Today’s topic

- Link-based ranking in web search engines
Web idiosyncrasies

• Distributed authorship
 – Millions of people creating pages with their own style, grammar, vocabulary, opinions, facts, falsehoods …
 – Not all have the purest motives in providing high-quality information - commercial motives drive “spamming”.
 – The open web is largely a marketing tool.
 • IBM’s home page does not contain computer.
More web idiosyncrasies

• Some pages have little or no text (gifs may embed text)
• Variety of languages, lots of distinct terms
 – Over 100M distinct “terms”!
• Long lists of links
• Size: >1B pages, each with ~1K terms.
 – Growing at a few million pages/day.
Two basic approaches

– Universal, query-independent ordering on all web pages (based on link analysis)
 • Of two pages meeting a (text) query, one will always win over the other, *regardless* of the query

– Query-specific ordering on web pages
 • Of two pages meeting a query, the relative ordering may vary from query to query
Query-independent ordering

- First generation: using link counts as simple measures of popularity.
- Two basic suggestions:
 - Undirected popularity:
 - Each page gets a score = the number of in-links plus the number of out-links (3+2=5).
 - Directed popularity:
 - Score of a page = number of its in-links (3).
Query processing

• First retrieve all pages meeting the text query (say *venture capital*).
• Order these by their link popularity (either variant on the previous page).
Spamming simple popularity

• *Exercise*: How do you spam each of the following heuristics so your page gets a high score?

• Each page gets a score = the number of in-links plus the number of out-links.

• Score of a page = number of its in-links.
Imagine a browser doing a random walk on web pages:

- Start at a random page
- At each step, go out of the current page along one of the links on that page, equiprobably

"In the steady state" each page has a long-term visit rate - use this as the page’s score.
Not quite enough

• The web is full of dead-ends.
 – Random walk can get stuck in dead-ends.
 – Makes no sense to talk about long-term visit rates.
Teleporting

• At each step, with probability 10%, jump to a random web page.
• With remaining probability (90%), go out on a random link.
 – If no out-link, stay put in this case.
Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?
Markov chains

- A Markov chain consists of \(n \) states, plus an \(n \times n \) transition probability matrix \(P \).
- At each step, we are in exactly one of the states.
- For \(1 \leq i, j \leq n \), the matrix entry \(P_{ij} \) tells us the probability of \(j \) being the next state, given we are currently in state \(i \).

\[P_{ii} > 0 \text{ is OK.} \]
Clearly, for all i, $\sum_{j=1}^{n} P_{ij} = 1$.

Markov chains are abstractions of random walks.

Exercise: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:
A Markov chain is **ergodic** if
- you have a path from any state to any other
- you can be in any state at every time step, with non-zero probability.

Not ergodic (even/odd).
Ergodic Markov chains

- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 - Steady-state distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn’t matter where we start.
Probability vectors

- A probability vector \(\mathbf{x} = (x_1, \ldots, x_n) \) tells us where the walk is at any point.
- E.g., \((000\ldots1\ldots000)\) means we’re in state \(i\).

More generally, the vector \(\mathbf{x} = (x_1, \ldots, x_n) \) means the walk is in state \(i\) with probability \(x_i\).

\[
\sum_{i=1}^{n} x_i = 1.
\]
Change in probability vector

- If the probability vector is $\mathbf{x} = (x_1, \ldots, x_n)$ at this step, what is it at the next step?
- Recall that row i of the transition prob. Matrix \mathbf{P} tells us where we go next from state i.
- So from \mathbf{x}, our next state is distributed as \mathbf{xP}.
Computing the visit rate

• The steady state looks like a vector of probabilities $\mathbf{a} = (a_1, \ldots, a_n)$:
 – a_i is the probability that we are in state i.

For this example, $a_1 = 1/4$ and $a_2 = 3/4$.
How do we compute this vector?

• Let \(\mathbf{a} = (a_1, \ldots, a_n) \) denote the row vector of steady-state probabilities.

• If we are our current position is described by \(\mathbf{a} \), then the next step is distributed as \(\mathbf{aP} \).

• But \(\mathbf{a} \) is the steady state, so \(\mathbf{a} = \mathbf{aP} \).

• Solving this matrix equation gives us \(\mathbf{a} \).
 – (So \(\mathbf{a} \) is the (left) eigenvector for \(\mathbf{P} \).)
Another way of computing a

- Recall, regardless of where we start, we eventually reach the steady state a.
- Start with any distribution (say $x = (10\ldots0)$).
- After one step, we’re at $x \cdot P$;
- after two steps at $x \cdot P^2$, then $x \cdot P^3$ and so on.
- “Eventually” means for “large” k, $x \cdot P^k = a$.
- Algorithm: multiply x by increasing powers of P until the product looks stable.
Pagerank summary

• Preprocessing:
 – Given graph of links, build matrix P.
 – From it compute a.
 – The entry a_i is a number between 0 and 1: the pagerank of page i.

