WEB-SCALE KNOWLEDGE-BASE CONSTRUCTION VIA
STATISTICAL INFERENCE AND LEARNING

by
Feng Niu

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)
at the
UNIVERSITY OF WISCONSIN-MADISON

2012

Date of final oral examination: 08/14/12
This dissertation is approved by the following members of the Final Oral
Committee:

Christopher Ré, Assistant Professor, Computer Sciences

AnHai Doan, Associate Professor, Computer Sciences

Jude W. Shavlik, Professor, Computer Sciences

Jeffrey F. Naughton, Professor, Computer Sciences

Mark Craven, Professor, Biostatistics and Medical Informatics

© Copyright by Feng Niu 2012
All Rights Reserved

ACKNOWLEDGMENTS

I owe my deepest gratitude to Christopher Ré. Chris possesses limitless en-
ergy, infectious enthusiasm, and an immense ability to impart his wisdom
and grand visions. I am forever in debt for his trust and encouragement,
and for the skills that I have learned from him. His relentless pursuit of
elegance and clarity will forever be an inspiration to me.

I am profoundly grateful to my co-advisor AnHai Doan and my mentor
Jude Shavlik. It was AnHai’s research that planted a seed of intense
curiosity in me — wild imaginations about futuristic information systems
grew and persisted ever since. Jude has always been supportive and
encouraging to my research; his meticulous care for details will stand as a
shining beacon of rigor and depth in my intellectual endeavors. AnHai and
Jude introduced me to the fascinating wonderlands of data management
and machine learning that form the cornerstones of this dissertation.

It is an honor for me to have Jeff Naughton and Mark Craven on my
committee. I am indebted to Shuchi Chawla, who provided supportive
and patient mentorship to me when I was embarking graduate school.
Her encouragement was invaluable in cultivating the confidence of a
starting researcher. I would like to thank Venky Ganti, for taking me
under his wings during my internship at Google. It is a pleasure to thank
the students in the Hazy research group, the database group, and the
Computer Sciences department. Their company made the last few years
not only an intellectually vibrant journey, but a fun ride as well.

My research would not have been possible without the generous sup-
port from the DARPA Machine Reading Grant FA8750-09-C-0181 and
Miron Livny’s Condor research group. I am grateful to Michelle Craft and
Kenneth Hahn for being guardian angels of our infrastructure.

Lastly, I would like to thank my parents, whose endless love and sup-
port are the ultimate driving force that placed me where I am.

ii

CONTENTS
Contents ii
List of Figures iv
List of Tables vi
List of Algorithms vii
Glossary viii
Abstract xi
1 Introduction 1
1.1 Problem Space and Challenges 3
1.2 Technical Contributions 6
1.3 Outline 8
2 Preliminaries 9
2.1 Knowledge-base Construction 9
2.2 Statistical Modeling 0L 14
2.3 Statistical Inference 25
2.4 Statistical Learningo 0oL 35
2.5 Additional Related Work 36
3 Knowledge-base Construction in Elementary 42
3.1 Conceptual Model and Architecture 42
32 Examples Lo 46
3.3 Scaling Feature Extraction 53
3.4 Effectiveness of Statistical Inference 54

4 Scaling Distant Supervision for KBC 60

iii

4.1 Motivations e 60
4.2 Distant Supervision Methodology 63
43 Experiments 70
4.4 Discussion e 82
5 Scaling Markov Logic using an RDBMS 83
5.1 Motivations, Challenges, and Contributions 83
52 TuffySystems L. 87
53 Experiments 0L 95
54 Summary L 103
6 Scaling Markov Logic via Task Decomposition 104
6.1 Motivations, Challenges, and Contributions 104
6.2 Dual Decompositionfor MLNs 106
6.3 Specialized Tasks 111
6.4 Experiments, 116
6.5 Summary 122
7 Conclusion and Future Work 124
71 Conclusion 124
72 FutureWork 124
Bibliography 127
Appendix A Tuffy 145
A1l Additional Systems Details 145
A.2 Additional Experiments 151
A.3 Additional Featuresin Tuffy 153

Appendix B Felix 155

List OF FIGURES

iv

1.1 Screen-shots from DeepDive

2.1 Illustrating mentions and entities
2.2 Correlation structures of logistic regression
2.3 Correlation tructure of conditional random fields
2.4 Markov random fields vs. factor graphs
2.5 Graphical model for correlation clustering
2.6 Anexample Markov logic program
2.7 A portion of the graphical model underlyingan MLN

3.1 Anillustration of the KBC model in ELEMENTARY.
3.2 Architecture of ELEMENTARY
3.3 GeoDeepDive’s development pipeline
3.4 Screen-shot from GeoDeepDive
3.5 Comparing how different signals impact the quality of KBC

41 Workflow of distant supervision
4.2 Relations used in our experiments on distant supervision . . .
4.3 Impact of input sizes under the TAC-KBP metric
4.4 Impact of input sizes under the MR-KBP metric.
4.5 Impact of corpus size changes under the TAC-KBP metric . . .
4.6 Impact of human feedback amount under the TAC-KBP metric
4.7 TAC-KBP quality with human labelsonly
4.8 Impact of input sizes under the Freebase held-out metric

4.9 Impact of input sizes with v = 0.5 under the TAC-KBP metric
4.10 Impact of input sizes with v = 0.9 under the TAC-KBP metric
4.11 Impact of input sizes with a 33%-down-sampled Freebase KB
4.12 Impact of corpus size on TAC-KBP with ClueWeb
4.13 Impact of corpus size on MR-KBP with ClueWeb

4.14 Impact of corpus size on individual relations 81
5.1 Comparison of architectures 89
52 Aloosely connected graph for Example53 93
5.3 Time-cost plots of ALcHEmy vs. TuFrY 97
5.4 Comparing ArcHeMy and different versions of Turry 99
5.5 Comparing Turry vs. Turry without partitioning 101
5.6 Effect of further partioning in Turry 102
6.1 A program-level decomposition for Example 6.1 108
6.2 Time-cost performance of Turry vs. FELIX 119

A.l Effect of partitioning on Example5.1 149

List OF TABLES

Vi

3.1

4.1
4.2
4.3
4.4

51
52
5.3
54
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Al
A2

B.1

Profiles of input signals for different KBC tasks

TAC-KBP F1 score of cornercases
Statistical significance of the Impact of corpus size changes . .
Statistical significance of the Impact of human feedback sizes .

Statistical significance tests of the impact of corpus size

Dataset statistics in the Turry experiments
Comparing ALcHEMY vs. TurrY’s grounding time
Comparing the WalkSAT speed of ALcHEMY vs. Turry
Comparing the space efficiency of ALcHEmy vs. TUurry

Comparing Turry vs. Turry without partitioning

MRF-level vs. program-level decompositions
Example specialized tasksin FeLix
Properties assigned to predicates by the FeLix compiler

Tasks and their required properties in FeLix
Dataset statistics for the FELix experiments
Decomposition schemes of each task in FeLix

Performance and quality comparison on specialized tasks . . .

Grounding timeinseconds

Comparison of execution timeinseconds

Notation used inthissection

57

73
74
75
81

vii

LisT OF ALGORITHMS

O© 0 N O U = W N -

_ R
N — O

Viterbi algorithm for CRFs 26
Forward-backward algorithm for CRFs 26
Ailon et al.’s correlation clustering algorithm [2] 27
Singh et al’s correlation clustering algorithm [119] 28
SumProduct algorithm for marginal inference 29
Gibbs sampling for graphical models 30
Lazy grounding procedure in ALcHEMY 31
WalkSAT for MAP inference in Markov logic 31
SampleSAT 33
MC-SAT for marginal inference in Markov logic 34
MLN GroundinginSQL 145

A Simple MRF Partitioning Algorithm 150

viii

GLOSSARY

AvrcHEmY A reference implementation of Markov logic developed at Uni-
versity of Washington.

ANcIeNTTExT A demo project of ELEMENTARY where we help English
professors organize 140K ancient books.

clique A subgraph where every pair of nodes are connected.

correlation clustering A clustering model in machine learning where
the relationships (similarity and dis-similarity) between objects are

known instead of the actual representation of the objects.

crowdsourcing An increasingly popular problem-solving process where
tasks are distributed to an undefined group of people (as opposed

to, e.g., employees).

dependency path A path in the graph (usually a tree) of tokens in a sen-
tence where the (directed) edges represent dependency-grammar
relations between tokens.

DeepDive A demo project of ELEMENTARY Where we enhance Wikipedia
with knowledge-base contruction over 500M web pages in the ClueWeb09

corpus.

domain knowledge Knowledge about the context or environment of an
application (e.g., a KBC task).

dual decomposition A classic technique in mathematical optimization
that approximates a difficult (constrained) optimization problem

with a set of simpler problems.

ELEMENTARY Our prototype system for knowledge-base construction that
encapsulates the techniques described in this dissertation.

ix
F1 score The harmonic mean of precision and recall.

feature extraction The process of computing characteristic measurements
(e.g., Boolean or numerical variables) over the input data of statistical

inference or learning.

FeLix Our prototype system for the task-decomposition approach to
Markov logic inference.

GeoDeepDive A demo project of ELEMENTARY where we help geoscien-

tists organize information in 20K journal papers in geology.

graphical model Probabilistic graphical model, namely a framework for
succinctly representing probability distirbutions with a graph en-
coding conditional independency between random variables.

hypergraph A generalization of graph where each edge can connect mul-
tiple vertices.

knowledge base A database of facts or assertions.

Lagrange multiplier A classic technique in mathematical optimization to
convert a constrainted problem in an unconstrainted problem; used
by dual decomposition.

Markov logic A language that uses weighted first-order logic rules to
represent Markov random fields with Boolean variables.

MLN Markov logic network, namely a Markov logic program.

MRF Markov random field, namely an undirected graphical model rep-

resenting (pair-wise) correlations between random variables.

prcision The ratio between correct positive predictions and total positive
predictions.

RDBMS A relational database management system.

recall The ratio between correct positive predictions and the sum of cor-

rect positive predictions and incorrect negative predictions.

statistical inference The process of making probabilistic predictions from

data, often via mathematical optimization.

statistical learning The process of computing or estimating the best sta-
tistical model based on training examples (i.e., pairs of input data

and desired predictions).

statistical significance A statistical assessment of whether measurements

of an event reflect a pattern or just chance.

Turry Our prototype system for Markov logic inference using an RDBMS.

Xi

ABSTRACT

Knowledge-base construction (KBC) is the process of populating a knowl-
edge base (KB) with facts (or assertions) extracted from text. Bearing the
promise of being a key technology of next-generation information sys-
tems, KBC has garnered tremendous interest from both academia and
industry. A general trend in state-of-the-art KBC systems is the use of
statistical inference and learning, which allow a KBC system to combine a
wide range of data resources and techniques. In particular, two general
techniques have gained significant interest from KBC researchers: the
distant supervision technique for statistical learning, and the Markov logic
framework for statistical inference.

This dissertation examines the application of distant supervision and
Markov logic to web-scale KBC. Specifically, to fill a gap in the literature,
we perform a systematic study on distant supervision to evaluate the im-
pact of input sizes on the quality of KBC, hence providing guidelines for
KBC system builders. While Markov logic has been shown to be effective
for many text-understanding applications including KBC, the scalability
of statistical inference in Markov logic remains a critical challenge. In-
spired by ideas from data management and optimization, we propose
two novel approaches that scale up Markov logic by orders of magnitude.
Furthermore, we encapsulate our research findings into a general-purpose
KBC system called Elementary, and deploy it to build a demonstration
called DeepDive that reads hundreds of millions of web pages to enhance
Wikipedia. Based on the above contributions, this dissertation shows that
the distant supervision technique for statistical learning and the Markov
logic framework for statistical inference are indeed effective approaches to
web-scale KBC.

1 INTRODUCTION

Knowledge-base construction (KBC) is the process of populating a knowl-
edge base (KB) with facts (or assertions) extracted from text. It has re-
cently received tremendous interest from academia, e.g., KnowlItAll [33],
DBLife [28], NELL [17], YAGO [57, 84], and from industry, e.g., IBM’s
DeepQA [39], Microsoft’s EntityCube [149], and Google’s Knowledge
Graph.! To achieve high quality, these systems leverage a wide variety
of data resources and KBC techniques. A crucial challenge that these
systems face is coping with imperfect or conflicting information from
multiple sources [140]. To address this challenge, a growing trend is to
use machine learning and statistical inference.

In particular, two general techniques have gained significant inter-
est from KBC researchers: the distant supervision technique for statistical
learning [17, 51, 84, 141, 144, 149], and the Markov logic framework for
statistical inference [84, 110, 126, 133, 149]. Toward the goal of applying
these approaches to web-scale KBC, this dissertation examines several
key scalability issues for these techniques. The studies presented in this
dissertation demonstrate that the distant supervision technique for statis-
tical learning and the Markov logic framework for statistical inference are
indeed effective approaches to web-scale KBC. Below is a summary of our
main contributions:

1. Distant Supervision for Statistical Learning. To fill a gap in the liter-
ature, we have performed a systematic study [148] to empirically validate
the effectiveness of scaling the amount of input data resources for dis-
tant supervision [82], an increasingly popular machine-learning technique
for KBC. Our results shed light on how different input data resources
contribute to the quality of KBC.

"http://www.google.com/insidesearch/features/search/knowledge . html

http://www.google.com/insidesearch/features/search/knowledge.html

N -
@ attended the school @ founded @ has the top member
Harvard Law School [16] Bl ¢ SpaceX [35] mm 3¢ Steve Ballmer [14] mm
O = 3¢ PayPal (4] mm # Bill Gates (5] =m

3% Tesla Motors (3] mm ST
3¢ Michelle Obama 11675] mm @ may have subsidiaries

@ has the title Bungie [38] mm
© isachildof % Bung]
e 3% Architect [56] B ¢ Massive Incorporated (91] m

3% Chief executive of.. 28] m 3¢ Mmook]

@ isa parent of s Executive Officer 14] m ¢ Razorfish (company) (51] m
. . Skype (48] mm

3¢ Malia Obama (18] m 3% Entrepreneur [12] ¥ skyp

¥ Sasha Obama (8] m (Dive) F MSNBC 139] mm

(Dive) ey

Figure 1.1: Sample facts about Barack Obama, Elon Musk, and Microsoft that
are extracted by DEepDIve. The numbers in brackets indicate how many times a
fact is mentioned. The blue and red color tags indicate frequency and recency.

2. Markov Logic for Statistical Inference. A key technical challenge
for applying statistical methods to KBC is scalability [140]. Inspired by
ideas from data management and optimization, we have designed and
implemented several novel approaches to statistical inference in Markov
logic [103], a statistical-inference framework that has been used in many
text-understanding applications (including KBC). These approaches achieve
orders of magnitude higher efficiency than prior approaches [87, 88].

3. Demonstration. Based on the above research findings, we have de-
veloped an end-to-end domain-independent KBC platform called Ere-
MENTARY [90]. Using ELEMENTARY, we have built a web-scale KBC system

called DeerDive? that performs deep linguistic analysis and sophisticated

’http://hazy.cs.wisc.edu/deepdive

http://hazy.cs.wisc.edu/deepdive

statistical processing over hundreds of millions of web pages to enrich
Wikipedia® (see Figure 1.1). In addition, we have applied ELEMENTARY to
build KBC systems over a 140K-ancient-book corpus for English professors,

and over a collection of 20K journal papers for geoscientists.

1.1 Problem Space and Challenges

The ultimate goal of this dissertation is to build a web-scale knowledge-
base construction system using statistical inference and learning. We
believe that we have accomplished this goal as the techniques in this dis-
sertation and the DeepDive demonstration [89] support our central thesis:
the distant supervision technique for statistical learning and the Markov
logic framework for statistical inference are indeed effective approaches to
web-scale KBC. We briefly describe the problem space of this dissertation.
(Further discussion of related work can be found in Chapter 2.)

