Problem Set 6

Problem 1. Consider the relation $E(Eno, Ename, Dname, Salary)$. Let the domain of $Dname$ be \{CS, EE, ..., History\} and domain of $Salary$ be the set of positive integers. The most frequent queries on E use the set of simple predicates \{$Dname = History, Dname = CS, Salary >= 60000, Salary <= 30000$\}. Compute the primary horizontal fragments of E.

Problem 2. Consider the relations $P(Pno, Pname, Budget, Loc)$ and $A(Eno, Pno, Duration)$. Let P be horizontally fragmented into $P_1 = \sigma_{Pno<100}(P)$ and $P_2 = \sigma_{Pno\geq100}(P)$; let A be horizontally fragmented into $A_1 = \sigma_{Pno<50}(A); A_2 = \sigma_{50\leq Pno<100}(A); A_3 = \sigma_{Pno\geq100}(A)$. Transform the following SQL query into a reduced algebraic query tree:

```sql
SELECT Duration, Budget
FROM A, P
WHERE A.Pno = P.Pno AND P.Pname = "DB"
```

Problem 3. Consider the relations E, P and A as defined in the previous two problems. Let P be horizontally fragmented into $P_1 = \sigma_{Pno<100}(P)$ and $P_2 = \sigma_{Pno\geq100}(P)$; let E be vertically fragmented into $E_1 = \pi_{Eno,Ename,Salary}(E)$ and $E_2 = \pi_{Eno,Dname}(E)$. Let the horizontal fragmentation of A be derived from that of P, based on the Pno attribute (assume Pno is the key of P). Reduce the following query:

```sql
SELECT Ename
FROM E, A, P
WHERE P.Pno = A.Pno AND E.Eno = A.Eno AND P.Loc = "Palo Alto"
```

Problem 4. Compute k_0 for the example shown in slide 20 of lecture 14. (Note: There was a typo in the originally handed out slides. The correction was announced in class - for site 2, the min should be 7 and not 10).