Today’s topics

• Computing cosine-based ranking
• Speeding up cosine ranking
 – reducing the number of cosine computations
 • Union of term-wise candidates
 • Sampling and pre-grouping
 – reducing the number of dimensions
 • Random projection
 • Latent semantic indexing

Recall doc as vector

• Each doc j is a vector of $t_f \times i_d$ values, one component for each term.
• Can normalize to unit length.
• So we have a vector space
 – terms are axes
 – docs live in this space
 – even with stemming, may have 10000+ dimensions

Intuition

Postulate: Documents that are “close together” in vector space talk about the same things.
Cosine similarity

Cosine similarity of \(D_j, D_k \):

\[
\text{sim}(D_j, D_k) = \frac{\sum_{i=1}^{m} w_{ij} \times w_{ik}}{\sqrt{\sum_{i=1}^{m} w_{ij}^2} \times \sqrt{\sum_{i=1}^{m} w_{ik}^2}}
\]

Aka normalized inner product

Can also compute cosine similarity from a query (vector of terms, e.g., *truth forever*) to each document.

Exercises

- How would you augment the inverted index built in lectures 1-3 to support cosine ranking computations?
- Walk through the steps of serving a query.

Why use vector spaces?

- **Key:** A user’s query can be viewed as a (very) short document.
- Query becomes a vector in the same space as the docs.
- Can measure each doc’s cosine proximity to query \(\rightarrow \) ranking.

Efficient cosine ranking

- Ranking consists of computing the \(k \) docs in the corpus “nearest” to the query \(\Rightarrow k \) largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the \(k \) largest cosine values efficiently.
Computing a single cosine

- For every term i, with each doc j, store term frequency tf_{ij}.
 - Tradeoffs on whether to store term count, freq, or weighted by idf_i. (Coding possibilities.)
- Accumulate component-wise sum
 \[\sin(D_j, D_k) = \sum_{i} w_{ij} w_{ik} \]

More on speeding up a single cosine, later in this lecture.

Computing the k largest cosines: selection vs. sorting

- Typically we want to retrieve the top k docs (in the cosine ranking for the query)
 - not totally order all docs in the corpus
 - just pick off docs with k highest cosines.

Use heap for selecting top k

- Binary tree in which each node’s value > values of children
- Takes $2n$ operations to construct, then each of $k\log n$ “winners” read off in $2\log n$ steps.
- For $n=1M$, $k=100$, this is about 10% of the cost of sorting.

Bottleneck

- Still need to first compute cosines from query to each of n docs → several seconds for $n=1M$.
- Can select from only non-zero cosines; should be $<< 1M$.

Can we avoid this?

• Yes, but may occasionally get an answer wrong
 – a doc not in the top k may creep into the answer.

Term-wise candidates

• **Preprocess**: Pre-compute, for each term, its k nearest docs.
 – (Treat each term as a 1-term query.)
 – lots of preprocessing.
 – Result: “preferred list” for each term.

• **Search**:
 – For a t-term query, take the union of their t preferred lists - call this set S.
 – Compute cosines from the query to only the docs in S, and choose top k.

Exercises

• Fill in the details of the calculation:
 – Which docs go into the preferred list for a term?

• Devise a small example where this method gives an incorrect ranking.

Sampling and pre-grouping

• First run a pre-processing phase:
 – pick \sqrt{n} docs at random: call these *leaders*
 – For each other doc, pre-compute nearest leader
 • Docs attached to a leader: its *followers*;
 • Likely: each leader has ~ \sqrt{n} followers.

• Process a query as follows:
 – Given query Q, find its nearest *leader* L.
 – Seek k nearest docs from among L’s followers.
Visualization

Why use random sampling
- Fast
- Leaders reflect data distribution

General variants
- Have each follower attached to $a=3$ (say) nearest leaders.
- From query, find $b=4$ (say) nearest leaders and their followers.
- Can recur on leader/follower construction.

Exercises
- To find the nearest leader in step 1, how many cosine computations do we do?
- What is the effect of the constants a,b on the previous slide?
- Devise an example where this is likely to fail - we miss one of the k nearest docs.
 – Likely under random sampling.
Dimensionality reduction

• What if we could take our vectors and “pack” them into fewer dimensions (say 10000→100) while preserving distances?
• (Well, almost.)
 – Speeds up cosine computations.
• Two methods:
 – Random projection.
 – “Latent semantic indexing”.