Knowledge-base construction is closely related to information extraction,
knowledge harvesting, and machine reading, all of which strive to devise
algorithms or build systems that help machines (or human analysts) “make
sense of” data without explicit semantics; e.g., natural-language text and
HTML tables. An example KBC task is to populate a biographical database
(covering, e.g., people’s names, professions, affiliations, etc.) from news
and blog articles. The main focus of this dissertation is building KBC systems
rather than inventing or improving individual KBC algorithms: the goal
is to build a KBC system that is able to integrate diverse data resources and
algorithms (Chapter 3). (Although the techniques in this dissertation can
be potentially applied to the emerging field of open information extraction [34,
141, 146], we exclusively focus on the scenarios where the target knowledge
base has a specified schema.)

Indeed, to construct high-quality knowledge bases from text, researchers

Shttp://en.wikipedia.org

http://en.wikipedia.org

have considered a wide range of data resources and techniques (Chapter 2);
e.g., pattern matching with dictionaries listing entity names [107], boot-
strapping from existing knowledge bases like Freebase* and YAGO [125],
disambiguation using web links and search results [31, 48], rule-based
extraction with regular expressions curated by domain experts [21, 28],
training statistical models with annotated text [70], etc. All these resources
are valuable because they are complementary in terms of cost, quality,
and coverage; ideally one would like to be able to use them all. To take
advantage of different kinds of data resources, a major problem that KBC
systems face is coping with imperfect or conflicting information from mul-
tiple sources [140]. (We use the term “information” to refer to both data
and algorithms that can be used for a KBC task.) To address this issue,
several recent KBC projects [17, 57, 71, 84, 149] use statistical inference and
learning to combine different data resources.

In particular, two generic techniques have gained significant interest
in the KBC community: (1) the distant supervision technique [82] that ad-
dresses the scarcity issue of training data when applying statistical learning
to KBC, and (2) the Markov logic framework for statistical inference [103]
that is able to incorporate diverse signals such as those listed above. Sam-
ple KBC systems employing either or both techniques include NELL [17],
SOFIE [126], Prospera [84], KnowlItAll [33], Snowball [1], StatSnowbal-
1/EntityCube [149], LUCHS [51], and Kylin [141, 144]. On the other hand,
the generality of these two techniques makes it possible to build a general
KBC system with these techniques at the core. Following this trend, this

dissertation addresses the scalability issues of these two techniques:

Scaling Distant Supervision To handle the sheer variations of textual
expressions to refer to an entity or mention a relationship, KBC systems

often use statistical learning. Statistical learning, however, requires train-

“nttp://freebase.com

http://freebase.com

ing examples such as manual annotations that are scarce resources. To
address this challenge, an increasingly popular technique is distant supervi-
sion [82], where one mitigates such scarcity by generating lower-quality but
high-volume training data from scalable data sources such as text corpora,
existing knowledge bases, and human feedback via crowdsourcing.

Although the distant supervision technique has been shown to be
effective in many KBC tasks [17, 84, 149], it was unclear how the amount of
input quantitatively impacts the quality of KBC. To fill this gap and provide
guidelines for KBC, we perform a detailed quantitative study on distant
supervision (Chapter 4).

Scaling Markov Logic To integrate diverse signals and techniques for
KBC (including the statistical models learned via distant supervision),
researchers have applied a statistical inference framework called Markov
logic [103] to a wide range of text-related applications. In Markov logic,
one can write first-order logic rules with weights (that intuitively model
our confidence in a rule); this allows one to capture rules that are likely,
but not certain, to be correct. When trying to apply Markov logic to KBC,
we found that state-of-the-art Markov logic systems such as ALcHemy’ do
not scale to our datasets.

To address this issue, state-of-the-art KBC systems that employ Markov
logic typically implement inference algorithms customized for the par-
ticular Markov logic programs that they use [84, 110, 126, 133, 149]. The
downside is that they are not able to support rules or correlations that
their specialized inference algorithms cannot handle. However, extensive
experiments have shown that such rules or correlations can significantly
improve the quality of KBC [90, 97, 98, 99, 120]. As a result, we design,
implement, and evaluate two novel but orthogonal approaches that scale
up general Markov logic inference by leveraging data management and op-

Shttp://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu

timization techniques. These approaches are embodied in our open-source

Turry® (Chapter 5) and FeLix” (Chapter 6) systems.

1.2 Technical Contributions

The technical contributions of this dissertation can be divided into four
parts: the ELEMENTARY architecture to knowledge-base construction, a
systematic study of distant supervision, and two novel techniques for
scaling Markov logic inference. These contributions collectively support
our thesis that the distant supervision technique for statistical learning and
the Markov logic framework for statistical inference are indeed effective

approaches to web-scale KBC. We briefly describe each of them below.

Elementary Architecture to KBC ELEMENTARY is our prototype KBC sys-
tem that is able to combine diverse data resources and different KBC
techniques via machine learning and statistical inference to construct
knowledge bases [90]. Using Markov logic, ELEMENTARY accepts both
domain-knowledge rules and classical machine-learning models such
as conditional random fields, thereby integrating different data resources
and KBC techniques in a principled manner. Using ELEMENTARY, we have
implemented a solution to the TAC-KBP challenge® with quality com-
parable to the state of the art, as well as a demonstration system called
DeepDive [89] that automatically and continuously enriches Wikipedia
with structured data by reading millions of web pages on a daily basis. To
quantitatively validate the effectiveness of ELEMENTARY's approach to KBC,
we experimentally show that its ability to incorporate diverse signals has
positive impacts on the quality of many KBC tasks.

®http://hazy.cs.wisc.edu/tuffy
"http://hazy.cs.wisc.edu/felix
8http://nlp.cs.qc.cuny.edu/kbp/2010/

http://hazy.cs.wisc.edu/tuffy
http://hazy.cs.wisc.edu/felix
http://nlp.cs.qc.cuny.edu/kbp/2010/

Quantitative Study of Distant Supervision Distant supervision is an
increasingly popular technique in KBC. There had been, however, no
study evaluating how the scale of input data impacts the quality of distant
supervision. To fill this gap, we empirically assess the impact of big data
versus the crowd: we use up to 100M documents and tens of thousands of
crowd-sourced human labels. We find that, while increasing the corpus
size consistently and significantly improves quality (precision and recall),
human feedback has a significant impact only when accompanied by a
large corpus [148]. We observe that distant supervision is often recall
gated. Thus, a rule of thumb for developing distant supervision-based
KBC systems is that one should prioritize maximizing the diversity of

features and the coverage of training corpus.

Scaling Markov Logic using an RDBMS Turry is based on the obser-
vation that MLN inference consists of a grounding step that essentially
performs relational operations, and a search (or sampling) step that often
comprises multiple independent subproblems [87]. In contrast to ALcHEMY
that essentially performs grounding with hard-coded nested-loop joins,
Turry translates grounding into SQL statements and uses a relational
database management system (RDBMS) to execute them. This enables
Turry to achieve orders of magnitude speed-up compared to ALcHEMY.
The grounding step results in a graphical model called a Markov random
field (MRF) that is the input to the search step. The MRF can be orders
of magnitude larger than the input (evidence) database, and so may not
fit in memory. To scale up the search step, Turry decomposes the MRF
into multiple partitions, and solves each partition (in memory) in turn. A
serendipitous consequence of such partitioning is that the search efficiency
and result quality may improve substantially. We empirically validate this

phenomenon and theoretically quantify such improvement.

Scaling Markov Logic via Task Decomposition FeLix is based on the
observation that an MLN program (especially those for KBC) often con-
tains routine subtasks such as classification and coreference resolution;
these subtasks have specialized algorithms with high efficiency and quality.
Thus, instead of solving a whole MLN with generic inference algorithms
(which we call monolithic approaches), we could split the program into
multiple parts and solve subtasks with corresponding specialized algo-
rithms [88]. However, because different subtasks may share the same rela-
tion, there may be conflicts between predictions from different subtasks.
To address this challenge, FeLix employs the classic dual decomposition tech-
nique that resolves conflicts by passing messages between subtasks. We
experimentally validate that, on simple MLNSs, FeLix achieves similar per-
formance as monolithic inference approaches (e.g., Turry and ALcHEMY);

on complex MLNs, FeLix substantially outperforms monolithic inference.

1.3 Outline

The remainder of this dissertation is organized as follows. In Chapter 2,
we cover background material and related work on KBC as well as on
statistical inference and learning. In Chapter 3, we describe the conceptual
model and architecture of ELEMENTARY, as well as the effectiveness of
incorporating diverse signals into a KBC task. In Chapter 4, we present a
systematic and quantitative study on the distant supervision technique for
KBC. In Chapters 5 and 6, we describe how we scale Markov logic using
an RDBMS and a task-decomposition approach, respectively. We conclude
in Chapter 7.

> PRELIMINARIES

We first describe three pieces of critical background material for this dis-
sertation: (1) what signals (including data resources and techniques) are
commonly used in KBC, (2) how these signals can be combined via statis-
tical modeling, and (3) how to perform inference and learning on these

statistical models. In Section 2.5, we describe further related work.

2.1 Knowledge-base Construction

We describe several common data resources and techniques for KBC.

2.1.1 Data Resources

We briefly recall two common types of data resources that are valuable for
achieving high quality in KBC: mention-level data that deal with the struc-
ture in text, and entity-level data that deal with the structure in the target
knowledge base (e.g., typing of relation arguments and constraints among
relations). The distinction between mentions and entities is illustrated in

Figure 2.1.

Mentions Entity

&\
@ President Obama signed the bill.

e R
Mr. Obama was my student. &)

Figure 2.1: Illustrating mentions in text of the entity Barack Obama.

Mention-level Data Mention-level data are textual data with mentions

of entities, relationships, events, etc., or linguistic resources modeling

10

a (natural) language itself. Mentions in a natural language are the raw
data from which KBC data is primarily extracted. They provide exam-
ples of the variety of ways humans, writing for other humans, encode
knowledge. They serve as the media of information to be extracted as
well as examples of how information is encoded. Mention-level data are
usually the primary input to a KBC task; they are often in the form of
raw text corpora and sometimes also include annotated text. One could
use annotated text to train statistical information extraction models (e.g.,
CRFs [70]). There are also unsupervised methods to make use of less struc-
tured mention-level data: a natural-language text corpus could be used
to build statistical language models [73]; one could derive from anchor
texts (of Wikipedia pages or web pages) how frequently an expression is
used to refer to an entity and use this information to help disambiguate
entity mentions [48]. Mention-level models are intermediate summaries
of the structure in mention-level data. Examples include part-of-speech
tags and parse trees of the input text, co-occurrence statistics of noun
phrases and verb phrases [73], linguistic patterns or regular expressions
for specific relations (e.g., that “X was born in Y” expresses the relation
BirthPlace (X,Y)), and generic linguistic resources such as synonyms
from WordNet [44, 92, 124].

Entity-level Data Entity-level data are relational data over the domain of
conceptual entities (as opposed to language-dependent mentions). They in-
clude what are usually called knowledge bases, ontologies, and gazetteers
(e.g., YAGO [84] and Freebase!). On the one hand, entity-level data are typ-
ical output of KBC systems. On the other hand, existing entity-level data
resources are also valuable input for building KBC systems. For example,
one could use comprehensive ontologies like YAGO to extract mentions
of entities such as people and organizations with pattern matching. One

"http://freebase.com

http://freebase.com

11

could also use an existing knowledge base to type-check extraction re-
sults [126]; e.g., the second argument of the relation EmployedBy must be
an organization. Entity-level models refer to (first-order) logical statements
that encode common-sense (or domain-expertise) constraints and rules
over relations of interest. For example, rules like “marriage is symmetric”
and “a person’s birth date is unique” intuitively would help improve bi-
ographical relation extraction. Indeed, such high-level constraints have

been shown to have significant impacts on KBC quality [84].

2.1.2 KBC Techniques

We discuss several common techniques to make use of the above data
resources for KBC: classical rule-based approaches, classical machine
learning approaches, distant supervision, statistical inference, and human
feedback.

Classical Rule-based Approaches Classical rule-based approaches to
KBC (e.g., DBLife [28, 116] and SystemT [21, 79]) leverages the observation
that, for many KBC tasks, there are often a small number of rules that can
achieve both high precision and reasonable recall. Furthermore, because
rules tend to be intuitive and rule-based systems tend to be efficient and
scalable, rule-based approaches have the advantages of being accessible
to many developers and easy to debug. For example, to identify mentions
of people in the database research community, DBLife performs string
matching between the corpus and heuristic variations of a dictionary of
canonical person names (e.g., abbreviations and first/last name ordering).
Because these heuristics cover most commonly used variation types, and
because person-name ambiguities are rare, DBLife is able to achieve both
high recall and high precision in this subtask. Furthermore, the first-order
nature of such rules (e.g., one rule can apply to a dictionary of tens of
thousands of names) means that developing rule-based KBC systems can

12

be very efficient. Another reason for the effectiveness of rule-based KBC
is that the input to many KBC tasks are semi-structured text (e.g., HTML).
Such semi-structured documents tend to share a handful of structures
(e.g., if they originate from a small number of websites). Therefore, one
could develop a few extraction rules to handle a large number of input
documents. The development process of rule-based KBC systems is in-
creasingly being assisted by statistical techniques [7, 68, 69, 79, 79, 83, 109].

Classical Machine Learning Approaches Classical machine learning
approaches [19, 22, 70, 82], on the other hand, target KBC tasks that cannot
be reasonably covered by a small set of deterministic rules. For example,
to extract HasSpouse relationships from English text, one would be hard
pressed to enumerate a set of possible expressions with high precision
and high recall. To address this issue, classical statistical approaches em-
ploy machine learning models such as logistic regression and conditional
random fields [70, 130] to learn model parameters from training examples,
e.g., annotations of sentences that mention a HasSpouse relationship. A
trend in classical statistical KBC approaches is to incorporate high-level
knowledge (rules) such as “similar text spans are more likely to have the
same label” [40, 129].

Distant Supervision High-quality annotation data are usually scarce
and expensive to obtain. Distant supervision is an increasingly popular
technique to use entity-level data to generate (silver-standard) annotations
from mention-level data [15, 23, 46, 82]. The idea is to use the facts in an
existing knowledge base to heuristically identify fact mentions in a text
corpus via entity-mention mapping. For example, to populate a relation
about people’s birth places, one may start with a small set of tuples such as
BirthPlace(Obama, Hawaii). Then one could consider sentences mention-
ing both “Obama” and “Hawaii” (e.g., “Obama was born in Hawaii”) as

positive examples. Textual patterns like “was born in” would then emerge

13

as being indicative for the BirthPlace relation and be used to extract more
facts. The significance of this technique is that we can get large amounts
of training data without human input. While distant supervision often
generates noisy examples, the hope is that machine learning techniques
(e.g., {y-regularization [149]) as well as redundancies in the training data
help reduce such noisiness and select truly indicative patterns.

Distant supervision is widely used in recent KBC systems; e.g., NELL [17],
Prospera [84], KnowItAll [33], Snowball [1], StatSnowball /EntityCube [149],
LUCHS [51], and Kylin [141, 144]. To the best of our knowledge, Craven
and Kumlien [23] were the first to apply distant supervision in a statistical
learning-based approach. To improve the quality of distant supervision,
there is recent work that incorporates probabilistic rules to the trained
statistical model so as to counter the noises in distantly supervised exam-
ples [50, 106, 147].

Statistical Inference A recent trend of KBC is to integrate domain knowl-
edge (e.g., in the form of heuristic rules or constraints) into statistical
modeling and then perform statistical inference; e.g., NELL [17, 71] that
tries to maintain consistency between several different extraction com-
ponents, SOPHIE /Prospera [84, 126, 133] that incorporate entity typing
and common-sense constraints, and StatSnowball / EntityCube [149] that
enforces cross-relation constraints such as “IsHusband and IsWife are
symmetric.” A particularly popular statistical inference framework is
Markov logic [84, 126, 133, 149]. To address the scalability challenges of
Markov logic inference, these systems implement specialized inference
algorithms customized for the particular MLN programs that they use. In
contrast, ELEMENTARY scales Markov logic inference in general instead of
for particular MLN programs. We validate the advantage of this approach

in Section 3.4.

