Today’s topic

• Clustering documents
Why cluster documents

• Given a corpus, partition it into groups of related docs
 – Recursively, can induce a tree of topics
• Given the set of docs from the results of a search (say *jaguar*), partition into groups of related docs
 – semantic disambiguation
Results list clustering example

• Cluster 1:
 • Jaguar Motor Cars’ home page
 • Mike’s XJS resource page
 • Vermont Jaguar owners’ club

• Cluster 2:
 • Big cats
 • My summer safari trip
 • Pictures of jaguars, leopards and lions

• Cluster 3:
 • Jacksonville Jaguars’ Home Page
 • AFC East Football Teams
What makes docs “related”?

• Ideal: semantic similarity.

• Practical: statistical similarity
 – We will use cosine similarity.
 – Docs as vectors.
 – For many algorithms, easier to think in terms of a distance (rather than similarity) between docs.
 – We will describe algorithms in terms of cosine distance
Recall doc as vector

- Each doc j is a vector of $tf \times idf$ values, one component for each term.
- Can normalize to unit length.
- So we have a vector space
 - terms are axes
 - n docs live in this space
 - even with stemming, may have 10000+ dimensions
Postulate: Documents that are “close together” in vector space talk about the same things.
Cosine similarity

Cosine similarity of D_j, D_k:

$$\text{sim}(D_j, D_k) = \sum_{i=1}^{m} w_{ij} \times w_{ik}$$

Aka normalized inner product.
Two flavors of clustering

• Given \(n \) docs and a positive integer \(k \), partition docs into \(k \) (disjoint) subsets.

• Given docs, partition into an “appropriate” number of subsets.
 – E.g., for query results - ideal value of \(k \) not known up front.

• Can usually take an algorithm for one flavor and convert to the other.
Cluster centroid

- **Centroid** of a cluster = average of vectors in a cluster - is a vector.
 - Need not be a doc.
- Centroid of (1,2,3); (4,5,6); (7,2,6) is (4,3,5).
Outliers in centroid computation

- Ignore outliers when computing centroid.
 - What is an outlier?
 - Distance to centroid > $M \times \text{average}$.

Say 10.
Agglomerative clustering

• Given target number of clusters k.
• Initially, each doc viewed as a cluster
 – start with n clusters;
• Repeat:
 – while there are $> k$ clusters, find the “closest pair” of clusters and merge them.
“Closest pair” of clusters

- Many variants to defining closest pair of clusters.
- Closest pair \(\iff\) two clusters whose centroids are the most cosine-similar.
Example; $n=6$, $k=3$

Centroid after first step.
Issues

• Have to discover closest pairs
 – compare all pairs?
 • n^3 cosine similarity computations.
 • Avoid: recall techniques from lecture 4.
 – points are changing as centroids change.
• Changes at each step are not localized
 – on a large corpus, memory management becomes an issue.

How would you adapt sampling/pre-grouping?
Consider agglomerative clustering on n points on a line. Explain how you could avoid n^3 distance computations - how many will your scheme use?
Hierarchical clustering

As clusters *agglomerate*, docs likely to fall into a hierarchy of “topics” or concepts.

\[d1, d2 \]
\[d4, d5 \]
\[d3 \]
\[d3, d4, d5 \]
Different algorithm: k-means

- Iterative algorithm.
- More locality within each iteration.
- Hard to get good bounds on the number of iterations.
Basic iteration

• At the start of the iteration, we have k centroids.
 – Need not be docs, just some k points.
• Each doc assigned to the nearest centroid.
• All docs assigned to the same centroid are averaged to compute a new centroid;
 – thus have k new centroids.
Iteration example

- Docs
- Current centroids
Iteration example

- Docs
- New centroids
k-means clustering

- Begin with k docs as centroids
 - could be any k docs, but k random docs are better.
- Repeat Basic Iteration until termination condition satisfied.
Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations.
 - Centroid positions don’t change.

