Problem 1. Consider the relation $E(Eno, Ename, Dname, Salary)$. Let the domain of $Dname$ be $\{CS, EE, ..., History\}$ and domain of $Salary$ be the set of positive integers. The most frequent queries on E use the set of simple predicates $\{Dname = History, Dname = CS, Salary >= 60000, Salary <= 30000\}$. Compute the primary horizontal fragments of E.

Answer. E is partitioned into the following 9 fragments:

- $E_1 = \sigma_{Dname="CS" and Salary >= 60000}(E)$
- $E_2 = \sigma_{Dname="History" and Salary >= 60000}(E)$
- $E_3 = \sigma_{Dname="CS" and Dname="EE" and Salary >= 60000}(E)$
- $E_4 = \sigma_{Dname="CS" and Salary <= 30000}(E)$
- $E_5 = \sigma_{Dname="History" and Salary <= 30000}(E)$
- $E_6 = \sigma_{Dname="CS" and Dname="History" and Salary <= 30000}(E)$
- $E_7 = \sigma_{Dname="CS" and Salary > 30000 and Salary < 60000}(E)$
- $E_8 = \sigma_{Dname="History" and Salary > 30000 and Salary < 60000}(E)$
- $E_9 = \sigma_{Dname="CS" and Dname="History" and Salary > 30000 and Salary < 60000}(E)$

Problem 2. Consider the relations $P(Pno, Pname, Budget, Loc)$ and $A(Eno, Pno, Duration)$. Let P be horizontally fragmented into $P_1 = \sigma_{Pno<100}(P)$ and $P_2 = \sigma_{Pno >= 100}(P)$; let A be horizontally fragmented into $A_1 = \sigma_{Pno<50}(A)$; $A_2 = \sigma_{Pno >= 50 and Pno<100}(A)$; $A_3 = \sigma_{Pno >= 100}(A)$. Transform the following SQL query into a reduced algebraic query tree:

```
SELECT Duration, Budget
FROM A, P
WHERE A.Pno = P.Pno AND P.Pname = "DB"
```

Answer.

```
<table>
<thead>
<tr>
<th>PR(Duration,Budget)</th>
<th>PR(Duration,Budget)</th>
<th>PR(Duration,Budget)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJ(Pno)</td>
<td>NJ(Pno)</td>
<td>NJ(Pno)</td>
</tr>
<tr>
<td>PR(Pno,Budget)</td>
<td>PR(Pno,Duration)</td>
<td>PR(Pno,Budget)</td>
</tr>
<tr>
<td>PR(Pno,Duration)</td>
<td>PR(Pno,Budget)</td>
<td>PR(Pno,Duration)</td>
</tr>
<tr>
<td>SEL(Pname=&quot;DB&quot;)</td>
<td>SEL(Pname=&quot;DB&quot;)</td>
<td>SEL(Pname=&quot;DB&quot;)</td>
</tr>
<tr>
<td>P1</td>
<td>A1</td>
<td>P1</td>
</tr>
<tr>
<td>A2</td>
<td>P2</td>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>A3</td>
</tr>
</tbody>
</table>
```

“NJ” stands for natural join, “PR” stands for projection, and “SEL” stands for selection.
Problem 3. Consider the relations E, P and A as defined in the previous two problems. Let P be horizontally fragmented into $P_1 = \sigma_{Pno<100}(P)$ and $P_2 = \sigma_{Pno\geq100}(P)$; let E be vertically fragmented into $E_1 = \pi_{Eno,Ename,Salary}(E)$ and $E_2 = \pi_{Eno,Dname}(E)$. Let the horizontal fragmentation of A be derived from that of P, based on the Pno attribute (assume Pno is the key of P). Reduce the following query:

```
SELECT Ename
FROM E, A, P
WHERE P.Pno = A.Pno AND E.Eno = A.Eno AND P.Loc = "Palo Alto"
```

Answer.

![Diagram of the query reduction](image)

Problem 4. Compute k_0 for the example shown in slide 20 of lecture 14. (Note: There was a typo in the originally handed out slides. The correction was announced in class - for site 2, the min should be 7 and not 10).

Answer. With reference to the figure shown on slide 20 of lecture 14, we know that $\frac{kn-5}{5} \times 10$ of the tuples from site 1 and $\frac{k_0-7}{10} \times 10$ of the tuples from site 2 will be transferred to the first partition. Since we require the two partitions to contain the same number of tuples, we get $2(k_0-5) + (k_0-7) = 10$. This gives us $k_0 = 9$. Therefore all tuples with sort attribute < 9 will be transferred to the first partition and all those with values ≥ 9 will be transferred to the second partition.