14

Human Feedback Developing KBC systems should be a continuous pro-
cess —a KBC system is built and deployed, and then iteratively improved
as more and more human feedback is integrated. Human feedback may
come from different sources, e.g., developers who can spot and correct sys-
tematic errors, end-users who can provide low-level (e.g., sentence-level)
feedback, and workers on crowdsourcing platforms who can generate
large volumes of annotations. We can directly incorporate such human
feedback to improve KBC result quality. Furthermore, we may use human
feedback as additional training data (e.g., on top of distant-supervision
training data) to improve the KBC system itself. An example KBC system
that automatically incorporates user feedback is DBLife [18].

2.2 Statistical Modeling

Let X be a set of variables whose values are observed (i.e., evidence), and
Y a set of random variables that are possibly related to X and to each
other. For simplicity, we assume that both X and Y consist of only Boolean
variables. It is straightforward to generalize the following definitions to all
discrete variables. A probability distribution over a set of Boolean variables,
say Y, is a function p : {0, 1}'V! — R such that 2 yeopv P(y) = 1. Denote
by P(Y) the set of all possible probability distributions over Y, then a
statistical model M : {0, 1}X/ — P(Y) is a function that maps each possible
evidence state x € {0, 1}X! to a distribution over Y.? Depending on how
specialized or generic a statistical model is and how it is represented, there
are many kinds of statistical models. We describe several types of statistical
models that are most related to this dissertation. We start with specialized
statistical models characterized by the correlation structure over X and Y,
then describe general graphical models, and lastly discuss Markov logic
that use first-order representations for the correlation structure.

ZNote to experts: we focus on discriminative and undirected models.

15

2.2.1 Specialized Statistical Models

wl w2 w3

Figure 2.2: Correlation structures of logistic regression. Shaded circles are
evidence variables, hollow circles are variables to be predicted, and shaded squares
indicate correlations between variables. Each square is associated with a function.
Denote by s the sum of all squares” function values given an assignment y, then
the probability Pr[Y = y] o< exp{s}.

Figure 2.3: Correlation structure of conditional random fields. Without (resp.
with) g and the dashed links, this model is a linear-chain (resp. skip-chain) CRF.

Logistic Regression A logistic regression model [47] assumes that each
random variable y; € Y is independent of each other and that each Y;
is related to exactly k evidence variables x; = (xi1,...,Xix). More pre-
cisely, a logistic regression model is determined by k parameters w =

(Wl,. . .,Wk) € Rk:

_ 1 . . exp{w-xq)
1+ exp{w-xi} Privy =11 = 1+ exp{w - x;}’

PrY; = 0]

16

Intuitively, xi; has an influence on y; only if xi; = 1 (sometimes called
“activated”); the higher the magnitude of wj, the more influence x;; has on
Yi. Moreover, positive wj’s “vote” toward y; = 1 whereas negative w;’s
“vote” toward y; = 0; in particular, w = 0 models the uniform distribution.

The joint distribution is simply a product:

PrlY =yl = [] Prlvi=vyi

1<igly]

Figure 2.2 illustrates the correlation structure of logistic regression.
The advantage of logistic regression models is their simplicity, but the
downside is that it is not able to model correlations over Y.

Conditional Random Fields Conditional random fields (CRF) [70] ex-
tend logistic regression by also modeling correlations over Y. We describe
the most commonly used CRF models: linear-chain CRFs. Linear-chain
CRFs assume that the correlation structure over Y forms one or more
sequences. Different sequences are independent to each other; for simplic-
ity, we focus on one sequence. More precisely, let Y = {Y;,...,Y,}, then
there are direct correlations between Y; and Yi ; for1 <i<n—1: Y;
not only depends on x; but also depends on the values of Y;_; and Yi,;.
Moreover, such dependency may not be as simple as the weight vector w
in logistic regression; instead, we model such dependency using a factor
function f : {0,1}*" — R of the form f(xi,yi_1,Yi). Assuming dummy
value yo = 0, then the joint distribution is defined as

1 n
Pr[Y = Y] == Z eXp {; f(xi/yillyi)} 2

where

= Z exp {Z f(xi;yi—llyi)} .

ye{o, 1} i=1

17

In general, the factor function f could be further decomposed into a

weighted sum to model signals that are intuitively independent, e.g.,
K
f(xi, Yi—1,Yi) = ijfj (Xij, Yi—1, Y1),
j=1

where f; might be Boolean functions and {A; € R}}"_; comprise the param-
eters of this CRF.

Such CRF models are frequently used to label sequential data such as
text; e.g., labeling each token in a citation as AUTHOR or TITLE. There, two
neighboring tokens intuitively have correlations such as “if neither token is
a punctuation, then they are likely of the same label.” Extending this idea
further, one may also introduce correlations between non-neighboring
tokens. For example, the skip-chain CRF model [129] extends linear-chain
CRFs with additional factor functions between distant nodes; e.g., one
may add a factor function g(y;,y;) between tokens i, j if they have the
same word (i.e., i1 = X;1 assuming x.; indicates the word of a token) to

encourage Y; = y;. To incorporate g, we redefine

1 n
PriY =y] = ~ exp ;f(xk,ym,ka > alyuyy) o,

1Ljxi1=x%j1

where Z is redefined accordingly. An example of gis g(yi,y;) = 1—[yi—y;l.
Figure 2.3 illustrates the correlation structures of linear-chain and skip-
chain CRF models.

2.2.2 Graphical Models

We can generalize LR and CRF to a broad class of probabilistic distribu-
tions called graphical models [63, 130, 137]. The intuition is that, extending
the correlation structures in Figure 2.3, we can actually allow arbitrary

correlation factors (i.e., the shaded squares) over the variables. Formally,

18

f2
: 3
(a) MRF (b) Factor graph

Figure 2.4: Alternative representations of the same graphical model.

denote by P(V) the power set of a set V. Let F C P(X U Y) be a set of
factors; each factor A € F is associated with a function f : {0, 1}* — R.
The probability distribution is then defined by

1
Pr[Y = Y] = zeXp {Z fA(xAIYA)} ’

AcF

where

= Z exp {Z fA(xA,yA)} .

ye{0,1}Y A€cF

Depending on what one wants to emphasize in an (undirected) graph-
ical model, there are several different views:

1. To emphasize the dependency relationships between variables, Markov
random fields (MRF) [63] represent a graphical model using a graph
with nodes representing variables and cliques representing factors
(see Figure 2.4(a)).

2. To explicitly show the correlation structure, factor graphs [67] repre-
sent a graphical model as a bipartite graph between variables and
factors (see Figure 2.4(b)).

19

@ @ (u,v)EE
@—D O

(1) Reflexivity (2) Symmetry (3) Transitivity (4) Affinity

Figure 2.5: A graphical model representing correlation clustering.

3. To emphasize the fact that one could consider the distribution over
Y as being conditional on X, conditional random fields (CRF) [130]
tend to emphasize the distinction between X and Y (see Figure 2.3).

To demonstrate the expressiveness of graphical models, let us consider

an example.

Example 2.1. Correlation clustering (CC) [9, 271 is a common task for coreference
resolution (coref) [98, 119], e.g., given a set of strings (say phrases in a document)
we want to decide which strings represent the same real-world entity. The input
to a CC task is a graph G = (V, E) with edge weights w : E — R; the output is
a partitioning V.= Vi U - - - U Vi for some integer 1 < k < |V|. Equivalently,
we can represent such a partitioning with an equivalence relation R C V x V
that satisfies the reflexivity, symmetry, and transitivity properties; i.e., R(x,y)
iff nodes x and y belong to the same partition. Each valid R incurs a cost (called

disagreement cost)

osteoret(R) = > w(yDl+ Y)l
xy:(x,y)€R x,y:(x,y)ER
and w((x,y))>0 and w((x,y))<0

The objective is to find an R with the minimum cost. To model CC using graphical
models, let evidence variables X = (), prediction variables Y = {y,|(u,v) €
V x V}s.t. yuy = 1iff (u,v) € R. There are four types of factors (see Figure 2.5):

20

1. Reflexivity: for each y,, € {yw | v € V}, fi(Uyvv) = 0ifyy, = 1 and
—oo otherwise.

2. Symmetry: for each Y, T2(Yuv, Yvu) = 0 if Yuy = Yy and —oo other-
wise.

3. Tranmsitivity: for each Y., and Yz, f3(Yuv, Yvz, Yuz) = —00 if Yy =
Yvz = 1 but yy, = 0, and 0 otherwise.

4. Affinity: foreache = (u,v) € E, f4(yu) = —w(e)lifw(e)(2ywn—1) <
0 and 0 otherwise.

Then one can see that the probability of an invalid partitioning R is 0 and the
probability of each valid partitioning R is

% exXp{—costeoref(R)} where Z = Z exp {—costeoref(R)} .
R:R is valid

Thus, solving CC is equivalent to finding the most likely state of Y.

2.2.3 Markov Logic

From the above LR, CRF, and CC examples, we see that the factors in a
graphical model can often be grouped into a small number of templates.
Each of these specialized models is characterized by its templates: e.g., a
linear-chain CRF model is defined by unigram and bigram factors, and
a CC model is defined by the four types of factors in Figure 2.5. Thus, a
valuable tool for statistical modeling is a framework to succinctly specify
such templates in general. There are several such frameworks, e.g., Facto-
rie [78] uses Java and Markov logic [30, 87, 103] uses weighted first-order
logic rules. We focus on Markov logic, which is a core component of Ere-
MENTARY. We briefly describe Markov logic using an example that extracts
affiliations between people and organizations from web text.

21

Schema Evidence
pSimHard(perl, per2) coOccurs(“Ullman’, ‘Stanford Univ.")
pSimSoft(perl, per2) coOccurs(‘Jeff Ullman’, ‘Stanford”)
oSimHard(orgl, org2) coOccurs(‘Gray’, ‘San Jose Lab’)
pSimSoft(orgl, org2) coOccurs(’]. Gray’, IBM San Jose’)
coOccurs(per, org) coOccurs(‘Mike’, ‘UC-Berkeley’)
homepage(per, page) coOccurs(‘Mike’, “'UCB’)
oMention(page, org) coOccurs(‘Joe’, "'UCB’)
faculty(org, per) faculty(‘MIT’, “Chomsky’)
xaffil(per, org) homepage(‘Joe’, ‘Doc201")
xoCoref(orgl, org2) oMention(‘Doc201’, IBM’)
xpCoref(perl, per2) e

Rules
Weight rule
+o0o pCoref(p,p) (F1)
+oo pCoref(pl,p2) => pCoref(p2,pl) (F2)
+oo pCoref(x,y),pCoref(y,z) => pCoref(x,z) (F3)
6 pSimHard(p1l, p2) => pCoref(pl,p2) (F4)
2 pSimSoft(pl,p2) => pCoref(pl, p2) (Fs)
+oo faculty(o,p) => affil(p, o) (Fe)

homepage(p, d), oMention(d, 0) => affil(p,o0) (F7)
coOccurs(p,0l),o0Coref(ol,02) => affil(p,02) (Fs)
coOccurs(pl, o), pCoref(pl,p2) => affil(p2,0) (F9)

=~ W

Figure 2.6: An example MLN program that performs three tasks jointly: 1. dis-
cover affiliation relationships between people and organizations (af£il); 2. resolve
coreference among people mentions (pCoref); and 3. resolve coreference among
organization mentions (oCoref). The remaining eight relations are evidence
relations. In particular, coOccurs stores person-organization co-occurrences;
*Simx relations are string similarities.

Syntax A Markov logic program (aka Markov logic networks, or MLN)
consists of three parts: schema, evidence, and rules (see Figure 2.6). To tell
ELeMENTARY what data will be provided or generated, the user provides a

schema. Some relations are standard database relations, and we call these

22

relations evidence. Intuitively, evidence relations contain tuples that we
assume are correct. In the schema of Figure 2.6, the first eight relations
are evidence relations. For example, we know that ‘Ullman’ and ‘Stanford
Univ.” co-occur in some web page, and that ‘Doc201” is the homepage of
‘Toe’. In addition to evidence, there are also relations whose content we do
not know; they are called query relations. A user may ask for predictions
on some or all query relations. For example, affil is a query relation
since we want to predict affiliation relationships between persons and
organizations. The other two query relations are pCoref and oCoref, for
person and organization coreference, respectively.

In addition to schema and evidence, we also provide a set of MLN
rules encoding our knowledge about the correlations and constraints over
the relations. An MLN rule is a first-order logic formula associated with a
real number (or infinity) called a weight. Infinite-weighted rules are called
hard rules, which means that they must hold in any prediction that the
MLN system makes. In contrast, rules with finite weights are soft rules: a

positive weight indicates confidence in the rule’s correctness.’

Example 2.2. An important type of hard rule is a standard SQL query, e.g., to
transform the results for use in the application. A more sophisticated example of
hard rule is to encode that coreference has a transitive property, which is captured
by the hard rule F5. Rules Fg and Fy use person-organization co-occurrences
(coOccurs) together with coreference (pCoref and oCoref) to deduce affiliation
relationships (af£il). These rules are soft since co-occurrence in a webpage does
not necessarily imply affiliation.

Intuitively, when a soft rule is violated, we pay a cost equal to the abso-

lute value of its weight (described below). For example, if coOccurs(‘Ullman’,

SRoughly these weights correspond to the log odds of the probability that the state-
ment is true. (The log odds of probability p is log 1%-.) In general, these weights do not
have a simple probabilistic interpretation [103].

23

‘Stanford Univ.") and pCoref(“Ullman’, ‘Jeff Ullman’), but not affil1(‘Jeff
Ullman’, ‘Stanford Univ."), then we pay a cost of 4 because of Fo.
Similarly, affiliation relationships can be used to deduce non-obvious
coreferences. For instance, using the fact that “‘Mike’ is affiliated with both
“UC-Berkeley” and “UCB’, ELEMENTARY may infer that “UC-Berkeley” and
‘UCB'’ refer to the same organization (rules on oCoref are omitted from
Figure 2.6). If ELEMENTARY knows that ‘Joe” co-occurs with “UCB’, then it is
able to infer Joe’s affiliation with “UC-Berkeley’. Such interdependencies

between predictions are sometimes called joint inference.

Semantics An MLN program defines a probability distribution over
possible worlds. Formally, we first fix a schema o (as in Figure 2.6) and a
domain D. Given as input a set of formulae F=F,,..., Fn with weights
wy, ..., Wy, they define a probability distribution over possible worlds as
follows. Given a formula F, with free variables X = (xq, -+ ,Xm), for
each d € D™ we create a new formula g3 called a ground formula where
gg denotes the result of substituting each variable x; of Fy with d;. We
assign the weight wy to gz. Denote by G = (g, w) the set of all such
weighted ground formulae of F. Essentially, G forms a Markov random
field (MRF) [63] over a set of Boolean random variables (representing
the truth value of each possible ground tuple). Let w be a function that
maps each ground formula to its assigned weight. Fix an MLN F, then for
any possible world (instance) I, we say a ground formula g is violated if
w(g) > 0 and g is false in [, or if w(g) < 0 and g is true in I. We denote
the set of ground formulae violated in a world I as V(I). The cost of the
world I is

costuin(D) = Y [w(g)| 2.1)
gev(l)

Through costyin, an MLN defines a probability distribution over all in-
stances using the exponential family of distributions (that are the basis for

24

PN pCoref(Chomsky, Noam)
faculty(MIT, Chomsky) |)
4

homepage(Chomsky, D1) Fy . 'coOccurs(Noam, MIT)

affil(Chomsky, MIT)

oMention(D1, MIT) | \‘

Figure 2.7: A portion of the graphical model represented by the MLN in Fig-
ure 2.6.

graphical models [137]):
Pr(l] = Z ' exp {—costmin (1)}
where Z is a normalizing constant.

