CS347
Lecture 12
May 21, 2001
©Prabhakar Raghavan

Topics
- Web characterization
- Research Problems

The Web: A directed graph
- Nodes = static web pages (1+ billion)
- Edges = static hyperlinks (~10 billion)
- Web graph = Snapshot of web pages and hyperlinks
- Sparse graph: ~7 links/page on average
- Focus on graph structure, ignore content

Questions about the web graph
- How big is the graph? How many links on a page (outdegree)? How many links to a page (indegree)?
- Can one browse from any web page to any other? How many clicks?
- Can we pick a random page on the web?
 - Search engine measurement.
Questions about the web graph

- Can we exploit the structure of the web graph for searching and mining?
- What does the web graph reveal about social processes which result in its creation and dynamics?
- How different is browsing from a "random walk"?

Why?

- Exploit structure for Web algorithms
 - Crawl strategies
 - Search
 - Mining communities
- Classification/organization
- Web anthropology
 - Prediction, discovery of structures
 - Sociological understanding

Web snapshots

- Altavista crawls (May 99/Oct 99/Feb 00)
- 220/317/500M pages
- 1.5/2.1B/5B hyperlinks
- Compaq CS2 connectivity server
 - back-link information
 - 10bytes/url, 3.4bytes/link, 0.15µs/access
 - given pages, return their in/out neighborhood

Algorithms

- Weakly connected components (WCC)
- Strongly connected components (SCC)
- Breadth-first search (BFS)
- Diameter
Challenges from scale

- Typical diameter algorithm:
 - number of steps ~ pages × links.
 - For 500 million pages, 5 billion links, even at a very optimistic 0.15 µs/step, we need ~4 billion seconds.
 Hopeless.
 - Will estimate diameter/distance metrics.

Scale

- On the other hand, can handle tasks linear in the links (5 billion) at a µs/step.
 - E.g., breadth-first search
 - First eliminate duplicate pages/mirrors.
 - Linear-time implementations for WCC and SCC.

May 1999 crawl

- 220 million pages after duplicate elimination.
- Giant WCC has ~186 million pages.
- Giant SCC has ~56 million pages.
 - Cannot browse your way from any page to any other
 - Next biggest SCC ~150K pages
- Fractions roughly the same in other crawls.

Tentative picture

- WCC 186M pages
- SCC 56M pages
- Disconnected debris 34M pages
Breadth-first search (BFS)

• Start at a page p
 – get its neighbors;
 – their neighbors, etc.
• Get profile of the number of pages reached by crawling out of p, as a function of distance d
• Can do this following links forwards as well as backwards

BFS experiment

• Start at 1000+ random pages
• For each start page, build BFS (reachability vs. distance) profiles going forwards, and backwards

Reachability

How many pages are reachable from a random page?

Net of BFS experiments

• BFS out of a page
 – either dies quickly (~100 pages reached)
 – “explodes” and reaches ~100 million pages
 • somewhat over 50% of starting pages
 – SCC pages ~25% of total, reach >56M pages
• Qualitatively the same following in- or out-links
Interpreting BFS expts

- Need another 100-56 = 44M pages reachable from SCC
 - gives us 100M pages reachable from SCC
- Likewise, need another ~44M pages reachable from SCC going backwards
- These together don’t account for all 186M pages in giant WCC.

Distance measurements

- For random pages \(p_1, p_2\):
 \(\Pr[p_1 \text{ reachable from } p_2] = \frac{1}{4}\)
- Maximum directed distance between 2 SCC nodes: >28
- Maximum directed distance between 2 nodes, given there is a path: > 900
- Average directed distance between 2 SCC nodes: ~16
- Average undirected distance: ~7

Exercise

- Given the BFS and component size measurements, how can we infer all of the above measurements?
Power laws on the Web

- Inverse polynomial distributions:
 \[\Pr[k] \sim c/k^\alpha \text{ for a constant } c. \]
 \[\Leftrightarrow \log \Pr[k] \sim c - \alpha \log k \]
- Thus plotting \(\log \Pr[k] \) against \(\log k \) should give a straight line (of negative slope).

In-degree distribution

Probability that a random page has \(k \) other pages pointing to it is \(\sim k^{-2.1} \) (Power law)

Out-degree distribution

Probability that a random page points to \(k \) other pages is \(\sim k^{-2.7} \)

Connected components

Largest WCC = 186M, SCC = 56M

Connected component sizes:
Other Web/internet power laws

- Rates of visits to sites
- Degrees of nodes in physical network

Resources

Open Problems

- Papers/prizes
- Money
- Difficulty

Computational bottlenecks

- If computation were not a limit, could we get better ranking in search results?
- Better classification?
- Better clustering?
- What does “better” mean?
Set intersection in search

- For query with AND of two terms, we retrieve and intersect their postings’ sets
 - Can do work disproportionately large compared to the size of the output.
- Is there a data structure that does better than this - without keeping a postings entry for each pair of terms?

Text query optimization

- Recommended query processing order in early lectures - simple heuristics
 - Infamous true/false question from midterm
- What can we do that’s more sophisticated but still fast in practice?

Practical nearest-neighbor search

- In high-dimensional vector spaces
 - Moderate preprocessing
 - Fast query processing
 - Nearly accurate nearest neighbors

Classification

- Saw several schemes (Bayes, SVM) for classifying based on exemplary docs.
- Can also automatically classify based on persistent queries.
- How can we combine the two?
- Issues:
 - Combined representation of topic.
 - UI design vs. representation.
Benchmarks

- Web IR - search/classification benchmarks.
- Benchmarks for measuring recommendation systems.

Taxonomy construction

- Metrics of human effort
 - how much human effort vs. accuracy
 - training by exemplary docs vs. persistent queries
 - UI effects
 - what is the ideal user environment for building taxonomies
- What does it take to get to 98+ % accuracy?
 - Combination of UI, algorithms, best practices

Summarization

- How do you summarize a set of docs?
 - Results of clustering/trawling/…
 - Visual vs. textual vs. combinations
- Measuring quality of summarization.

Corpus analysis

- Given a corpus, extract its significant themes
 - organize into a navigation structure
- Visualization of themes in corpus
- Power set: all subsets of docs in a corpus
 - some subsets are interesting - which ones?
 - how do you organize them for human consumption?
Intranets vs. internet

• How do intranet structures differ from internet structures?
 – Influence of policy on content creators.

Recurring themes

• Not an exact science
• Focus on end-user
 – who? why? how?
• Bend rules for progress
 – ignore performance to start with
 – think huge - power sets