Topics for the Day

- Query processing in distributed databases
 - Localization
 - Distributed query operators
 - Cost-based optimization

Query Processing Steps

- Decomposition
 - Given SQL query, generate one or more algebraic query trees

- Localization
 - Rewrite query trees, replacing relations by fragments

- Optimization
 - Given cost model + one or more localized query trees
 - Produce minimum cost query execution plan

Decomposition

- Same as in a centralized DBMS
- Normalization (usually into relational algebra)

Select A,C
From R Natural Join S
Where (R.B = 1 and S.D = 2) or (R.C > 3 and S.D = 2)

\[\sigma \ (R.B = 1 \lor R.C > 3) \land \ (S.D = 2) \]

\[
\begin{array}{c}
R \\
\cup \\
S
\end{array}
\]

Conjunctive normal form
 Decomposition

- Redundancy elimination
 \((S.A = 1) \land (S.A > 5) \Rightarrow \text{False}\)
 \((S.A < 10) \land (S.A < 5) \Rightarrow S.A < 5\)

- Algebraic Rewriting
 - Example: pushing conditions down

Localization Steps

1. Start with query tree
2. Replace relations by fragments
3. Push \(\cup\) up \& \(\pi, \sigma\) down (CS245 rules)
4. Simplify – eliminating unnecessary operations

Note: To denote fragments in query trees

Relation that fragment belongs to Condition its tuples satisfy

Example 1

\(\sigma_{E=3}\)

\(R\)

\(\sigma_{E=3}\)

\([R: E<10]\)

\([R: E\geq 10]\)

\(\sigma_{E=3}\)

\([R: E<10]\)

\([R: E\geq 10]\)

Example 2

\(R\)

\(S\)

\(A\)

\([R: A<5]\)

\([R: 5 \leq A \leq 10]\)

\([R: A>10]\)

\([S: A<5]\)

\([S: A \geq 5]\)
Rules for Horiz. Fragmentation

- $\sigma_{C_1[R: C_2]} \Rightarrow [R: C_1 \land C_2]$
- $[R: \text{False}] \Rightarrow \emptyset$
- $[R: C_1] \land [S: C_2] \Rightarrow [R \land S: C_1 \land C_2 \land R.A = S.A]$

In Example 1:
$\sigma_{E=3[R_2: E \geq 10]} \Rightarrow [R_2: E=3 \land E \geq 10]$
$\Rightarrow [R_2: \text{False}] \Rightarrow \emptyset$

In Example 2:
$[R: A<5] \land [S: A \geq 5]$
$\Rightarrow [R: \text{False} \land S.A \geq 5 \land R.A = S.A]$
$\Rightarrow [R: \text{False}] \Rightarrow \emptyset$

Example 3 – Derived Fragmentation

S’s fragmentation is derived from that of R.
Example 4 – Vertical Fragmentation

Rule for Vertical Fragmentation
- Given vertical fragmentation of $R(A)$:
 \[R_i = \Pi_{A_i}(R), \quad A_i \subseteq A \]
- For any $B \subseteq A$:
 \[\Pi_B(R) = \Pi_B \left[\bigcup_{i} R_i \mid B \cap A_i \neq \emptyset \right] \]

Parallel/Distributed Query Operations
- Sort
 - Basic sort
 - Range-partitioning sort
 - Parallel external sort-merge
- Join
 - Partitioned join
 - Asymmetric fragment and replicate join
 - General fragment and replicate join
 - Semi-join programs
- Aggregation and duplicate removal

Parallel/distributed sort
- Input: relation R on
 - single site/disk
 - fragmented/partitioned by sort attribute
 - fragmented/partitioned by some other attribute
- Output: sorted relation R
 - single site/disk
 - individual sorted fragments/partitions
Basic sort

- Given \(R(A,\ldots) \) range partitioned on attribute \(A \), sort \(R \) on \(A \)
- Each fragment is sorted independently
- Results shipped elsewhere if necessary

Range partitioning sort

- Given \(R(A,\ldots) \) located at one or more sites, not fragmented on \(A \), sort \(R \) on \(A \)
- Algorithm: range partition on \(A \) and then do basic sort

Selecting a partitioning vector

- Possible centralized approach using a “coordinator”
 - Each site sends statistics about its fragment to coordinator
 - Coordinator decides # of sites to use for local sort
 - Coordinator computes and distributes partitioning vector

- For example,
 - Statistics could be (min sort key, max sort key, # of tuples)
 - Coordinator tries to choose vector that equally partitions relation

Example

- Coordinator receives:
 - From site 1: Min 5, Max 9, 10 tuples
 - From site 2: Min 7, Max 16, 10 tuples
- Assume sort keys distributed uniformly within [min, max] in each fragment
- Partition \(R \) into two fragments

\[5 \quad k_i \quad 10 \quad 15 \quad 20 \]

What is \(k_0 \)?
Variations

- Different kinds of statistics
 - Local partitioning vector
 - Histogram

- Multiple rounds between coordinator and sites
 - Sites send statistics
 - Coordinator computes and distributes initial vector \(V \)
 - Sites tell coordinator the number of tuples that fall in each range of \(V \)
 - Coordinator computes final partitioning vector \(V_f \)

Parallel external sort-merge

- Local sort
- Compute partition vector
- Merge sorted streams at final sites

Parallel/distributed join

Input: Relations \(R, S \)

May or may not be partitioned

Output: \(R \bowtie S \)

Result at one or more sites

Partitioned Join

Join attribute \(A \)

