Topics

Link-based clustering
Enumerative clustering/trawling
Recommendation systems
Link-based clustering

- Given docs in hypertext, cluster into k groups.
- Back to vector spaces!
- Set up as a vector space, with axes for terms as well as for in- and out-neighbors.
Example

Vector of terms in \(d \)

<table>
<thead>
<tr>
<th>In-links</th>
<th>Out-links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0</td>
<td>0 0 0 1 1</td>
</tr>
</tbody>
</table>
Clustering

- Given vector space representation, run any of the clustering algorithms from lecture 8.
- Has been implemented on web search results.
- Other corpora: patents, citation structures.
In clustering, we partition input docs into clusters.

In trawling, we’ll enumerate subsets of the corpus that “look related”
– will discard lots of docs

Twist: will use purely link-based cues to decide whether docs are related
Trawling/enumerative clustering

- In hyperlinked corpora - here, the web
- Look for all occurrences of a linkage pattern
- Recall from hubs/authorities search algorithm:
Insights from hubs

Link-based hypothesis:
Dense bipartite subgraph \Rightarrow web community.
Communities from cores

- not easy, since web is huge
- what is a “dense subgraph”?
- define \((i,j)\)-core: complete bipartite subgraph with \(i\) nodes all of which point to each of \(j\) others
Random graphs inspiration

Every “large” enough “dense” bipartite graph “almost surely” has “non-trivial” core
e.g.,:
large = 3 by 10
dense = 50% edges
almost surely = 90% chance
non-trivial = 3 by 3
Approach

• Find all \((i,j)\)-cores \((3 \leq i \leq 10, \ 3 \leq j \leq 20)\).
• Expand each core into its full community.
Finding cores

• “SQL” solution: find all triples of pages such that intersection of their outlinks is at least 3? Too expensive.
• Iterative pruning techniques actually work!
Initial data & preprocessing

- Crawl, then extract links
- Work with potential fans: nodes with $\geq j$ non-nepotistic links
- Eliminate mirrors
- Represent URLs by $2 \times 32 = 64$-bit hash
- Can sort URL’s by either source or destination using disk-run sorting
Popular page elimination

- Don’t want “popular” communities (Yahoo!, Excite, DejaNews, webrings, …)
- Popular community has popular page(s)
- Define popular page: indegree ≥ 50
Main requirements

- Main memory conservation
- Few disk passes over data
Simple iterative pruning

- Discard all pages of in-degree $< i$ or out-degree $< j$.
- Repeat
- Reduces to a sequence of sorting operations on the edge list
Elimination/generation pruning

- pick a node a of degree 3
- for each a output neighbors x, y, z
- use an index on centers to output in-links of x, y, z
- intersect to decide if a is a fan
- at each step, either eliminate a page (a) or generate a core

a is part of a $(3, 3)$ core if and only if the intersection of inlinks of x, y, z is at least 3
Exercise

- Work through the details of maintaining the index on centers to speed up elimination-generation pruning.
Results after pruning

- Elimination/generation pruning yields >100K non-overlapping cores for small \(i, j\).
- 5M unpruned edges
 - small enough for post-processing by \(a priori\)
 - build \((i+1, j)\) cores from \((i, j)\) cores
Exercise

• Adapt the *a priori* algorithm to enumerating bipartite cores.
Results for cores

Number of cores found by Elimination/Generation

Number of cores found during postprocessing
Sample cores

- hotels in Costa Rica
- clipart
- Turkish student associations
- oil spills off the coast of Japan
- Australian fire brigades
- aviation/aircraft vendors
- guitar manufacturers
From cores to communities

- Use hubs/authorities algorithm without text query - use fans/centers as samples
- Augment core with
 - all pages pointed to by any fan
 * all pages pointing into these
 - all pages pointing into any center
 * all pages pointed to by any of these
Using sample hubs/authorities

Fan

Center
Costa Rican hotels and travel

- The Costa Rica Internet Directory
- Informatica Interna...rvice in Costa Rica
- Cocos Island Research Center
- Aero Costa Rica
- Hotel Tilawa - Home Page
- COSTA RICA BY INTER@MERICA
- tamarindo.com
- Costa Rica
- New Page 5
- The Costa Rica Internet Directory.
- Costa Rica, Zarpe Travel and Casa Maria
- Si Como No Resort Hotels & Villas
- Apartotel El Sesteo... de San José, Cos...
- Spanish Abroad, Inc. Home Page
- Costa Rica's Pura V...ry - Reservation ...
- YELLOW\RESPALDO\HOTELES\Orquide1
- Costa Rica - Summary Profile
- COST RICA, MANUEL A...EPOS: VILLA
- Hotels and Travel in Costa Rica
- Nosara Hotels & Res...els &
- Restaurants...
- Costa Rica Travel, Tourism &
- Resorts
- Association Civica de Nosara
- Untitled:
 http://www...ca/hotels/mimos.html
- Costa Rica, Healthy...t Pura Vida
- Domestic & International Airline
- HOTELES / HOTELS - COSTA RICA
- tourgems
- Hotel Tilawa - Links
- Costa Rica Hotels T...On line
- Reservations
- Yellow pages Costa ...Rica Export
- INFOHUB Costa Rica Travel Guide
- Hotel Parador, Manuel Antonio, Costa Rica
- Destinations
Muslim student orgs.

