Why cluster documents

- Given a corpus, partition it into groups of related docs
 - Recursively, can induce a tree of topics
- Given the set of docs from the results of a search (say *jaguar*), partition into groups of related docs
 - Semantic disambiguation

Results list clustering example

- **Cluster 1:**
 - Jaguar Motor Cars’ home page
 - Mike’s XJS resource page
 - Vermont Jaguar owners’ club
- **Cluster 2:**
 - Big cats
 - My summer safari trip
 - Pictures of jaguars, leopards, and lions
- **Cluster 3:**
 - Jacksonville Jaguars’ Home Page
 - AFC East Football Teams
What makes docs “related”?

- Ideal: semantic similarity.
- Practical: statistical similarity
 - We will use cosine similarity.
 - Docs as vectors.
 - For many algorithms, easier to think in terms of a distance (rather than similarity) between docs.
 - We will describe algorithms in terms of cosine distance

Recall doc as vector

- Each doc \(j \) is a vector of \(tf \times idf \) values, one component for each term.
- Can normalize to unit length.
- So we have a vector space
 - terms are axes
 - \(n \) docs live in this space
 - even with stemming, may have 10000+ dimensions

Intuition

Postulate: Documents that are “close together” in vector space talk about the same things.

Cosine similarity

Cosine similarity of \(D_j, D_k \):

\[
\text{sim}(D_j, D_k) = \frac{\sum_{i} w_{ij} \times w_{ik}}{\sqrt{\sum_{i} w_{ij}^2} \times \sqrt{\sum_{i} w_{ik}^2}}
\]

Aka normalized inner product.
Two flavors of clustering

- Given \(n \) docs and a positive integer \(k \), partition docs into \(k \) (disjoint) subsets.
- Given docs, partition into an “appropriate” number of subsets.
 - E.g., for query results - ideal value of \(k \) not known up front.
- Can usually take an algorithm for one flavor and convert to the other.

Cluster centroid

- **Centroid** of a cluster = average of vectors in a cluster - is a vector.
 - Need not be a doc.
- Centroid of \((1,2,3); (4,5,6); (7,2,6)\) is \((4,3,5)\).

Outliers in centroid computation

- Ignore outliers when computing centroid.
 - What is an outlier?
 - Distance to centroid > \(M \times \) average.

Agglomerative clustering

- Given target number of clusters \(k \).
- Initially, each doc viewed as a cluster
 - start with \(n \) clusters;
- Repeat:
 - **while** there are > \(k \) clusters, find the “closest pair” of clusters and merge them.
“Closest pair” of clusters

- Many variants to defining closest pair of clusters.
- Closest pair ⇔ two clusters whose centroids are the most cosine-similar.

Example; \(n=6, k=3 \)

Issues

- Have to discover closest pairs
 - compare all pairs?
 - \(n^3 \) cosine similarity computations.
 - Avoid: recall techniques from lecture 4.
 - points are changing as centroids change.
- Changes at each step are not localized
 - on a large corpus, memory management becomes an issue.

Exercise

- Consider agglomerative clustering on \(n \) points on a line. Explain how you could avoid \(n^3 \) distance computations - how many will your scheme use?
Hierarchical clustering

- As clusters agglomerate, docs likely to fall into a hierarchy of “topics” or concepts.

\[\begin{array}{c}
& d_1, d_2 \\
\rightarrow & d_3, d_4, d_5 \\
\end{array}\]

Different algorithm: k-means

- Iterative algorithm.
- More locality within each iteration.
- Hard to get good bounds on the number of iterations.

Basic iteration

- At the start of the iteration, we have \(k\) centroids.
 - Need not be docs, just some \(k\) points.
- Each doc assigned to the nearest centroid.
- All docs assigned to the same centroid are averaged to compute a new centroid;
 - thus have \(k\) new centroids.