Does this mean that the docs in a cluster are unchanged?
Why should the k-means algorithm ever reach a fixed point?

- A state in which clusters don’t change.

k-means is a special case of a general procedure known as the *EM algorithm*.

- Under reasonable conditions, known to converge.
- Number of iterations could be large.
Exercise

• Consider running 2-means clustering on a corpus, each doc of which is from one of two different languages. What are the two clusters we would expect to see?

• Is agglomerative clustering likely to produce different results?
Multi-lingual docs

- Canadian/Belgian government docs.
- Every doc in English and equivalent French.
 - Cluster by concepts rather than language.
 - Cross-lingual retrieval.
\(k \) not specified in advance

- Say, the results of a query.
- Solve an optimization problem: penalize having lots of clusters
 - compressed summary of list of docs.
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters
Given a clustering, define the Benefit for a doc to be the cosine similarity to its centroid.

Define the Total Benefit to be the sum of the individual doc Benefits.

Why is there always a clustering of Total Benefit n?
Penalize lots of clusters

- For each cluster, we have a Cost C.
- Thus for a clustering with k clusters, the Total Cost is kC.
- Define the Value of a cluster to be $= - $ Total Benefit - Total Cost.
- Find the clustering of highest Value, over all choices of k.
Back to agglomerative clustering

- In a run of agglomerative clustering, we can try all values of $k=n,n-1,n-2, \ldots 1$.
- At each, we can measure our Value, then pick the best choice of k.
Exercises

• Suppose a run of agglomerative clustering finds $k=7$ to have the highest Value amongst all k. Have we found the highest-Value clustering amongst all clusterings with $k=7$?
Using clustering in applications
Clustering to speed up scoring

- From Lecture 4, recall sampling and pre-grouping
 - Wanted to find, given a query Q, the nearest docs in the corpus
 - Wanted to avoid computing cosine similarity of Q to each of n docs in the corpus.
Sampling and pre-grouping
(Lecture 4)

• First run a pre-processing phase:
 – pick \sqrt{n} docs at random: call these leaders
 – For each other doc, pre-compute nearest leader
 • Docs attached to a leader: its followers;
 • Likely: each leader has $\sim \sqrt{n}$ followers.

• Process a query as follows:
 – Given query Q, find its nearest leader L.
 – Seek nearest docs from among L’s followers.
Instead of random leaders, cluster

• First run a pre-processing phase:
 – Cluster docs into \sqrt{n} clusters.
 – For each cluster, its centroid is the leader.

• Process a query as follows:
 – Given query Q, find its nearest leader L.
 – Seek nearest docs from among L’s followers.
Given a corpus, agglomerate into a hierarchy

- Throw away lower layers so you don’t have n leaf topics each having a single doc.
Navigation structure

• Deciding how much to throw away needs human judgement.
• Can also induce hierarchy top-down - e.g., use k-means, then recur on the clusters.
• Topics induced by clustering need human ratification.
• Need to address issues like partitioning at the top level by language.
Major issue - labelling

• After clustering algorithm finds clusters - how can they be useful to the end user?
• Need pithy label for each cluster
 – In search results, say “Football” or “Car” in the *jaguar* example.
 – In topic trees, need navigational cues.
 • Often done by hand, a posteriori.
Labeling

• Common heuristics - list 5-10 most frequent terms in the centroid vector.
 – Drop stop-words; stem.

• Differential labeling by frequent terms
 – Within the cluster “Computers”, child clusters all have the word *computer* as frequent terms.
 – Discriminant analysis of centroids for peer clusters.
Supervised vs. unsupervised learning

• Unsupervised learning:
 – Given corpus, infer structure implicit in the docs, without prior training.

• Supervised learning:
 – Train system to recognize docs of a certain type (e.g., docs in Italian, or docs about religion)
 – Decide whether or not new docs belong to the class(es) trained on
Resources

• Good demo of results-list clustering:
 \texttt{cluster.cs.yale.edu}