- USC Muslim Students...ation Islamic Server
- The University of O...a Domain Name Change
- Caltech Muslim Students Home Page
- Islamic Society of Stanford University
- University of Texas...nformation Center...
- CSUN Muslim Students Association homepage
- HUDA
- Islamic Gateway
- Muslim Students' As...iversity of Michigan
- About Islam and Muslims
- Carnegie Mellon Uni...m Students Home Page
- Bookstore: The Onli...slamic Books, Isl...n
- Islamic Texts and R... University at Bu...
- University of Warwick Islamic Society
- Muslim Students Ass...at Lehigh University
- MSA of CSU
- El Sagrado Corán
- Islamic Association... Palestine Home Page
- Kutkut - Islam
- Other MSAs and Organizations
- Other Resources rel...versity at Buffal...
- 777
- Huma's Mamalist of Islamic Links!
- Other MSAs
- ZUBAIR'S ISLAM PAGE
- MIDDLE EAST CONFLICTS
- Islamic Links at the Arabic Paper
- Middle East & Arab Hot Links
- MSA National: MSAs Home Page
- Islamic Page
- Info about Muslims (MSA @SUNY/Buffalo)
- Untitled: http://www...ev/mideast/islam.htm
- Aalim Fevens: Islam Home Page
- islam
- Links to MSAs
- THE ISLAM PAGE
Recommendation systems
Recommendation Systems

Recommend docs to user based on user’s context (besides the docs’ content).

Other applications:
 – Re-rank search results.
 – Locate experts.
 – Targeted ads.
Input

Past transactions from users:
- which docs viewed
- which products purchased
- pages bookmarked….
- explicit ratings (movies, books….)

Current context:
- browsing history
- search(es) issued

Explicit profile info:
- Role in an enterprise
- Demographic info
- Interest profiles
Example

U1 viewed d1, d2, d3.
U2 views d1, d2.
Recommend d3 to U2.
In an enterprise setting, recommend U1 to U2 as an expert.
U viewed d1, d2, d5.

Look at who else viewed d1, d2 or d5.

Recommend to U the doc(s) most “popular” among these users.
More formally

\[A = U \]

\[A_{ij} = 1 \text{ if user } i \text{ viewed doc } j. \]

\[AA^t : \text{Entries give } \# \text{ of docs viewed by pairs of users.} \]
Voting Algorithm

• Row i of AA^t: Vector whose j^{th} entry is the # of docs viewed by both i and j.
• Call this row r_i. e.g., (0, 7, 1, 13, 0, 2,)
• Then $r_i \cdot A$ is a vector whose k^{th} entry gives a vote count to doc k
 – emphasizes users who have high weights in r_i.
• Output doc(s) with highest vote counts.

What’s on the diagonal of AA^t?
Voting Algorithm - implementation issues

- Wouldn’t implement using matrix operations
 - use weight-propagation on data structures.
- Need to log and maintain “user views doc” relationship.
 - typically, log into database
 - update vote-propagating structures periodically.
- For efficiency, discard all but the heaviest weights in each r_i.
What good was the matrix formulation?

\[AA^t \] entries give us a similarity measure between users.

\[r_i \] has proximities from user \(i \) to the rest.

\[r_i \cdot A \] gives proximities from user \(i \) to the docs.
Need a more general formulation

• If a user is close to two docs d1 and d2, are the docs d1 and d2 close to each other?
• How do we combine different sources of content and context?
 – terms in docs
 – links between docs
 – users’ access patterns
 – users’ info.
Vector spaces again

Turn every entity into a vector.

Axes are terms, docs, user info …

e.g.,

– Some axes for terms
– One axis for each doc.
– Additional axes for user attributes like gender, enterprise role, etc.
Vector Space

Each doc represented by \(tf \times idf \) weights for terms, plus a 1 entry for its own axis, and 0’s elsewhere.

Users represented by 1’s for docs viewed, 0’s elsewhere. User posing a query: \(tf \times idf \) weights for terms.
Context with content

- Docs’ content captured in term axes.
- Other attributes (user behavior, current query etc.) captured in other axes.
- A probe consists of
 1: a vector v (say, a user vector plus a query)
 2: a type of vector to be retrieved (say, a doc)
- Result = vectors of chosen type closest to v
Implementation details

• Don’t really want to maintain this gigantic (and sparse) vector space
• Dimension reduction
• Fast near neighbors (of vectors from a given type)
• Incremental versions needed
Resources

 http://citeseer.nj.nec.com/272770.html
 http://citeseer.nj.nec.com/context/109312/0
 http://citeseer.nj.nec.com/agrawal94fast.html
 http://citeseer.nj.nec.com/context/843212/0