Connection with Graphical Models An MLN essentially encodes a
graphical model with X being all evidence tuples, and Y being all un-
known tuples. Each MLN rule compactly represents a family of factors:
let F; be a formula with k literals, then F; defines a factor function of the
form f; : {0,1}* — {0, —|w;i|}. Each factor function takes value —|wj;]| if
and only if the corresponding ground formulae is violated. Figure 2.7
illustrates a small portion of the graphical model represented by the MLN
in Figure 2.6.

To better understand the semantics of MLNSs, consider the following

example.

Example 2.3. If the MLN contains a single rule, then there is a simple prob-
abilistic interpretation. Consider the rule R(*a’) with weight w. Then every
possible world that contains R(‘a’) has the same probability. Assuming that
there are an equal number of possible worlds that contain R(‘a’) and do not,
then the probability that a world contains R(‘a’) according to this distribution

25

is e"/(e™ + 1). In general, however, it is not possible to give such a direct
probabilistic interpretation [103].

2.3 Statistical Inference

There are two main tasks on a statistical model: (1) inference, namely the
process of making predictions given evidence and a statistical model; and
(2) learning, namely to find optimal correlation structure or parameters
within a certain family of statistical models given example pairs of evidence
and desired predictions. Because learning typically involves inference
as subroutines, we present several common inference algorithms in this

section and defer learning to the next section.

Inference Types There are two main types of inference with statistical
models: MAP (maximum a posterior) inference, where we want to find a
most likely assignment Y = y, and marginal inference, where we want to
compute the marginal probability of each unknown variable in Y. For
some specialized statistical models such as LR and CRE, there are efficient
algorithms for inference. For general graphical models or MLNs, both
types of inference are intractable, but there are approximate algorithms.

2.3.1 Inference on Specialized Models

We describe inference algorithms for LR, CRF, and CC.

Logistic Regression Inference on LR models is straightforward [47]: one
only needs to directly apply the model definition to compute the dot
product between the weight vector w and evidence variables x and then
calculate the logistic function ;L= If the evidence data are stored in an
RDBMS, one could also perform LR inference with user defined aggregates

(UDA).

26

Algorithm 1 Viterbi algorithm for MAP inference on linear-chain CRFs [70]

Input: A linear-chain CRF model (using notations in Section 2.2.1)
Output: A most likely state y* = arg max, PrlY =yl
Initialize matrix V(i,y) + 0for1 <i<nandy €{0,1}
Initialize base cases V(1,y) < exp{f(x1,0,y)} fory € {0, 1}
fork =2tondo

/ / Recurse according to the bigram factors

V(k,y) < maxy V(k —1,y") exp{f(xx,y’,y)} fory € {0,1}
Vi arg max, V(ik,y)fort<k<n

AU L

Algorithm 2 Forward-backward algorithm for marginal inference on
linear-chain CRFs [70]

Input: A linear-chain CRF model (using notations in Section 2.2.1)
Output: Marginal probabilities Pr[Y; = 1] for1 <i<n
. Initialize forward matrix A(i,y) <+ Ofor1 <i<nandy € {0, 1}
Initialize backward matrix B(i,y) « Ofor 1 <i<mandvy € {0,1}
Base cases A(1,y) + exp{f(x1,0,y)} fory € {0,1}
Base cases B(n,y) < exp{f(xn,0,y)} fory € {0, 1}
// Forward recursion
fork =2ton do
y) =2, Alk—1,y") exp{f(xx,y’,y)} fory € {0, 1}

// Backward recursion
fork=m—1to1ldo

B(k,y) =2,/ B(k+1,y")exp{f(xx,y’,y)}fory €{0,1}
: // Calculate partitioning function
1 L+) ,B(1
: PrlY; =1 =A(i,1)B(i,1)/Zfor1 <i<n

o
WN RO

27

Conditional Random Fields Linear-chain CRFs can be efficiently solved
with dynamic programming-based Viterbi algorithm (for MAP inference)
and the forward-backward algorithm (for marginal inference) [70]. Follow-
ing the notations in Section 2.2.1, we describe the algorithms in Algorithm 1

and Algorithm 2, respectively.

Algorithm 3 A simple algorithm for correlation clustering [2]

Input: A graph G = (V, E) with weight function w (using notations in
Section 2.2.2)
Output: A partitioningof V=1V;,..., Vi forsome 1 < k < |V
: Initialize node set C =0 // Covered nodes
Initialize edge set D = () // retained edges
Select a permutation 7ty of V uniform at random
for each v in the order 1y do
// Ignore nodes that have been covered
if v ¢ C then
// Group this node with all neighbors connected by a positive edge
D+ DuU{e=(v,u)|uéC,w(e) >0}
// Consider all nodes in this group as being covered
C+— Cu{vtufule=(v,u) € E,w(e) >0}
: return components in H = (V, D)

I ——
=

Correlation Clustering Coreference or correlation clustering is a well-
studied problem [35], and there are many approximate inference tech-
niques [2, 8, 119]. We list the pseudo-code of two such algorithms in
Algorithm 3 and Algorithm 4.

2.3.2 Inference on Graphical Models

In general, inference on graphical models is intractable. But if a graphical
model is a tree (in the factor graph representation), there are efficient
dynamic programming algorithms that perform exact inference. We de-

28

Algorithm 4 An MCMC-based algorithm for correlation clustering [119]

Input: A graph G = (V, E) with weight function w (see Section 2.2.2);
MeN

Output: A partitioningof V=V;,..., V) forsome 1 < k < |V]

: Initialize singleton clusters € = {C, ={v}|v € V}

: fori=1to M do

Randomly pick a non-empty cluster S € €, anode v € §, and another

cluster T # S

4: Calculate the change of costcorer (denoted) for moving v from Sto T

5. With probability min(e=®°,1), move v from S to T

6: // The move is greedy: cost-decreasing moves are always taken

7: return non-empty clusters in €

@ N

scribe inference algorithms for both this special case and general graphical
models.

Special Cases: Trees The inference algorithms for tree-shaped graph-
ical models are essentially generalizations of the Viterbi and forward-
backward algorithms for CRFs. They pass messages between the nodes in
a graphical model. The MAP inference algorithm for tree-shaped graphi-
cal models is called MaxProduct, and the marginal inference algorithm is
called SumProduct. We display the SumProduct algorithn in Algorithm 5.
The MaxProduct algorithm is similar to SumProduct but replaces the
sum operations with max and adds a backtracking step at the end of the
algorithm.

General Graphical Models For graphical models that contain cycles, the
above SumProduct and MaxProduct no longer apply. There are several
common techniques to perform approximate inference on such graphs.
First, one could apply the junction tree technique to transform the graph
into a tree by contracting subsets of nodes in the graph. Second, a popular

approach is called (loopy) belief propagation, where we run the SumProd-

29

Algorithm 5 SumProduct algorithm for marginal inference on graphical
models [67]

Input: A tree-shaped factor graph T = (V,F,E) where V = XU Y (see

Section 2.2.2)

Output: Pr[Y; =1]forY; €Y

1:
2:

Designate an arbitrary tree root Y, € Y

Denote by par(N) (resp. chd(N)) the parent (resp. children) of a node
N

// Set up base cases

4: For each edge e = (v,f) € E, fory € {0, 1}, allocate M(v, f,y) € R and

10:

11:
12:
13:

14:
15:
16:

17:
18:

M(f,v,y) € R
For each leaf variablenode Y; € Y, M(Y;,_,_) «+ 1
For each leaf factor node A = {v} € F, M(A,v,y) = fa(y) fory € {0,1}
/ / First pass: from leaves toward root
while IN € V s.t. all M(chd(N), N, _) entries are filled except for
M(par(N),N,_) do
If N € Y then M(N, par(N),y) « HK:K#par(N) M(K,N,y) fory €
{0,1}
If N € Fand P = par(N) €Y, then fory € {0,1}
MLEN/ Ply) <~ ZVN\{P} fN (N |P:y) HQEN\{P} M(Q,N,VQ) Where V=
XUy
// Second pass: from root toward leaves
M(Yy,_,) 1
while IN € V st. M(N,chd(N),_) entries are empty but
M(par(N),N,_) is filled do
for each P € chd(N) do
If N € Y then M(N,P,y) +]_[K:K#P M(K,N,y) fory € {0, 1}
If N € F, then fory € {0,1}
M(N,P,y) « ZVN\{P} NN [p—y) HQGN\{P} M(Q,N,vq) where
v=xUy
// Now every node has received messages from all other nodes
Pr[Yi = 1] A HA M(A/ Yil 1)/{2136{0,1} HA M(AI Yi/ 1)}

30

Algorithm 6 Gibbs sampling for marginal inference on graphical mod-
els [63]

Input: A factor graph G = (V,F,E) where V=XUY;M € N
Output: M samples of Y
: Initialize Y with a random assignment y"
: // One sample per iteration
: fori=1to M do

yt eyl

// The order could be randomized

for each variable Y; € Y do

Sample y; according to Pr[Yjly" ;] where y'; = y* \ {y;}

return yifor1 <i<M

S A U o A e

uct protocol regardless of the fact that there are cycles in the graph. There
exist many optimizations for belief propagation but in general there are
no theoretical guarantees with belief propagation. A third approach is
to employ sampling-based algorithms, e.g., Monte Carlo Markov Chain
(MCMC) algorithms. As an example, we list the pseudo-code of a popular
MCMC algorithm called Gibbs sampling in Algorithm 6. The conditional
probability Pr[Y;ly*;] can be efficiently computed because it depends on
only the Markov blanket of Y;, namely variables that share a factor with
Y;. Two filtering techniques are sometimes applied to Gibbs sampling
to improve the sampling quality: burn-in, where we discard the first few

samples, and thinning, where we retain every k samples for some integer
K.
2.3.3 Inference on Markov Logic

We describe state-of-the-art approaches to MLN inference as implemented

in ALCHEMY.

31

Algorithm 7 LazyGrounding [100]

Input: an MLN and atom a to be activated
Input: A.: currently active ground atoms
Input: G.: currently active ground clauses
Output: expanded A, and G,
1: G + ground clauses that can be violated by some assignment to a and
currently active atoms
2: Ae «+— A U{a}
3 G+ G, UG

Algorithm 8 WalkSAT [58, 100]

Input: A: initial active ground atoms
Input: C: initial active ground clauses
Input: MaxFlips,MaxTries
Output: o*: a truth assignment to A
1: lowCost < +00,0* < 0
2: for try =1 to MaxTries do
3: 0 < arandom truth assignment to A
4: for flip =1 to MaxFlips do
5. pick arandom c € C that’s violated
6: rand < random real € [0, 1]
7 if rand < 0.5 then
8 atom < random atom € c
9

: else
10: atom < argmin_._5(a)
11: // 8(a) = costyn(o’) — costyin(0)
12: // where ¢’ is 0 with atom a flipped
13: if atom is inactive then
14: activate atom; expand A, C

15: // Keep track of best world seen
16: flip atom in o

17: if costpin(0) < lowCost then

18: lowCost < costyun(0), 0* <+ o
19: return o*

32

Lazy Grounding Conceptually, we might ground an MLN formula by
enumerating all possible assignments to its free variables. However, this is
both impractical and unnecessary. Fortunately, in practice a vast majority
of ground clauses are satisfied by evidence regardless of the assignments to
unknown truth values; we can safely discard such clauses [115]. Pushing
this idea further, Poon et al. [100] proposed a method called “lazy inference”
which is implemented in ALcHEMY. Specifically, ALcaEmy works under
the more aggressive hypothesis that most atoms will be false in the final
solution, and in fact throughout the entire execution. To make this idea
precise, call a ground clause active if it can be violated by flipping zero
or more active atoms, where an atom is active if its value flips at any
point during execution (see Algorithm 7). ArcueEmy keeps only active
ground clauses in memory, which can be much smaller than the full set
of ground clauses. Furthermore, as on-the-fly incremental grounding is
more expensive than batch grounding, ALcHEMY uses the following one-
step look-ahead strategy at the beginning: assume all atoms are inactive
and compute active clauses; activate the atoms that appear in any of the
active clauses; and recompute active clauses.This “look-ahead” procedure
could be repeatedly applied until convergence, resulting in an active closure.

Turry implements this closure algorithm.

MAP Inference with WalkSAT Because the factors of the graphical
model generated from an MLN are all conjunctive normal forms (CNF)
or disjunctive normal forms (DNF), MAP inference in MLNSs can be re-
duced to the classic MaxSAT problem. The state-of-the-art MAP inference
algorithm for MLNSs is a heuristic search algorithm called WalkSAT [58]
(see Algorithm 8). WalkSAT performs random walks over all possible
assignments to Y (i.e., unknown atoms in the MLN). At each step, it ran-
domly picks a ground clause that is violated and fixes it in one of two
ways: flipping a randomly selected variable in this clause, or flipping the

33

variable in this clause that would result in the largest drop in the total cost.

Algorithm 9 SampleSAT [139]

Input: atoms A and clauses M
Input: N // number of steps
Output: o*: a truth assignment to A

1: lowCost < +o00, 0"+ 0

2: 0 < arandom truth assignment to A
3: fori=1toN do

4: pick arandom c € M that’s violated
5: rand <+ random real € [0, 1]

6: if rand < 0.5 or costyin(0) > 0 then
7. run a WalkSAT step (Algorithm 8)
8: else

9: randomly select an atom a in ¢
10: & < change of cost if a is flipped.
11: with probability e~?, flip a
12: // Keep track of best world seen
13: if costyin(0) < lowCost then
14: lowCost COStMLN(G), 0"+ o
15: return o*

Marginal Inference with MC-SAT The state-of-the-art marginal infer-
ence algorithm for MLNs is MC-SAT [96]. Motivated by the fact that the
factors compiled from an MLN are logical formulae, MC-SAT combines an
MCMC style sampling algorithm with a heuristic SAT sampling algorithm
called SampleSAT [139]. The SampleSAT algorithm in turn combines
WalkSAT with simulated annealing. The pseudo-code for SampleSAT and
MC-5SAT is listed in Algorithm 9 and Algorithm 10, respectively.

2.3.4 Dual Decomposition

A classic inference technique is dual decomposition [66, 123] that can decom-

pose a general intractable statistical model (e.g., a graphical model) into

34

Algorithm 10 MC-SAT [96]

Input: atoms A and clauses C
Input: N // number of samples
Output: N samples of assignments to A
0y + arandom assignment to A satisfying all hard clauses in C
: fori =1to N do
M 0
// Sample from current “good”
// clauses for next iteration
for all c € C not violated by o;_; do
with probability 1 — e~ ()],
M +— M U{c}
0; < running SampleSAT on M
return o; for1 <i <N

NGy

multiple pieces such that each piece (e.g., a tree) may become tractable.
We illustrate the basic idea of dual decomposition with a simple example.
Consider the problem of minimizing a real-valued function f(x1, x5, x3).

Suppose that f can be written as
f(x1,%2,x3) = f1(x1,%2) + fa(x2, X3).

Further suppose that we have black boxes to solve f; and f, (plus linear
terms). To apply these black boxes to minimize f we need to cope with the
fact that f; and f, share the variable x,. Following dual decomposition,

we can rewrite miny, y, x, f(x1, X2, X3) into the form

min fi(x1,X21) + fa(x22,X3) 8.t. X21 = X2»,
X1,X21,X22,X3
where we essentially made two copies of x, and enforce that they are iden-
tical. The significance of such rewriting is that we can apply Lagrangian
relaxation to the equality constraint to decompose the formula into two

independent pieces. To do this, we introduce a scalar variable A € R

35

(called a Lagrange multiplier) and define g(A) =

o, min f1(x1,%21) + fa(X22, X3) + Alx21 — X22).

For any A, we have g(A) < miny, x,x, f(x1,%2,%3).* Thus, the tightest
bound is to maximize g(A); the problem max, g(A) is a dual problem for
the problem on f. If the optimal solution of this dual problem is feasible
(here, X1 = x2), then the dual optimal solution is also an optimum of the
original program [143, p. 168].