Iteration example

- Docs
- Current centroids
Iteration example

- Docs
- New centroids

k-means clustering

- Begin with k docs as centroids
 - could be any k docs, but k random docs are better.
- Repeat Basic Iteration until termination condition satisfied.

Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations.
 - Centroid positions don’t change.

Does this mean that the docs in a cluster are unchanged?

Convergence

- Why should the k-means algorithm ever reach a fixed point?
 - A state in which clusters don’t change.
- k-means is a special case of a general procedure known as the EM algorithm.
 - Under reasonable conditions, known to converge.
 - Number of iterations could be large.
Exercise

- Consider running 2-means clustering on a corpus, each doc of which is from one of two different languages. What are the two clusters we would expect to see?
- Is agglomerative clustering likely to produce different results?

Multi-lingual docs

- Canadian/Belgian government docs.
- Every doc in English and equivalent French.
 - Cluster by concepts rather than language.
 - Cross-lingual retrieval.

k not specified in advance

- Say, the results of a query.
- Solve an optimization problem: penalize having lots of clusters
 - compressed summary of list of docs.
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters

k not specified in advance

- Given a clustering, define the Benefit for a doc to be the cosine similarity to its centroid
- Define the Total Benefit to be the sum of the individual doc Benefits.

Why is there always a clustering of Total Benefit?
Penalize lots of clusters

- For each cluster, we have a Cost C.
- Thus for a clustering with k clusters, the Total Cost is kC.
- Define the Value of a cluster to be:
 - Total Benefit - Total Cost.
- Find the clustering of highest Value, over all choices of k.

Back to agglomerative clustering

- In a run of agglomerative clustering, we can try all values of $k=n,n-1,n-2, \ldots 1$.
- At each, we can measure our Value, then pick the best choice of k.

Exercises

- Suppose a run of agglomerative clustering finds $k=7$ to have the highest Value amongst all k. Have we found the highest-Value clustering amongst all clusterings with $k=7$?

Using clustering in applications
Clustering to speed up scoring

- From Lecture 4, recall sampling and pre-grouping
 - Wanted to find, given a query Q, the nearest docs in the corpus
 - Wanted to avoid computing cosine similarity of Q to each of n docs in the corpus.

Sampling and pre-grouping (Lecture 4)

- First run a pre-processing phase:
 - pick \sqrt{n} docs at random: call these leaders
 - For each other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely each leader has $\sim \sqrt{n}$ followers.
- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek nearest docs from among L’s followers.

Instead of random leaders, cluster

- First run a pre-processing phase:
 - Cluster docs into \sqrt{n} clusters.
 - For each cluster, its centroid is the leader.
- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek nearest docs from among L’s followers.

Navigation structure

- Given a corpus, agglomerate into a hierarchy
- Throw away lower layers so you don’t have n leaf topics each having a single doc.
Navigation structure

- Deciding how much to throw away needs human judgement.
- Can also induce hierarchy top-down - e.g., use k-means, then recur on the clusters.
- Topics induced by clustering need human ratification.
- Need to address issues like partitioning at the top level by language.

Major issue - labelling

- After clustering algorithm finds clusters - how can they be useful to the end user?
- Need pithy label for each cluster
 - In search results, say “Football” or “Car” in the jaguar example.
 - In topic trees, need navigational cues.
 - Often done by hand, a posteriori.

Labeling

- Common heuristics - list 5-10 most frequent terms in the centroid vector.
 - Drop stop-words; stem.
- Differential labeling by frequent terms
 - Within the cluster “Computers”, child clusters all have the word computer as frequent terms.
 - Discriminant analysis of centroids for peer clusters.

Supervised vs. unsupervised learning

- Unsupervised learning:
 - Given corpus, infer structure implicit in the docs, without prior training.
- Supervised learning:
 - Train system to recognize docs of a certain type (e.g., docs in Italian, or docs about religion)
 - Decide whether or not new docs belong to the class(es) trained on
Resources

- Good demo of results-list clustering:
 cluster.cs.yale.edu