k points.
 - Axes could be terms, links, etc...
- Loop
 - Each doc assigned to the nearest centroid.
 - All docs assigned to the same centroid are averaged to compute a new centroid;
 - thus have k new centroids.
Classification

- Given one or more topics, decide which one(s) a given document belongs to.
- Applications
 - Classification into a topic taxonomy
 - Intelligence analysts
 - Routing email to help desks/customer service

Accuracy measurement

- Confusion matrix

Image:

```
This (i, j) entry means 53 of the docs actually in topic i were put in topic j by the classifier.
```

Explicit queries

- Topic queries can be built up from other topic queries.

Classification by exemplary docs

- Feed system exemplary docs on topic (training)
- Positive as well as negative examples
- System builds its model of topic
- Subsequent test docs evaluated against model
 - decides whether test is a member of the topic

Vector Spaces

- Each training doc a point (vector) labeled by its topic
- Hypothesis: docs of the same topic form a contiguous region of space
- Define surfaces to delineate topics in space

Support Vector Machine (SVM)

- Quadratic programming problem
- The decision function is fully specified by training samples which lie on two parallel hyper-planes
Naive Bayes

Training
- Use class frequencies in training data for \(Pr[c] \).
- Estimate word frequencies for each word and each class to estimate \(Pr[w | c] \).

Test doc \(d \)
- Use the \(Pr[w | c] \) values to estimate \(Pr[d | c] \) for each class \(c \).
- Determine class \(c_j \) for which \(Pr[c_j | d] \) is maximized.

Content + neighbors’ classes

- Naïve Bayes gives \(Pr[c_j | d] \) based on the words in \(d \).
- Now consider \(Pr[c_j | N] \) where \(N \) is the set of labels of \(d \)'s neighbors. (Can separate \(N \) into in- and out-neighbors.)
- Can combine conditional probs for \(c_j \) from text- and link-based evidence.

Finding communities on the web

- not easy, since web is huge
- what is a “dense subgraph”?
- define \((i, j)\)-core: complete bipartite subgraph with \(i \) nodes all of which point to each of \(j \) others

Document Summarization

- Lexical chains: look for terms appearing in consecutive sentences.
- For each sentence \(S \) in the doc.
 \[f(S) = a \cdot h(S) - b \cdot t(S) \]
 where \(h(S) = \) total score of all chains starting at \(S \)
 and \(t(S) = \) total score of all chains covering \(S \), but not starting at \(S \)

Recommendation Systems

Recommend docs to user based on user’s context (besides the docs’ content).

Other applications:
- Re-rank search results.
- Locate experts.
- Targeted ads.