The key benefit of this relaxation is that, instead of a single problem on
f, we can now compute g(A) by solving two independent problems (each
problem is grouped by parentheses) that may be easier to solve:

g(A) =min (f(x1,X21) + Ax21)

X1,X21
+ min (fp(x22, X3) — Ax22) .
X22,X3
To compute max, g(A), we can use standard techniques such as projected
subgradient [143, p. 174]. Notice that dual decomposition can be used for
MLN inference if x; are truth values of ground tuples and one defines f to
be costyin(I) as in Equation 2.1.

2.4 Statistical Learning

The statistical models in Section 2.2 have parameters such as the weight
vector in logistic regression and conditional random fields and the rule
weights in an MLN. To determine the “optimal” value for these parameters,
a common approach is to apply statistical learning. In addition to the

model M,, itself (with parameters w to be determined), the input also

4One can always take xp1 = X2 = X, in the minimization, and the value of the two
objective functions are equal.

36

includes a set of training examples T = {(xi,yi)}i™; and an objective function
hr(w) : R™l— R. The goal is to find arg min_ hr(w).

To illustrate, consider a logistic regression model with the following
objective function

m
hr(w) =) log(1+exp(—yiw'x:)) + pfw].
i=1

Intuitively, the sum penalizes the “discrepancy” between the model’s pre-
diction (i.e., w'x;) and the ground-truth value in the example (i.e., yi),
while the second term p||w||; penalizes the “magnitude” of the parameters
w. W is a “meta-parameter” that intuitively controls how much restric-
tion we place on the magnitude of the parameters (and actually also the
“sparsity” of the parameters, i.e., how many entries of w are non-zero).

There are many algorithms for statistical learning. However, as this
dissertation does not directly address learning algorithms themselves, we
refer the reader to papers that do so; e.g., scaling statistical learning using
an RDBMS [37], parallelization [38], weight learning for Markov logic [76],
and structure learning for Markov logic [61, 62].

2.5 Additional Related Work

We discussed some background material and pioneering work on KBC in
Section 2.1. In this section, we discuss additional related work.

Knowledge-base Construction using Statistical Inference There is a
trend to build KBC systems with increasingly sophisticated statistical in-
ference. For example, CMU’s NELL [17] integrates four different extraction
components that implement complementary techniques and consume vari-
ous data resources (e.g., natural-language text, lists and tables in webpages,
and human feedback). MPI's SOFIE/Prospera [84, 126] combines pattern-

37

based relation extraction approaches with domain-knowledge rules, and
performs consistency checking against the existing YAGO knowledge base.
Microsoft’s StatsSnowball/EntityCube [149] performs iterative distant
supervision while using the {;-norm regularization technique to reduce
noisy extraction patterns; similar to ELEMENTARY, StatsSnowball also in-
corporates domain knowledge with Markov logic and observed quality
benefit in doing so. Finally, behind IBM’s DeepQA project’s remarkable
success at the Jeopardy Challenge, there is a “massively parallel probabilis-
tic evidence-based architecture” that combines “more than 100 different
techniques” [39].

Distant Supervision The idea of using entity-level structured data (e.g.,
facts in a database) to generate mention-level training data (e.g., in English
text) is a classic one: researchers have used variants of this idea to extract
entities of a certain type from webpages [15, 46]. More closely related to
relation extraction is the work of Lin and Patel [74] that uses dependency
paths to find answers that express the same relation as in a question.

Since Mintz et al. [82] coined the name “distant supervision,” there has
been growing interest in this technique. For example, distant supervision
has been used for the TAC-KBP slot-filling tasks [128] and other relation-
extraction tasks [17, 51, 85, 86]. In contrast, we study how increasing input
size (and incorporating human feedback) improves the result quality of
distant supervision.

In Chapter 4, we focus on logistic regression, but it is interesting fu-
ture work to study more sophisticated probabilistic models; such models
have recently been used to relax various assumptions of distant supervi-
sion [50, 106, 147]. Specifically, they address the noisy assumption that,
if two entities participate in a relation in a knowledge base, then all co-
occurrences of these entities express this relation. In contrast, we explore

the effectiveness of increasing the training data sizes to improve distant-

38

supervision quality.

Sheng et al. [117] and Gormley et al. [43] study the quality-control
issue for collecting training labels via crowdsourcing. Their focus is the
collection process; in contrast, our goal is to quantify the impact of this
additional data source on distant-supervision quality. Moreover, we ex-
periment with one order of magnitude more human labels. Hoffmann
et al. [49] study how to acquire end-user feedback on relation-extraction
results posted on an augmented Wikipedia site; it is interesting future
work to integrate this source in our experiments. Active learning [113] is the
idea of adaptively selecting unlabeled examples and ask for human labels.
Intuitively one would expect the strategies in active learning to help with
incorporating human feedback for distant supervision. In our preliminary
experiments on distant supervision, we experimented with several state-
of-the-art active learning heuristics [72, 114]. It is interesting to further

explore the intersection between active learning and crowdsourcing.

Markov Logic There are statistical-logical frameworks similar to MLNs,
such as Probabilistic Relational Models [41] and Relational Markov Mod-
els [131]. Inference on those models also requires grounding and search,
and we are optimistic that the lessons we learned with MLNSs carry over
to these models. MLNs are an integral part of state-of-the-art approaches
in a variety of applications: natural language processing [105], ontology
matching [145], information extraction [97], entity resolution [120], etc.
And so, there is an application push to support MLNs.

Markov Logic Inference The idea of using the stochastic local search
algorithm WALKSAT to find the most likely world is due to Kautz et al. [58].
Singla and Domingos [121] proposed lazy grounding and applies it to
WALKSAT, resulting in an algorithm called LazySAT that is implemented
in Arcuemy. The idea of ignoring ground clauses that are satisfied by
evidence is highlighted as an effective way of speeding up the MLN

39

grounding process in Shavlik and Natarajan [115], which formulates the
grounding process as nested loops and provides heuristics to approximate
the optimal looping order. Mihalkova and Mooney [80] also employ a
bottom-up approach as does Turry, but they address structure learning of
MLNs whereas we focus on inference. Knowledge-based model construc-
tion [142] is a technique that, given a query, finds the minimal relevant
portion of a graph; although the resulting subgraph may contain multiple
components, the downstream inference algorithm may not be aware of it
and thereby cannot benefit from the speedup in Theorem 5.2.

While Turry employs the simple WalkSAT algorithm, there are more
advanced techniques for MAP inference [32, 45]. For hypergraph partition-
ing, there are established solutions such as hMETIS [56]. However, existing
implementations of them are limited by memory size, and it is future work
to adapt these algorithms to on-disk data; this motivated us to design the
partitioning algorithm in Turry. The technique of cutset conditioning [94]
from the SAT and probabilistic inference literature is closely related to our
partitioning technique [3, 93]. Cutset conditioning recursively conditions
on cutsets of graphical models, and at each step exhaustively enumerates
all configurations of the cut, which is impractical in our scenario: even for
small datasets, the cut size can easily be thousands, making exhaustive
enumeration infeasible. Instead, we use a Gauss-Seidel strategy, which
we show is efficient and effective. Additionally, our conceptual goals are
different: our goal is to find an analytic formula that quantifies the effect of
partitioning and then, we use this formula to optimize the IO and schedul-
ing behavior of a class of local search algorithms; in contrast, prior work

focuses on designing new inference algorithms.

Scaling Markov Logic There has been extensive research interest in tech-
niques to improve the scalability and performance of MLN inference. For

example, multiple researchers have studied how to prune MRFs based on

40

logical rules in MLNSs [115, 121], and incrementally ground or unroll the
MREF [104, 122]. Mihalkova and Richardson [81] study how to avoid redun-
dant computation by clustering similar query literals. It is an interesting
problem to incorporate their techniques into Turry.

An orthogonal direction to dual decomposition is lifted inference [14,
25,59, 95, 111]. Lifted inference is similar to our proposed approach for
dual decomposition in that both exploit symmetries in the MRF. Nev-
ertheless, while FeLix uses symmetries to invoke specialized inference
algorithms, lifted inference augments a general inference algorithm to op-
erate on first-order (non-grounded) representations. For example, Singla
and Domingos [122] proposed a lifted version of belief propagation to
exploit these symmetries [81, 122].

Probabilistic Databases Pushing statistical reasoning models inside a
database system has been a goal of many projects [29, 52, 55, 102, 138].
Most closely related is the BayEsStore project, in which the database es-
sentially stores Bayes nets [94] and allows these networks to be retrieved
for inference by an external program. In contrast, Turry uses an RDBMS
to optimize the inference procedure. The Monte-Carlo database [52] made
sampling a first-class citizen inside an RDBMS. In contrast, in Turry our
approach can be viewed as pushing classical search inside the database
engine. One way to view an MLN is a compact specification of factor
graphs [112]. Sen et al. [112] proposed new algorithms; in contrast, we take
an existing, widely used class of algorithms (local search), and our focus
is to leverage the RDBMS to improve performance. There has also been an
extensive amount of work on probabilistic databases [6, 10, 24, 101] that deal
with simpler probabilistic models. Finding the most likely world is trivial
in these models; in contrast, it is highly non-trivial in MLNs (in fact, it is
NP-hard [30]). Finally, none of these prior approaches deal with the core

technical challenge Turry addresses, which is handling Al-style search

41

inside a database.

Dual Decomposition Dual decomposition is a classic and general tech-
nique in optimization that decomposes an objective function into multiple
smaller subproblems; in turn these subproblems communicate to optimize
a global objective via Lagrange multipliers [11]. Recently dual decomposi-
tion has been applied to inference in graphical models such as MRFs. In
the master-slave scheme [65, 66], the MAP solution from each subproblem
is communicated and the Lagrange multipliers are updated with the pro-
jected gradient method at each iteration. Our prototype implementation
of FeLix uses the master-slave scheme. It is future work to adapt the closely
related tree-reweighted (TRW) algorithms [64, 136] that decompose an
MREF into a convex combination of spanning trees each of which can be
solved efficiently.

Researchers have also applied dual decomposition in settings besides
graphical models. For example, Rush et al. [108] employ dual decomposi-
tion to jointly perform tagging and parsing in natural language processing.
FeLix can be viewed as extending this line of work to higher-level tasks
(e.g., classification and clustering). Dual decomposition requires itera-
tive message passing to resolve the predictions output by subproblems.
There is recent work on techniques to improve the convergence rate of
dual decomposition [42, 54].

42

3 KNOWLEDGE-BASE CONSTRUCTION IN

ELEMENTARY

To perform web-scale KBC that combines diverse data resources and tech-
niques, it is crucial to have a clean conceptual model for KBC and an
infrastructure that is able to deal with terabytes of data. We first describe
a simple KBC model that we use in ELEMENTARY, and then briefly discuss
the infrastructure that enables web-scale KBC in ELEMENTARY. The work in

this chapter appears in Niu, Zhang, Ré, and Shavlik [90].

3.1 Conceptual Model and Architecture

Conceptual Model ErLemENTARY adopts the classic Entity-Relationship
(ER) model [16, 20]: the schema of the targe knowledge base (KB) is spec-
ified by an ER graph G = (E, R) where E is one or more sets of entities
(e.g., people and organizations), and R is a set of relationships. Define
E(G) = UgceE, ie., the set of known entities. To specify a KBC task to
ELEMENTARY, one provides the schema G and a corpus D. Each document
d; € D consists of a set of (possibly overlapping) text spans (e.g., tokens
or sentences) T(d;). Text spans referring to entities or relationships are
called mentions (see Figure 3.1). Define T(D) = Ug,ep T(di). Our goal is to

accurately populate the following tables:
* Entity-mention table M(&(G), 7(D)).!

* Relationship-mention tables Mz, C T(D)**! for each R; € R; k is
the arity of R;, the first k attributes are entity mentions, and the last

attribute is a relationship mention.

For simplicity, in this conceptual model we assume that all entities are known, but
ELEMENTARY supports generating novel entities for the KB as well (e.g., by clustering
“dangling” mentions).

43

Entities Mention-level Features
« Bill Clinton —> m * “Mr.” is a male personal title
* Bill Gates Mentions * “Gates” isa common name
* Steve Jobs
* Barack Obama
: Relationship Mentions
Relationships) Entity-level Features
ORGANIZATION ded .
* Google Inc. FoundedBy Acquired Bill Gates
* Microsoft Corp. Company Founder Acquirer Acquiree + isamale person
* United States . :
« YouTube Microsoft Corp. Bill Gates Google Inc. YouTube is very frequently mentioned

aka William Gates IlI

Figure 3.1: An illustration of the KBC model in ELEMENTARY.

* Relationship tables R; € R.

Note that R; can be derived from Mg and Mg,. By the same token, Mg
and Mg, provide provenance that connects the KB back to the documents
supporting each fact. The process of populating M is called entity linking;
the process of populating Mg, is called relation extraction. Intuitively, the
goal is to produce an instance] of these tables that is as large as possible
(high recall) and as correct as possible (high precision). ELEMENTARY pop-
ulates the target KB based on signals from mention-level features (over
text spans) and entity-level features (over the target KB). Mention-level
teatures include, e.g., relative position in a document, matched regular
expressions, web search results, etc. Entity-level features include, e.g.,
canonical names and known entity attributes (e.g., age, gender, alias, etc.).

Depending on the data sources and the feature-extraction process,
there may be errors or inconsistencies among the feature values. These
features are the input to ELEMENTARY’s machine learning and statistical
inference components. Thus, it is crucial that ELEMENTARY performs fea-
ture extraction in a scalable and efficient manner. A key issue for machine
learning is the availability of training data, and an increasingly popular

technique addressing this issue is distant supervision. We found that scal-

44

Crowd- oore Domain Knowledge,
Statistical Models for . | 8¢,
sourced . 5 D per Advice,
. Mention Extraction
User Feedback

Text Corpora,
Annotations

Linguistic Resources
(e.g., WordNet) Learning

NLP Tools,
Custom Code

Markov Logic

Web Search Results, Program

HTML lists/tables

candidate

Statistical
Inference

Feature
Extraction

Entities,
Relationships,
Mentions

entity mentions and
relationship mentions;
linguistic, string-based, and
entity-level signals

Ontologies,
Dictionaries
(e.g., Freebase)

Figure 3.2: Architecture of ELEMENTARY. ELEMENTARY takes as input diverse
data resources, converts them into relational features, and then performs machine
learning and statistical inference to construct knowledge bases.

ing the input data resources is indeed an effective approach to improving
the quality of KBC via distant supervision [148].

Elementary Architecture The central statistical modeling language in
ELEMENTARY, Markov logic, operates on relational data. To accommodate
diverse information sources, ELEMENTARY employs a two-phase architecture
when processing a KBC task: feature extraction and statistical inference
(see Figure 3.2). Intuitively, feature extraction concerns what signals may
contribute to KBC and how to generate them from input data resources
(e.g., pattern matching and selection), while statistical inference concerns
what (deterministic or statistical) correlations and constraints over the
signals are valuable to KBC and how to efficiently resolve them. The model
for statistical inference, i.e., a Markov logic program, can be constructed
using a combination of machine learning and domain knowledge.

All input data resources are first transformed into relational data via
the feature-extraction step. For example, one may employ standard NLP
tools to decode the structure (e.g., part-of-speech tags and parse trees) in
text, run pattern matching to identify candidate entity mentions, perform
topic modeling to provide additional features for documents or text spans,

45

etc. If a KBC technique (e.g., a particular learning or inference algorithm)
can be expressed in MLNs, one can also translate them into MLN rules.
Otherwise, one can execute the technique in the feature-extraction step
and “materialize” its result in evidence or MLN rules. Once we have
converted all signals into relational evidence, the second step is to perform
statistical inference to construct a knowledge base as described in the
above KBC model. From our experience of building large-scale knowledge
bases and applications on top of them, we have found that it is critical
to efficiently process structured queries over large volumes of structured
data. Therefore, we have built ELEMENTARY on top of a relational database

management system (RDBMS).