Random projection onto \(k < m \) axes.

• Choose a random direction \(x_1 \) in the vector space.
• For \(i = 2 \) to \(k \),
 – Choose a random direction \(x_i \) that is orthogonal to \(x_1, x_2, \ldots x_{i-1} \).
• Project each doc vector into the subspace \(x_1, x_2, \ldots x_k \).

E.g., from 3 to 2 dimensions

\(x_1 \) is a random direction in \((t_1,t_2,t_3)\) space.
\(x_2 \) is chosen randomly but orthogonal to \(x_1 \).

Guarantee

• With high probability, relative distances are (approximately) preserved by projection.
• Pointer to precise theorem in Resources.
Computing the random projection

- Projecting n vectors from m dimensions down to k dimensions:
 - Start with $m \times n$ matrix of terms \times docs, A.
 - Find random $k \times m$ orthogonal projection matrix R.
 - Compute matrix product $W = R \times A$.
- jth column of W is the vector corresponding to doc j, but now in $k \ll m$ dimensions.

Cost of computation

- This takes a total of $k m n$ multiplications.
- Expensive - see Resources for ways to do essentially the same thing, quicker.
- Exercise: by projecting from 10000 dimensions down to 100, are we really going to make each cosine computation faster?

Latent semantic indexing (LSI)

- Another technique for dimension reduction
- Random projection was data-independent
- LSI on the other hand is data-dependent
 - Eliminate redundant axes
 - Pull together “related” axes
 - car and automobile

Notions from linear algebra

- Matrix, vector
- Matrix transpose and product
- Rank
- Eigenvalues and eigenvectors.
Overview of LSI

- Pre-process docs using a technique from linear algebra called **Singular Value Decomposition**.
- Have control over the granularity of this process:
 - create new vector space, details to follow.
- Queries handled in this new vector space.

Singular-Value Decomposition

- Recall $m \times n$ matrix of terms \times docs, A.
 - A has rank $r \leq m,n$.
- Define term-term correlation matrix $T=AA'$
 - A' denotes the matrix transpose of A.
 - T is a square, symmetric $m \times m$ matrix.
- Doc-doc correlation matrix $D=A'A$.
 - D is a square, symmetric $n \times n$ matrix.

Eigenvectors

- Denote by P the $m \times r$ matrix of eigenvectors of T.
- Denote by R the $n \times r$ matrix of eigenvectors of D.
- It turns out A can be expressed (decomposed) as $A = PQR'$
 - Q is a **diagonal** matrix with the eigenvalues of AA' in sorted order.

Visualization

$$A = PQR'$$
Dimension reduction

- For some $s << r$, zero out all but the s biggest eigenvalues in Q.
 - Denote by Q_s this new version of Q.
 - Typically s in the hundreds while r could be in the (tens of) thousands.
- Let $A_s = P Q_s R'$
- Turns out A_s is a pretty good approximation to A.

Visualization

\[
A_s = P Q_s R'
\]

The columns of A_s represent the docs, but in $s << m$ dimensions.

Guarantee

- Relative distances are (approximately) preserved by projection:
 - Of all $m \times n$ rank s matrices, A_s is the best approximation to A.
- Pointer to precise theorem in Resources.

Doc-doc similarities

- $A_s A_s^T$ is a matrix of doc-doc similarities:
 - the (j,k) entry is a measure of the similarity of doc j to doc k.

Semi-precise intuition

- We accomplish more than dimension reduction here:
 - Docs with lots of overlapping terms stay together
 - Terms from these docs also get pulled together.
- Thus *car* and *automobile* get pulled together because both co-occur in docs with *tires, radiator, cylinder*, etc.

Query processing

- View a query as a (short) doc:
 - call it row 0 of A_c
- Now the entries in row 0 of $A_c A_c^t$ give the similarities of the query with each doc.
- Entry $(0,j)$ is the score of doc j on the query.
- Exercise: fill in the details of scoring/ranking.

Resources

- Random projection theorem:
 http://citeseer.nj.nec.com/dasgupta99elementary.html
- Faster random projection:
 http://citeseer.nj.nec.com/frieze98fast.html
- Latent semantic indexing:
 http://citeseer.nj.nec.com/deerwester90indexing.html
- Books: MG 4.6, MIR 2.7.2.