Local join

Result: Works only for equi-joins
Partitioned Join

- Same partition function \(f \) for both relations
- \(f \) can be range or hash partitioning
- Any type of local join (nested-loop, hash, merge, etc.) can be used
- Several possible scheduling options. Example:
 - partition \(R \); partition \(S \); join
 - partition \(R \); build local hash table for \(R \); partition \(S \) and join
- Good partition function important
 - Distribute join load evenly among sites

Asymmetric fragment + replicate join

- Any partition function \(f \) can be used (even round-robin)
- Can be used for any kind of join, not just equi-joins

General fragment + replicate join

- All \(n \times m \) pairings of \(R, S \) fragments
- Asymmetric \(F+R \) join is a special case of general \(F+R \).
- Asymmetric \(F+R \) is useful when \(S \) is small.
Semi-join programs
• Used to reduce communication traffic during join processing
 • $R \bowtie S = (R \bowtie S) \bowtie S$
 • $= R \bowtie (S \bowtie R)$
 • $= (R \bowtie S) \bowtie (S \bowtie R)$

Example
\[
\begin{array}{c|c}
A & B \\
2 & a \\
10 & b \\
25 & c \\
30 & d \\
\end{array}
\quad \begin{array}{c|c}
R & C \\
3 & x \\
10 & y \\
15 & z \\
25 & w \\
32 & x \\
\end{array}
\]

\[
\Pi_{ABC}(S) = [2, 10, 25, 30]
\]

Compute $\Pi_{A}(S)\bowtie R \bowtie S$

Comparing communication costs
• Say R is the smaller of the two relations R and S
• $(R \bowtie S) \bowtie S$ is cheaper than $R \bowtie S$ if
 • size ($\Pi_{A}S$) + size ($R \bowtie S$) < size (R)
• Similar comparisons for other types of semi-joins
• Common implementation trick:
 – Encode $\Pi_{A}S$ (or $\Pi_{A}R$) as a bit vector
 – 1 bit per domain of attribute A

n-way joins
• To compute $R \bowtie S \bowtie T$
 – Semi-join program 1: $R' \bowtie S' \bowtie T$
 where $R' = R \bowtie S$ & $S' = S \bowtie T$
 – Semi-join program 2: $R'' \bowtie S' \bowtie T$
 where $R'' = R \bowtie S'$ & $S' = S \bowtie T$
 – Several other options
• In general, number of options is exponential in the number of relations
Other operations

- Duplicate elimination
 - Sort first (in parallel), then eliminate duplicates in the result
 - Partition tuples (range or hash) and eliminate duplicates locally
- Aggregates
 - Partition by grouping attributes; compute aggregates locally at each site

Example

<table>
<thead>
<tr>
<th>#</th>
<th>dept</th>
<th>sal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

sum(sal) group by dept

Aggregate during partitioning to reduce communication cost

Query Optimization

- Generate query execution plans (QEPs)
- Estimate cost of each QEP ($, time, …)
- Choose minimum cost QEP

- What’s different for distributed DB?
 - New strategies for some operations (semi-join, range-partition sort, …)
 - Many ways to assign and schedule processors
 - Some factors besides number of IO’s in the cost model
Cost estimation

- In centralized systems - estimate sizes of intermediate relations
- For distributed systems
 - Transmission cost/time may dominate
 - Account for parallelism
 - Data distribution and result re-assembly cost/time

Optimization in distributed DBs

- Two levels of optimization
- Global optimization
 - Given localized query and cost function
 - Output optimized (min. cost) QEP that includes relational and communication operations on fragments
- Local optimization
 - At each site involved in query execution
 - Portion of the QEP at a given site optimized using techniques from centralized DB systems

Search strategies

1. Exhaustive (with pruning)
2. Hill climbing (greedy)
3. Query separation

Exhaustive with Pruning

- A fixed set of techniques for each relational operator
- Search space = “all” possible QEPs with this set of techniques
- Prune search space using heuristics
- Choose minimum cost QEP from rest of search space
Example

\[R | S | T \]

\[\begin{align*}
R & \bowtie S & R \times T & S \bowtie R & S \bowtie T & T \bowtie S & T \times R \\
2 & 1 & 1 & 2 & 2 & 3 & 4
\end{align*} \]

1. Prune because cross-product not necessary
2. Prune because larger relation first

Hill Climbing

- Begin with initial feasible QEP
- At each step, generate a set \(S \) of new QEPs by applying ‘transformations’ to current QEP
- Evaluate cost of each QEP in \(S \)
- Stop if no improvement is possible
- Otherwise, replace current QEP by the minimum cost QEP from \(S \) and iterate

Example

\[R | S | T | V \]

- **Goal**: minimize communication cost
- **Initial plan**: send all relations to one site
 - To site 1: cost = 20 + 30 + 40 = 90
 - To site 2: cost = 10 + 30 + 40 = 80
 - To site 3: cost = 10 + 20 + 40 = 70
 - To site 4: cost = 10 + 20 + 30 = 60
- **Transformation**: send a relation to its neighbor

Local search

- **Initial feasible plan**
 - \(P_0 \): \(R (1 \rightarrow 4); S (2 \rightarrow 4); T (3 \rightarrow 4) \)
 - Compute join at site 4
- **Assume following sizes**: \(R \bowtie S \Rightarrow 20 \)
 - \(S \bowtie T \Rightarrow 5 \)
 - \(T \bowtie V \Rightarrow 1 \)
Next iteration

- P1: S (2 → 3); R (1 → 4); α (3 → 4)
 where α = S▷T
 Compute answer at site 4
- Now apply same transformation to R and α

Resources