Development Workflow The high-level steps in applying ELEMENTARY
to a KBC task are as follows:

1. Choose the entities and relationships to recognize in text.?

2. Choose a corpus of documents, and collect all data resources that
may help with the current KBC task.

3. Perform feature extraction on the input data by running standard
NLP tools or custom code to create a relational representation of all
input data, i.e., evidence. Perform machine learning on the evidence
if needed.

4. Create an MLN program that integrates the statistical models gener-
ated by machine learning, domain-knowledge rules, or other sources
of information on the evidence and the target KB. If needed, perform

weight learning.

5. Run statistical inference with the MLN program and the evidence to

make predictions for the target KB.

2We leave open information extraction [146] as future work.

46

6. Inspect results and if appropriate, go to (3) or (4).

3.2 Examples

To demonstrate the flexibility of ELemENTARY for KBC, we use several ex-
amples to illustrate how ELEMENTARY integrates diverse data resources
and different techniques for KBC. Recall that there are two phases in EL-
EMENTARY: feature extraction and statistical inference. When integrating
an existing KBC technique, one needs to decide what goes into feature
extraction and what goes into statistical inference. To illustrate, we con-
sider several common techniques for entity linking, relation extraction,

and incorporating domain knowledge, respectively.

Entity Linking Entity linking is the task of mapping text spans to enti-
ties, i.e., populating the Mg (E, T(D)) tables in the formal model. To iden-
tify candidate mentions of entities, there are several common techniques,
e.g., (1) perform string matching against dictionaries; (2) use regular ex-
pressions or trigger words (e.g., “Prof.” for person mentions); (3) run
named-entity-recognition tools. All these techniques can be implemented
in the feature-extraction phase of ELEMENTARY. Sometimes a mention may
correspond to multiple candidate entities. To determine which entity is
correct, one could use various techniques and data resources. For example,
a heuristic is that “if the string of a mention is identical to the canonical
name of an entity, then this mention is likely to refer to this entity”; one

can express this heuristic in a (soft or hard) MLN rule:

MentionText(mention, string)
/\ EntityName(entity, string)

=> Mg (entity, mention).

47

When a named-entity-recognition (NER) tool is used in feature extrac-
tion, one can use the mention types output by the tool as a constraint for
entity linking. For example, let NerMentionType(mention, type) be an
evidence relation storing NER output; then we can add the constraint

MPERSUN (entlty, mention)

=> NerMentionType(mention, PERSON).

As another example, let Anchor(string, entity, freq) be an evidence
relation indicating how frequently (measured by the numeric attribute
freq) an anchor text string links to the Wikipedia page representing entity
entity. Then one could use these signals for entity disambiguity with the

rule

wgt(freq) : Anchor(string, entity, freq)
A\ MentionText(mention, string)

=> Mg (entity, mention).

where the wgt(freq) syntax means that the rule weight is a function of the
freq attribute of Anchor. Note that one can also adapt Anchor for other
data resources, e.g., web search results with mention phrases as queries
and Wikipedia links as proxies for entities. Another common technique
for entity linking is coreference. For example, let SamePerson(m1, m2)
be an equivalence relation indicating which pairs of person mentions
are coreferent, i.e., referring to the same entity. Then one can use the

following heuristics to propagate entity linking results between coreferent

48

mentions>:

MentionText(m1, s) /A MentionText(m2, s)
A\ InSameDoc(m1, m2) /A FullName(s)
=> SamePerson(m1l, m2).
MentionText(m1, s1) /A MentionText(m2, s2)
A InSamePara(m1, m2) /\ ShortFor(s1, s2)
=> SamePerson(m1, m2).
Moerson (€, m1) /A SamePerson(m1, m2)

=> Mpgrson(€, m2).

Relation Extraction Relation extraction is the task of determining whether
a relationship is mentioned in a text span, i.e., populating the relation-
ship mention tables My,. For natural-language text, the most common
approach is to perform classification based on linguistic patterns. Re-
searchers have found many different kinds of linguistic patterns to be
helpful; e.g., shallow features such as word sequences and part-of-speech
tags between entity mentions [17, 149], deep linguistic features such as
dependency paths [73, 82, 146], and other features such as the n-gram-
itemset [84]. To improve coverage and reduce noisiness of these patterns,
researchers have also invented different feature selection and expansion
techniques; e.g., frequency-based filtering [84, 146], feature selection with
{;-norm regularization [149], and feature expansion based on pattern sim-
ilarity [73, 84]. In ELEMENTARY, one can implement different combinations

of the above techniques in the feature extraction phase, and incorporate

3The weights are not shown for clarity.

49

the signals with (soft or hard) rules of the form

WordSequence(s, m1, m2, “was born in”')

=> Mairtnprace (M1, M2, s).

where s is a sentence and m1 and m2 are two entity mentions (i.e., text
spans) within s.

To learn the association between linguistic patterns and relationships,
there are two common approaches: direct supervision and distant super-
vision [82]. In direct supervision, one uses mention-level annotations of
relationship mentions as training data to learn a statistical model between
patterns and relationships [70]. As mention-level annotations are usu-
ally rare and expensive to obtain, an increasingly popular approach is
distant supervision, where one uses entity-level relationships and entity
linking to heuristically collect silver-standard annotations from a text cor-
pus [17, 82, 84, 149]. To illustrate, let KnownBirthPlace(person, location)
be an existing knowledge base containing tuples like

KnownBirthPlace(Barack_0Obama, Hawaii),

then one can perform distant supervision in ELEMENTARY by learning

weights for MLN rules of the form

wgt(pat) : WordSequence(s, m1, m2, pat)
/\ Mpggson(per, ml)
/\ Mrocarron(loc, m2)
=> KnownBirthPlace(per, loc).

where w(pat) is a parameterized weight that depends on the pattern pat;
intuitively it models how indicative this pattern is for the BirthPlace rela-

tionship. For example, ELEMENTARY may learn that “was born in” is indica-

50

tive of BirthPlace based on the tuple KnownBirthPlace(Barack_0bama, Hawaii),
the sentence s =“Obama was born in Hawaii,” and entity linking results

such as Mpggson(Barack_0Obama, Obama).

Domain Knowledge Several recent projects [17, 84, 149] show that entity-
level resources can effectively improve the precision of KBC. For example,
Prospera [84] found that validating the argument types of relationships
can improve the quality of relation extraction. One can incorporate such

constraints with rules like
00 : Mpirtnprace (M1, m2,s) => 3 el Mpgrson(el, m1)

which enforces that the first argument of a BirthPlace mention must be a
person entity. Besides typing, one can also specify semantic constraints
on relationships such as “a person can have at most one birth place” and

“HasChild and HasParent are symmetric”:

oo : BirthPlace(p, 11) A 11 # 12 => —BirthPlace(p, 12).
00 : HasChild(p1, p2) <=> HasParent(p2, p1).

Another type of domain knowledge involves corrections to systematic
errors in the statistical extraction models. For example, from sentences
like “Obama lived in Hawaii for seven years,” distant supervision may
erroneously conclude that the linguistic pattern “lived in” is strongly
indicative of BirthPlace. Once a developer identifies such an error (say via
debugging), one could correct this error by simply adding the rule

oo : WordSequence(s, m1, m2,“lived in”)

=> _'MBirthPIace (mlr mz/ S)-

Note that this rule only excludes mention-level relationships. Thus,

51

% Macrostrat Taxonomy oo IsPerson(x) > - IsFormation(x)

NLP Pattern i i
‘ Parsing H Matching ‘ 0.8 IsFormation(x) A IsLocation(y) Prob. Formation Location

Freebase Location Lat-Lngs A InSameSentence(x, y) 0.98 Barnette Texas
G Google Search Results - Diction.ary Menﬁ?" > Locatedin(x, y) 0.87 Husky Pie River
Matching Extraction

[0.84 Atoka Alberta

> 20K Geology Papers = Hazy Infrastructure

_ Heuristic Machine Learning

@ Document Annotations = Coreference == Statistical Inference

(a) Input Data Sources (b) Feature Extraction (c) Statistical Processing (d) Output Probabilistic Predictions

Figure 3.3: An overview of GEoDEEPDIVE’s development pipeline.

if there are sentences “X lived in Y” and “X was born in Y”, the final
(entity-level) KB may still contain the tuple BirthPlace(ex, ey) based on
the second sentence, where ex (resp. ey) denotes the entity referred to by
X (resp. Y).

3.2.1 Case Study: GeoDeepDive

To further illustrate ELEMENTARY’s development process, let us walk through
GeoDEeerD1vE, a demo project where we collaborate with geoscientists to
perform deep linguistic and statistical analysis over a corpus of tens of
thousands of research papers in geology. The goal is to extract useful infor-
mation from this corpus and organize it in a way that facilitates geologists’
research. The current version of GEoDeepDIVE extracts mentions of rock
formations, tries to assign various types of attributes to these formation
mentions (e.g., location, time interval, carbon measurements), and then
organizes the extractions and documents in spatial and temporal dimen-
sions for geology researchers. Figure 3.3 shows a high-level overview of

how we built GeoDeerDive with ELEMENTARY:

Input Data Sources ELEMENTARY embraces all data sources that can be
useful for an application. For GeoDeepD1vE, we use the Macrostrat taxon-

omy* because it provides the set of entities of interest as well as domain-

“nttp://macrostrat.org/

http://macrostrat.org/

52

specific constraints (e.g., a formation can only be associated with certain
time intervals). We use Google search results to map location mentions to
their canonical names and then to latitude-longitude (lat-Ing) coordinates
using Freebase®. These coordinates can be used to perform geographical
matching against the formations’ canonical locations (lat-Ing polygons
in Macrostrat). There are also (manual) document annotations of textual

mentions of formation measurements that serve as training data.

Feature Extraction The input data sources may not have the desired
format or semantics to be directly used as signals (or features) for statis-
tical inference or learning. The feature extraction step performs such
conversions. The developer explicitly specifies the schema of all relations,
provides individual extractors, and then specifies how these extractors
are composed together. For example, we (the developers) perform NLP
parsing on the input corpus to produce per-sentence structured data such
as part-of-speech tags and dependency paths. We then use the Macrostrat
taxonomy and heuristics to extract candidate entity mentions (of forma-
tions, measures, etc.) as well as possible coreference relationships between

the mentions.

Statistical Processing The signals produced by feature extraction may
contain imprecision or inconsistency. To make coherent predictions, the
developer provides constraints and (probabilistic) correlations over the
signals. For example, we use the Markov logic language; a Markov logic
program consists of a set of weighted logical rules and these rules represent

high-level constraints or correlations.

Output Probabilistic Predictions The output from Hazy’s statistical pro-

cessing infrastructure is probabilistic predictions on relations of interest

Shttp://freebase.com

http://freebase.com

53

Intervals v ’ i
Once TRHI is determined, TOCo can be caleculated (equation 3,
o appendix). From equations 1 to 3, the calculated TOCo value for
retaceous (1) <
Barnett Shale is 6.41% based on 95% type Il and 5% type IIl with
Devonlan (2) o . Tt T " “ds an average original HI
With probability 0.978, GeoDeepDive thinks that here 1s a CRo of 4.09 wt.%. CC
Ordovician (1) " .) .
Barnett Shale :arbon that is converted to
Pennsylvanian (3) is of type FORMATION 34 mg HC/g rock for S20 or
Tertiary (1) and refers to Barnett. 3/m3). The change ?n thése
ity based on the calibration
. d Montgomery etal.
Locations R

With probability 1.0, GeoDeepDive thinks that this formation

Antrim, County Antrim (2) is dated at Pennsytvanian. es that would be made

Jarvie and Lundell (1991),

Appalachia (1)
. espectively, to compute
Arkoma, Oklahoma (2) With plrobablllly 0.518, Geol.)eepD.lve thinks that this -maturity samples for type
Bamert Shale (1) formation refers to the following unit: { kcluding the increase in
UnitID: 5623

actions in these earlier
Brown County, Ohio (4) Formation: Barnett

Column ID: 160

Location: Bend Arch
Chris Tarrant (1))

cc (1)

Figure 3.4: Screen-shot from GEoDEepDIVE

(e.g., LocatedIn in Figure 3.3). These predictions can then be fed into the
frontend of GEoDEeepDivE (Figure 3.4).

3.3 Scaling Feature Extraction

As shown in Figure 3.2, feature extraction is a key step in ELEMENTARY
when processing a KBC task. To scale ELEMENTARY to web-scale KBC
tasks, we employ high-throughput parallel computing frameworks such
as Hadoop® and Condor” for feature extraction. We use the Hadoop File
System for storage and MapReduce [26] for feature extraction. However,
when trying to deploy ELEmENTARY to KBC tasks that involve terabytes of
data and deep linguistic features, we found a 100-node Hadoop MapRe-
duce cluster to be insufficient. The reasons are two-fold: (1) Hadoop’s
all-or-nothing approach to failure handling hinders throughput, and (2)
the number of cluster machines for Hadoop is limited. Fortunately, the
Condor infrastructure supports a best-effort failure model, i.e., a job may

®http://hadoop.apache.org/
"http://research.cs.wisc.edu/condor/

http://hadoop.apache.org/
http://research.cs.wisc.edu/condor/

54

finish successfully even when Condor fails to process a small portion of
the input data. Moreover, Condor can schedule jobs on both cluster ma-
chines and idle workstations. This allows us to simultaneously leverage
thousands of machines from across a department, an entire campus, or
even the nation-wide Open Science Grid.®? For example, using Condor, we
were able to utilize hundreds of thousands of machine-hours to perform
deep linguistic feature extraction (including named entity recognition and
dependency parsing) on the 500M-doc ClueWeb09 corpus’ within a week.

3.4 Effectiveness of Statistical Inference

A main hypothesis of ELEMENTARY is that one can improve KBC result
quality by combining more signals while resolving inconsistencies among
these signals with statistical inference. Although the experimental results
of several recent KBC projects have suggested that this is the case [17, 57,
84, 149], we use several more datasets to validate this hypothesis with
ELEMENTARY. Specifically, we use ELEMENTARY to implement solutions to
six different KBC tasks and measure how the result quality changes as
we vary the the amount of signals (in the form of input data resources or
MLN rules) in each solution. We find that overall more signals do tend to

lead to higher quality in KBC tasks.

Datasets and MLNs We consider six KBC tasks:

1. TAC, which is the TAC-KBP (knowledge-base population)'® chal-
lenge of populating a KB with 34 relations from a 1.8M-doc corpus
by performing two related tasks: a) entity linking: extract all en-
tity mentions and map them to entries in Wikipedia, and b) slot

filling: determine relationships between entities. The MLN combines

8http://www.opensciencegrid.org
‘http://lemurproject.org/clueweb09.php/
Onttp://nlp.cs.qc.cuny.edu/kbp/2010/

http://www.opensciencegrid.org
http://lemurproject.org/clueweb09.php/
 http://nlp.cs.qc.cuny.edu/kbp/2010/

55

signals from Stanford NER"!, dependency paths from the Ensem-
ble parser [127], web search results from Bing'? (querying mention
strings), and developers’ feedback on linguistic patterns (in the form
of MLN rules). For relation extraction, we perform distant super-
vision with Freebase as the training KB; Freebase is disjoint from
the TAC-KBP benchmark ground truth. ELEMENTARY’s quality for
TAC-KBP is comparable to the state of the art [53] — we achieved an
F1 score of 0.80 on entity linking (the best score in KBP2010 was 0.82;
human performance is about 0.90) and 0.31 on slot filling (the best
score in KBP2010 was 0.65, but all the other teams were lower than
0.30).

2. CIA, where the task is to populate the ternary person-title-in-country
(PTIC) relation by processing the TAC corpus. The MLN combines
signals such as a logistic regression model learned from distant su-
pervision on linguistic patterns between entity mentions (including
word sequences and dependency paths), name variations for persons,
titles, and countries, and developer’s feedback on the linguistic pat-
terns. The ground truth is from the CIA World Factbook."® Following
recent literature on distant supervision [50, 82, 147], we randomly
split the World Factbook KB into equal-sized training set and testing
set, and perform distant supervision with the training set to obtain a
relation-extraction model. We measure output quality on the testing
set portion of the KB. We will also report results after swapping the

training and testing sets.