• Query processing:
 – Retrieve pages meeting query.
 – Rank them by their pagerank.
 – Order is query-independent.
The reality

• Pagerank is used in google, but so are many other clever heuristics
 – more on these heuristics later.
Query-dependent link analysis

• In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
 – *Hub pages* are good lists of links on a subject.
 • e.g., “Bob’s list of cancer-related links.”
 – *Authority pages* occur recurrently on good hubs for the subject.
Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition - will turn this into an iterative computation.
The hope

Long distance telephone companies

Alice → AT&T
Alice → Sprint
Alice → MCI

Bob → AT&T
Bob → Sprint
Bob → MCI

Hubs

Authorities
High-level scheme

• Extract from the web a base set of pages that could be good hubs or authorities.
• From these, identify a small set of top hub and authority pages;
 – iterative algorithm.
Base set

• Given text query (say browser), use a text index to get all pages containing browser.
 – Call this the root set of pages.

• Add in any page that either
 – points to a page in the root set, or
 – is pointed to by a page in the root set.

• Call this the base set.
Visualization

Root set

Base set
Assembling the base set

- Root set typically 200-1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a connectivity server.
 - (Actually, suffices to text-index strings of the form `href="URL"` to get in-links to `URL`.)
Distilling hubs and authorities

- Compute, for each page x in the base set, a hub score $h(x)$ and an authority score $a(x)$.
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all $h(x), a(x)$;
- After iteration, output pages with highest $h()$ scores as top hubs; highest $a()$ scores as top authorities.
Iterative update

- Repeat the following updates, for all x:

\[
 h(x) \leftarrow \sum_{y \in \alpha} a(y)
\]

\[
 a(x) \leftarrow \sum_{x \in \alpha} h(y)
\]
Scaling

• To prevent the $h()$ and $a()$ values from getting too big, can scale down after each iteration.

• Scaling factor doesn’t really matter:
 – we only care about the relative values of the scores.
How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, $h()$ and $a()$ scores settle into a steady state!
 - proof of this comes later.

- In practice, ~5 iterations get you close to stability.
Japan Elementary Schools

Authorities

- The American School in Japan
- The Link Page
- Kids' Space
- "À é s—§'†ì¼¬ŠwZ'̃y
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
- welcome to Miasa E&J school
- http://www...p/~m_maru/index.html
- fukui haruyama-es HomePage
- Torisu primary school
- goo
- Yakumo Elementary,Hokkaido,Japan
- FUZOKU Home Page
- Kamishibun Elementary School...

Hubs

- schools
- LINK Page-13
- "ú−{,ïŠw Z
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...met and Education)
- http://www...iglobe.ne.jp/~IKESAN
- ,I,f,j ŇŠw Z,'U"N,P'g*"Œê
- OŠ—‘¬§ ŇŠ—“Œ ŇŠw Z
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese)
- Ň“i ŇŠw Z,Ïƒz [f fy [fW
- UNIVERSITY
- %oJ—³ ŇŠw Z DRAGON97-TOP
- Ň‰° a ŇŠw Z,T"N,P'gz [f fy [fW
- ¶ìµ°é¼ÅÇ ¥å¥Êå¡¼ ¥å¥Êå¡¼
Things to note

- Pulled together good pages regardless of language of page content.
- Use *only* link analysis after base set assembled
 - iterative scoring is query-independent.
- Iterative computation after text index retrieval - significant overhead.
Proof of convergence

• $n \times n$ adjacency matrix A:
 - each of the n pages in the base set has a row and column in the matrix.
 - Entry $A_{ij} = 1$ if page i links to page j, else $=0$.

$$
\begin{array}{c|ccc}
 & 1 & 2 & 3 \\
\hline
1 & 0 & 1 & 0 \\
2 & 1 & 1 & 1 \\
3 & 1 & 0 & 0 \\
\end{array}
$$
Hub/authority vectors

- View the hub scores $h()$ and the authority scores $a()$ as vectors with n components.
- Recall the iterative updates

$$h(x) \leftarrow \sum_{y \alpha x} a(y)$$

$$a(x) \leftarrow \sum_{y \alpha x} h(y)$$
Rewrite in matrix form

• $h = Aa$.
• $a = A^t h$.

Recall A^t is the transpose of A.

Substituting, $h = AA^t h$ and $a = A^t A a$.

Thus, h is an eigenvector of AA^t and a is an eigenvector of $A^t A$.

Resources

- MIR 13
- The Anatomy of a Large-Scale Hypertextual Web Search Engine
 - http://citeseer.nj.nec.com/brin98anatomy.html
- Authoritative Sources in a Hyperlinked Environment
 - http://citeseer.nj.nec.com/kleinberg97authoritative.html
- Hypersearching the Web
- Dubhashi resource collection covering recent topics
 - http://www.cs.chalmers.se/~dubhashi/Courses/intense00.html