3. IMDB, where the task is to extract movie-director and movie-actor
relationships from the TAC corpus. The MLN combines signals such

as a logistic regression-based distant supervision model using lin-

Hnttp://nlp.stanford.edu/software/index.shtml
2http://www.bing.com/toolbox/bingdeveloper/
Bhttps://www.cia.gov/library/publications/the-world-factbook/

http://nlp.stanford.edu/software/index.shtml
http://www.bing.com/toolbox/bingdeveloper/
https://www.cia.gov/library/publications/the-world-factbook/

56

guistic patterns between entity mentions (including word sequences
and dependency paths), a manually crafted list of erroneous movie
names, and developer’s feedback on linguistic patterns. The ground
truth is from the IMDB dataset.! For relation-extraction model train-
ing and quality evaluation, we follow the same methodology as in
CIA.

4. NFL, where the task is to extract National Football League game
results (winners and losers) in the 2006-07 season from about 1.1K
sports news articles. The MLN combines signals from a CRF-based
team mention extractor, a dictionary of NFL team-name variations,
and domain knowledge such as “a team cannot be both a winner
and a loser on the same day.” The CRF component is trained on
game results from another season. The weights of the other rules are

heuristically set. We use the actual game results as ground truth.'

5. Enron, where the task is to identify person mentions and associated
phone numbers from 680 emails in the Enron dataset.'® The MLN is
derived from domain knowledge used by a rule-based IE system [21,
75] — it combines signals such as a list of common person names and
variations, regular expressions for phone numbers, email senders’
names, and domain knowledge that “a person doesn’t have many
phone numbers.” The rule weights are heuristically set; no weight
learning is involved. We use our manual annotation of the 680 emails
as ground truth.

6. DBLife, where the task is to extract persons, organizations, and
affiliation relationships between them from a collection of academic

webpages.!” The MLN is derived from domain knowledge used by

Yhttp://www.imdb. com/interfaces
Bnttp://www.pro-football-reference.com/
nttp://www.cs.cmu.edu/~einat/datasets.html
http://dblife.cs.wisc.edu

http://www.imdb.com/interfaces
http://www.pro-football-reference.com/
http://www.cs.cmu.edu/~einat/datasets.html
http://dblife.cs.wisc.edu

57

Base Base+EL Base+RE Full
TAC string-based EL, DS for RE ~ +web search +domain knowledge all
CIA string-based EL, DS for RE ~ +name variations +domain knowledge all
IMDB string-based EL, DS for RE +erroneous names +domain knowledge all
NFL CRF winner/loser labeling N/A +domain knowledge all
Enron person-phone CO heuristic ~ +person coref +domain knowledge all
DBLife person-org CO heuristic +name variations +relaxed CO all

Table 3.1: Signals in the four versions of MLN programs for each KBC task. DS
means “distant supervision”; EL means “entity linking”; RE means “relation
extraction.” CO means “co-occurrences.”

another rule-based IE system [28] — it combines signals such as person
names and variations (e.g., first/last name only, titles), organization
names and a string-based similarity metric, and several levels of
person-organization co-occurrence (adjacent, same-line, adjacent-
line, etc.). The rule weights are heuristically set; no weight learning
is involved. We use the ACM author profile data as ground truth.'®

Methodology For each of the above KBC tasks, we consider four ver-
sions of MLN programs with different amounts of signals (Table 3.1): Base
is a baseline, Base+EL (resp. Base+RE) has enhanced entity-linking (EL)
(resp. relation-extraction (RE)) signals, and Full has all signals. For each
task, we run each version of MLN program with marginal inference on Er-
EMENTARY until convergence. We then take the output (sorted by marginal
probabilities) and plot a precision-recall curve. In precision-recall curves,
higher is better.

Results As shown in Figure 3.5, the overall result is that more signals
do help improve KBC quality: on each task, the quality of either Base+EL
or Base+RE improves upon Base, and the Full program performs the
best among all four versions. Specifically, on the TAC task, enhancing

Bhttp://www.acm.org/membership/author_pages

http://www.acm.org/membership/author_pages

58

1.0 1.0
TAC \ CIA
0.8 *\% 0.8
c
.g 0.6 0.6
'g | Base
a 04 7 SpaseseL 0.4
0.2 Base+RE — 0.2
=o=Full 3 Base “*=Base+EL Base+RE =®=Full
0.0 T T T T T 1 0.0 T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4
Recall
1.0 .
IMDB 10 NFL
0.8 0.8
\—0—\ Base
0.6 0.6
W o=l
0.4 0.4
0.2 = 0.2
Base “¥=Base+EL Base+RE =®=Full \9
0.0 T T T T T 1 0.0 T T T 1
0 100 200 300 400 500 600 0 0.2 0.4 0.6 0.8
1.0 1.0 -
Enron DBLife
0.8 0.8
Base
0.6 - e 0.6 - S ==Base+EL
4 o Base+RE
0.4 0.4 —o=rull
0.2 e 0.2
Base =#=Base+EL Base+RE =o=Full M
0.0 T T T T 1 0.0 T T T 1
0 0.1 0.2 0.3 0.4 0.5 0 2000 4000 6000 8000

Figure 3.5: Result quality of KBC tasks improves as we add more signals into
ELeEMENTARY. On each of the six tasks, we run four versions of ELEMENTARY
programs and plot the precision-recall curves for each version: Base is the base-
line version, Base+EL has enhanced signals for entity linking, Base+RE has
enchanced signals for relation extraction, and Full has enhanced signals for both
entity linking and relation extraction. [*] X-axes with integer labels correspond
to datasets where we use the true positive count to measure recall; the reason is
that the corpus covers only a small portion of the ground-truth KB. NFL has only
two curves because we do not have enhanced EL signals.

either EL or RE signals improves both precision and recall; futhermore,

the combination of such enhancements (resulting in the Full program)

59

achieves even higher quality than all the other three settings. These results
suggest that integrating signals with statistical inference is a promising
approach to KBC challenges such as TAC-KBP. On the single-relation KBC
tasks CIA, NFL, and Enron, we observe even more significant quality
improvement as more signals are used by ELEMENTARY: on each dataset,
the Full program has almost twice as high precision at each recall level
compared to the Base program.

On IMDB, the addition of enhanced EL signals slightly but consistently
improves precision (Base+EL over Base, and Full over Base+RE); the ad-
dition of enhanced RE signals effectively helps segregate high-confident
results from low-confident results (the slope of the curve becomes steeper).
On DBLife, the enhanced EL or RE signals help improve the precision
of the most-confident results (the first 500 predictions or so), while ex-
tending the largest recall value substantially. From the above results, we
conclude that one can improve the quality of KBC tasks by integrating
diverse data and signals via statistical inference. To further verify the
above observations, we also swap the training and testing sets for IMDB
and CIA. On either IMDB or CIA, the obtained essentially the same results
as in Figure 3.5.

60

4 ScALING DisTANT SuPERVISION FOR KBC

A key challenge to web-scale KBC is the ability to handle the variety of how
an entity or a relationship is expressed (i.e., mentioned) in natural-language
text. To deal with this challenge, researchers apply machine learning
techniques in KBC. A key issue for machine learning is the availability
of training data, and an increasingly popular technique addressing this
issue is distant supervision that generates training examples from scalable
data souces such as text corpora, existing knowledge bases, and crowd-
sourcing. To guide the development of web-scale KBC systems such as
ELEMENTARY, we study how scaling the input to distant supervision impacts
KBC quality. Most of the work in this chapter appears in Zhang, Niu, Ré,
and Shavlik [148].

4.1 Motivations

Relation extraction is the problem of populating a target relation (repre-
senting an entity-level relationship or attribute) with facts extracted from
natural-language text. Sample relations include people’s titles, birth places,
and marriage relationships.

Traditional relation-extraction systems rely on manual annotations
or domain-specific rules provided by experts, both of which are scarce
resources that are not portable across domains. To remedy these problems,
recent years have seen interest in the distant supervision approach for rela-
tion extraction [82, 144]. The input to distant supervision is a set of seed
facts for the target relation together with an (unlabeled) text corpus, and
the output is a set of (noisy) annotations that can be used by any machine
learning technique to train a statistical model for the target relation. For
example, given the target relation birthPlace(person, place) and a seed
fact birthPlace(John, Springfield), the sentence “John and his wife were born

61

in Springfield in 1946” (S1) would qualify as a positive training example.

Distant supervision replaces the expensive process of manually acquir-
ing annotations that is required by direct supervision with resources that
already exist in many scenarios (seed facts and a text corpus). On the other
hand, distantly labeled data may not be as accurate as manual annotations.
For example, “John left Springfield when he was 16” (S2) would also be con-
sidered a positive example about place of birth by distant supervision as
it contains both John and Springtield. The hypothesis is that the broad
coverage and high redundancy in a large corpus would compensate for
this noise. For example, with a large enough corpus, a distant supervision
system may find that patterns in the sentence S1 strongly correlate with
seed facts of birthPlace whereas patterns in S2 do not qualify as a strong
indicator. Thus, intuitively the quality of distant supervision should im-
prove as we use larger corpora. However, there has been no study on the
impact of corpus size on distant supervision for relation extraction. Our
goal is to fill this gap.

Besides “big data,” another resource that may be valuable to distant
supervision is crowdsourcing. For example, one could employ crowd
workers to provide feedback on whether distant supervision examples
are correct or not [43]. Intuitively the crowd workforce is a perfect fit
for such tasks since many erroneous distant labels could be easily iden-
tified and corrected by humans. For example, distant supervision may
mistakenly consider “Obama took a vacation in Hawaii” a positive example
for birthPlace simply because a database says that Obama was born in
Hawaii; a crowd worker would correctly point out that this sentence is not
actually indicative of this relation.

It is unclear however which strategy one should use: scaling the text
corpus or the amount of human feedback. Our primary contribution
is to empirically assess how scaling these inputs to distant supervision

impacts its result quality. We study this question with input data sets

62

that are orders of magnitude larger than those in prior work. While the
largest corpus (Wikipedia and New York Times) employed by recent work
on distant supervision [50, 82, 147] contain about 2M documents, we
run experiments on a 100M-document (50X more) corpus drawn from
ClueWeb.! While prior work [43] on crowdsourcing for distant supervision
used thousands of human feedback units, we acquire tens of thousands
of human-provided labels. Despite the large scale, we follow state-of-the-
art distant supervision approaches and use deep linguistic features, e.g.,
part-of-speech tags and dependency parsing.?
Our experiments shed insight on the following two questions:

1. How does increasing the corpus size impact the quality of distant supervi-
sion?

2. For a given corpus size, how does increasing the amount of human feedback

impact the quality of distant supervision?

We find that increasing corpus size consistently and significantly im-
proves recall and F1, despite reducing precision on small corpora; in
contrast, human feedback has relatively small impact on precision and
recall. For example, on a TAC corpus with 1.8M documents, we found
that increasing the corpus size ten-fold consistently results in statistically
significant improvement in F1 on two standardized relation extraction
metrics (t-test with p=0.05). On the other hand, increasing human feed-
back amount ten-fold results in statistically significant improvement on
F1 only when the corpus contains at least 1M documents; and the magni-
tude of such improvement was only one fifth compared to the impact of
corpus-size increment.

We find that the quality of distant supervision tends to be recall gated,
that is, for any given relation, distant supervision fails to find all possible

"http://lemurproject.org/clueweb09.php/
2We used 100K CPU hours to run such tools on ClueWeb.

http://lemurproject.org/clueweb09.php/

63

Knowledge-base
] Relations
Training Knowledge-base Traini 2. Distant Supervision Statistical @
raining - Models
>

Corpus [Entities

| 1. Parsing, Entity Linkin
—

3. Human
Refined Feedback
Testing Testing 4. Apply & Evaluate Statistical [
Corpus [F Models [x]
mt Structured Text Relation
w/ Entity Mentions Extractors

Figure 4.1: The workflow of our distant supervision system. Step 1 is prepro-
cessing; step 4 is final evaluation. The key steps are distant supervision (step 2),
where we train a logistic regression (LR) classifier for each relation using (noisy)
examples obtained from sentences that match Freebase facts, and human feedback
(step 3) where a crowd workforce refines the LR classifiers by providing feedback
to the training data.

linguistic signals that indicate a relation. By expanding the corpus one
can expand the number of patterns that occur with a known set of entities.
Thus, as a rule of thumb for developing distant supervision systems, one
should first attempt to expand the training corpus and then worry about
precision of labels only after having obtained a broad-coverage corpus.
Throughout this chapter, it is important to understand the difference
between mentions and entities. Entities are conceptual objects that exist in
the world (e.g., Barack Obama), whereas authors use a variety of wordings

to refer to (which we call “mention”) entities in text [53].

4.2 Distant Supervision Methodology

Relation extraction is the task of identifying relationships between men-
tions, in natural-language text, of entities. An example relation is that
two persons are married, which for mentions of entities x and y is de-
noted R(x,y). Given a corpus C containing mentions of named entities,

our goal is to learn a classifier for R(x,y) using linguistic features of x

64

and y, e.g., dependency-path information. The problem is that we lack
the large amount of labeled examples that are typically required to ap-
ply supervised learning techniques. We describe an overview of these
techniques and the methodological choices we made to implement our
study. Figure 4.1 illustrates the overall workflow of a distant supervision
system. At each step of the distant supervision process, we closely follow
the recent literature [82, 147].

4.2.1 Distant Supervision

Distant supervision compensates for a lack of training examples by gen-
erating what are known as silver-standard examples [144]. The observation
is that we are often able to obtain a structured, but incomplete, database
D that instantiates relations of interest and a text corpus C that contains
mentions of the entities in our database. Formally, a database is a tuple
D = (E,R) where E is a set of entities and R = (Ry...,Rn) is a tuple of
instantiated predicates. For example, R; may contain pairs of married
people.> We use the facts in R; combined with C to generate examples.
Following recent work [50, 82, 147], we use Freebase* as the knowledge
base for seed facts. We use two text corpora: (1) the TAC-KBP° 2010 corpus
that consists of 1.8M newswire and blog articles®, and (2) the ClueWeb09
corpus that is a 2009 snapshot of 500M webpages. We use the TAC-KBP
slot filling task and select those TAC-KBP relations that are present in the
Freebase schema as targets (20 relations on people and organization).
One problem is that relations in D are defined at the entity level. Thus,
the pairs in such relations are not embedded in text, and so these pairs
lack the linguistic context that we need to extract features, i.e., the features
used to describe examples. In turn, this implies that these pairs cannot be

3We only consider binary predicates in this work.
4h‘l:tp ://freebase.com

SKBP stands for “Knowledge-Base Population.”
6ht‘cp ://nlp.cs.qc.cuny.edu/kbp/2010/

http://freebase.com
http://nlp.cs.qc.cuny.edu/kbp/2010/

65

used directly as training examples for our classifier. To generate training
examples, we need to map the entities back to mentions in the corpus. We
denote the relation that describes this mapping as the relation EL(e, m)
where e € Eis an entity in the database D and m is a mention in the corpus
C. For each relation R;, we generate a set of (noisy) positive examples
denoted R{ defined as R =

{(my, m2) | R(ey, e2) A EL(er, mq) A EL(e2, my)}

Asin previous work, we impose the constraint that both mentions (m;, m;) €
R; are contained in the same sentence [50, 82, 147]. To generate negative ex-
amples for each relation, we follow the assumption in Mintz et al. [82] that

relations are disjoint and sample from other relations, i.e., Ri” = Uj.R}".

Relations We select the target relations by intersecting the TAC-KBP
relations and the Freebase schema, resulting in a list of 20 relations as
shown in Figure 4.2. These relations are fairly commonplace in relation

extraction tasks, and they cover all the binary MR-KBP relations’.

4.2.2 Feature Extraction

Once we have constructed the set of possible mention pairs, the state-of-the-
art technique to generate feature vectors uses linguistic tools such as part-
of-speech taggers, named-entity recognizers, dependency parsers, and
string features. Following recent work on distant supervision [50, 82, 147],
we use both lexical and syntactic features. After this stage, we have a
well-defined machine learning problem that is solvable using standard su-
pervised techniques. We use sparse logistic regression ({; regularized) [134],
which is used in previous studies. Our feature extraction process consists

of three steps:

’MR stands for Machine Reading, a DARPA project, and MR-KBP is a test case/bench-
mark in the project and is similar to TAC-KBP.

Subject Relation | # Facts
person date_of_birth | 887,079
person title | 454,707
person city_of_birth | 354,891
organization subsidiaries | 221,835
organization parents | 219,542
person schools_attended | 165,232
organization | city_of_headquarters | 157,839
person cities_of residence | 122,610
person city_of_death | 97,376
person employee_of | 86,381
person spouse | 34,796
person parents | 33,598
person children | 33,598
person state_of_residence | 31,494
person siblings | 16,610
organization top_members 8,307
organization founded_by 8,294
person countries_of_residence 8,183
organization | number_of_employees 2,610
person member_of 2,290

66

Figure 4.2: Relations used in the experiments and the number of corresponding
facts in Freebase. We select these relations by taking all TAC-KBP 2010 target
relations that are present in Freebase. These relations cover all (binary) MR-KBP
relations.

1. Run Stanford CoreNLP with POS tagging and named entity recogni-
tion [40];

2. Run dependency parsing on TAC with the Ensemble parser [127]
and on ClueWeb with MaltParser® [91]; and

8We did not run Ensemble on ClueWeb because we had very few machines satisfying
Ensemble’s memory requirement. In contrast, MaltParser requires less memory and
we could leverage Condor [132] to parse ClueWeb with MaltParser within several days
(using about 50K CPU hours).

67

3. Run a simple entity-linking system that utilizes NER results and

string matching to identify mentions of Freebase entities (with types).’

The output of this processing is a repository of structured objects (with
POS tags, dependency parse, and entity types and mentions) for sentences
from the training corpus. Specifically, for each pair of entity mentions
(my, my) in a sentence, we extract the following features F(m;, my): (1)
the word sequence (including POS tags) between these mentions after
normalizing entity mentions (e.g., replacing “John Nolen” with a place
holder PER); if the sequence is longer than 6, we take the 3-word prefix
and the 3-word suffix; (2) the dependency path between the mention pair.
To normalize, in both features we use lemmas instead of surface forms.

We discard features that occur in fewer than three mention pairs.

4.2.3 Crowd-Sourced Data

Crowd sourcing provides a cheap source of human labeling to improve
the quality of our classifier. In this work, we specifically examine feedback
on the result of distant supervision. Precisely, we construct the union
of R{” U...Ry, from Section 4.2.1. We then solicit human labeling from
Mechanical Turk (MTurk) while applying state-of-the-art quality control
protocols following Gormley et al. [43] and those in the MTurk manual.™

These quality-control protocols are critical to ensure high quality: spam-
ming is common on MTurk and some turkers may not be as proficient
or careful as expected. To combat this, we replicate each question three
times and, following Gormley et al. [43], plant gold-standard questions:
each task consists of five yes/no questions, one of which comes from our

9We experiment with a slightly more sophisticated entity-linking system as well,
which resulted in higher overall quality. The results below are from the simple entity-
linking system.

10h‘c‘cp ://mturkpublic.s3.amazonaws.com/docs/MTURK_BP.pdf

http://mturkpublic.s3.amazonaws.com/docs/MTURK_BP.pdf

68

gold-standard pool.!* By retaining only those answers that are consistent
with this protocol, we are able to filter responses that were not answered
with care or competency. We only use answers from workers who display
overall high consistency with the gold standard (i.e., correctly answering

at least 80% of the gold-standard questions).

MTurk Question Formulation For each selected example, we replace
the corresponding entity mentions in the sentence with entity-type place
holders'?, and then submit the resultant sentence with a yes/no question

to the crowd for an answer. An example question is

Does the following sentence literally imply that PERSONT1 is
PERSON2’s spouse? ... PERSONI — who was pregnant with
PERSON?2 ...

4.2.4 Statistical Modeling

Following Mintz et al. [82], we use logistic regression classifiers to repre-
sent relation extractors. However, while Mintz et al. use a single multi-
class classifier for all relations, Hoffman et al. [50] and use an independent
binary classifier for each individual relation; the intuition is that a pair of
mentions (or entities) might participate in multiple target relations. We
experimented with both protocols; since relation overlapping is rare for
TAC-KBP and there was little difference in result quality, we focus on
the binary-classification approach using training examples constructed as
described in Section 4.2.1.

We compensate for the different sizes of distant and human labeled

examples by training an objective function that allows to tune the weight

We obtain the gold standard from a separate MTurk submission by taking examples
that at least 10 out of 11 turkers answered yes, and then negate half of these examples by
altering the relation names (e.g., spouse to sibling).

12We empirically found that showing entity types instead of concrete entity names
helps reduce crowd workers’ tendency of answering based on background knowledge.

69

of human versus distant labeling. We separately tune this parameter for
each training set (with cross validation), but found that the result quality
was robust with respect to a broad range of parameter values.

We represent a set of training examples as {(xi, yi)}{*; where each x;
is a Boolean vector representing the features of example i and y; = 1if it
is a positive example and —1 otherwise. Then the objective function for

training the classifier of a relation r is

f(w) = > log(1+exp(—yiw'xi)) + pl|wl}s,
i=1
where w is the weight vector representing the classifier and p is a regular-
ization parameter that controls the trade-off between the model complexity
and training errors. We use {;-norm regularization since the models are
expected to be sparse [134]. We use a held-out portion of distant labels to
tune p, found that the model is relatively insensitive to the value of p, and
so selected a reasonable p = 0.001m for our experiments.

To incorporate human feedback on distant-labeled examples, we aug-
ment the above objective function as follows. Suppose there are n units of
human feedback, and denote by z; the value (1 if positive, —1 if negative)
of feedback j on example ;. To account for the intuition that human labels
should weigh differently than distant labels, we use the following objective

function:

gw) = (1—v)) log(l +exp(—yiw'x;))
i=1

+ leog(l—i—exp(—zijxi].))
=1
+ ulwli,

70

where v € [0, 1] intuitively controls how much we weigh human feedback
relative to the original distant-supervised labels. We use a held-out portion
of distantly supervised training data (on a held-out portion of the training
corpus) to tune the parameters v for different input sizes, but found that
the optimal value for v is virtually always the minimum value in the search
space 1. Thus, we heuristically set v = 0.8 for our experiments. We report
sensitivity study results in Section 4.3.7.

4.3 Experiments

We describe our experiments to test the hypotheses that the following two

factors improve distant-supervision quality: increasing the
(1) corpus size, and
(2) the amount of crowd-sourced feedback.

We confirm hypothesis (1), but, surprisingly, are unable to confirm (2).
Specifically, when using logistic regression to train relation extractors,
increasing corpus size improves, consistently and significantly, the pre-
cision and recall produced by distant supervision, regardless of human
feedback levels. Using the methodology described in Section 4.2, human
teedback has limited impact on the precision and recall produced from
distant supervision by itself.

4.3.1 Evaluation Metrics

Just as direct training data are scarce, ground truth for relation extraction
is scarce as well. As a result, prior work mainly considers two types of

evaluation methods: (1) randomly sample a small portion of predictions

13We conjecture that this is because distant labels and human labels have different
biases and the validation set always leans toward distant labels. More evidence in
Section 4.3.6.

71

(e.g., top-k) and manually evaluate precision/recall; and (2) use a held-out
portion of seed facts (usually Freebase) as a kind of “distant” ground truth.
We replace manual evaluation with a standardized relation-extraction
benchmark: TAC-KBP 2010. TAC-KBP asks for extractions of 46 relations
on a given set of 100 entities. Interestingly, the Freebase held-out metric [50,
82, 147] turns out to be heavily biased toward distantly labeled data (e.g.,

increasing human feedback hurts precision; see Section 4.3.6).

4.3.2 Experimental Setup

Our first group of experiments use the 1.8M-doc TAC-KBP corpus for
training. We exclude from it the 33K documents that contain query enti-
ties in the TAC-KBP metrics. There are two key parameters: the corpus
size (#docs) M and human feedback budget (#examples) N. We perform
different levels of down-sampling on the training corpus. On TAC, we use
subsets with M = 10°,10%,10°, and 10° documents respectively. For each
value of M, we perform 30 independent trials of uniform sampling, with
each trial resulting in a training corpus DM, 1 < i < 30. For each train-
ing corpus DM, we perform distant supervision to train a set of logistic
regression classifiers. From the full corpus, distant supervision creates
around 72K training examples.

To evaluate the impact of human feedback, we randomly sample 20K
examples from the input corpus (we remove any portion of the corpus
that is used in an evaluation). Then, we ask three different crowd workers
to label each example as either positive or negative using the procedure
described in Section 4.2.3. We retain only credible answers using the gold-
standard method (see Section 4.2.3), and use them as the pool of human
feedback that we run experiments with. About 46% of our human labels
are negative. Denote by N the number of examples that we want to incor-
porate human feedback for; we vary N in the range of 0,10,10%,10%, 10%,
and 2 x 10*. For each selected corpus and value of N, we perform without-

72

Recall E Precision
0.16-0.18 50.48-0.52
50.14-0.16 0.44-0.48
NN ®0.40-0.44

#012:014 -
S . ¥0.36-0.40

010012 V @Q&@ #0.32-0.36
¥0.08-0.10 > R N 028032
N H0.06-0.08 H SN 0.24-0.28

9014015 Human o 5000006 F “;’:"k o 0.20-024
®0.13-0.14 Feedback -04-0. eecbac 5 0.16-0.20

=000 sechac .16-0.

) H0.12013 §jge (Limit) ° 002004 Size (Limit) g c 012016
Corpus Size ¥0.11-0.12 Corpus Size ®0.00-0.02 Corpus Size 0.08-0.12

F1

S
90.21-0.22

0.20-0.21

%0.19-0.20

S 0.18-0.19

O
» N 0,17+
& S 0.17-0.18
e 50.16-0.17
> 0.15-0.16 AR

0000081
000008T
000008T

Human 7 o
Feedback

-
5
Size (Limit) S

000000T
0000001
000000T

i
)
]
]
15)
3

00000T
0000T -
00000T -,

0000T

o
1]
5]
5}

Figure 4.3: Impact of input sizes under the TAC-KBP metric, which uses doc-
uments mentioning 100 predefined entities as testing corpus with entity-level
ground truth. We vary the sizes of the training corpus and human feedback while
measuring the scores (F1, recall, and precision) on the TAC-KBP benchmark.

replacement sampling from examples of this corpus to select feedback
for up to N examples. In our experiments, we found that on average an
M-doc corpus contains about 0.04M distant labels, out of which 0.01M
have human feedback. After incorporating human feedback, we evaluate
the relation extractors on the TAC-KBP benchmark as well as a MR-KBP
benchmark.'* We then compute the average F1, recall, and precision scores
among all trials for each metric and each (M,N) pair.

Besides the KBP metrics, we also evaluate each (M,N) pair using Free-
base held-out data. Furthermore, we experiment with a much larger
corpus: ClueWeb09. On ClueWeb09, we vary M over 10%,...,108. Using
the same metrics, we show at a larger scale that increasing corpus size can

significantly improve both precision and recall.

4.3.3 Overall Impact of Input Sizes

We first present our experiment results on the TAC corpus. Results from
the TAC-KBP metric (Figure 4.3) and the MR-KBP metric (Figure 4.4) are
similar. In both cases, the F1 graph closely tracks the recall graph, which

14The MR-KBP metric was originally for temporal relation extraction and consists of a
set of ground truth annotations in 75 testing documents. For our experiments, we discard
the temporal aspects of the annotations.

73

MR-KBP MR-KBP B MR-KBP
F1 Recall Precision
= H017-0.18 90.16-0.18 ¥0.20-0.22
#0.16-0.17 5014016 0.18-0.20
S ®0.15-0.16 'S ¥0.16-0.18
SN 0.12+ S
S 0.14-0.15 012014 & o 0.14-0.16
P o so10012 V& ¢
T . ®013-014 .10-0. S . W0.12-014
> ™ . % 012013 1 % ®0080.10 > 5 ®010-012
\ k=3 ¥ i=] RN N -
Human Y . § § g nouo12 . o8 8 8 m006008 Human S 2 & § =oosown
N 5 8 S 5010011 Human N 5 8 S N = 8 § 0.06-0.08
Feedback 5 & 8 8 © ®009010 Feedback 5 S § § 8 5000006 Feedbak s 8 & 8 2 moosoos
A 8 8 .09-0. 5] 8 e (Limi 5 8 .04-0,
Size (Limit) S 5} © 0.08-0.09 R S s S 0.02-0.04 Size (Limit) 5] 8 3 50.02.0.04
- Size (Limit 8 .02-0.
Corpus Size ®0.07-0.08 () Corpus Size ¥0.00-0.02 Corpus Size ¥ 0.00-0.02

Figure 4.4: Impact of input sizes under the MR-KBP metric, which has a 75-doc
testing corpus and mention-level ground truth. The result is very similar to
TAC-KBP.

M=10° [M =18 x 10°
N=0 0.124 0.201
N=2x10"| 0.118 0.214

Table 4.1: TAC F1 scores with max/min values of M/N.

supports our earlier claim that quality is recall gated (Section 6.1). We
analyze the TAC-KBP results below. While increasing the corpus size
improves F1 at a roughly log-linear rate, human feedback has little impact
until both corpus size and human feedback size approch maximum M, N
values. Table 4.1 shows the quality comparisons with minimum /maxi-
mum values of M and N.'® We observe that increasing the corpus size
significant improves per-relation recall and F1 on 17 out of TAC-KBP’s 20
relations; in contrast, human feedback has little impact on recall, and only
significantly improves the precision and F1 of 9 relations — while hurting

F1 of 2 relations (i.e., MemberOf and LivesInCountry).

15When the corpus size is small, the total number of examples with feedback can be
smaller than the budget size N - for example, when M = 10° there are on average 10
examples with feedback even if N = 10%.

74

0.25 0.20 0.60

0.50
0.20 0.15 c
015 = §040
i -~ $o10 3 0.30 —u
0.10 = £ 0.20

=#=Without human feedback a O

0.05 0.05
~®@=With full human feedback

0.10

0.00 T 0.00 T T 0.00 T

1.E402 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Corpus size Corpus size Corpus size

Figure 4.5: Projections of Figure 4.3 to show the impact of corpus size changes
under the TAC-KBP metric.

MAN 010 10%]10° | 10* | 2e4
10°—=10* [+ |+ | + | + [+ | +
10 —=10° |+ | + | + | + | + | +
10°—=10° |+ |+ | + | + | + | +

10° =186 |0 0| O | + [+ | +

Table 4.2: Two-tail t-test with d.f.=29 and p=0.05 on the impact of corpus size.
(We also tried p=0.01, which resulted in change of only a single cell.) Each column
corresponds to a fixed human-feedback budget size N. Each row corresponds to
a jump from one corpus size (M) to the immediate larger size. Each cell value
indicates whether the TAC-KBP F1 metric changed significantly: + (resp. -)
indicates that the quality increased (resp. decreased) significantly; 0 indicates that
the quality did not change significantly.

4.3.4 Impact of Corpus Size

In Figure 4.5 we plot a projection of the graphs in Figure 4.3 to show
the impact of corpus size on distant-supervision quality. The two curves
correspond to when there is no human feedback and when we use all
applicable human feedback. The fact that the two curves almost overlap
indicates that human feedback had little impact on precision or recall. On
the other hand, the quality improvement rate is roughly log-linear against
the corpus size. Recall that each data point in Figure 4.3 is the average
from 30 trials. To measure the statistical significance of changes in F1,
we calculate t-test results to compare adjacent corpus size levels given
each fixed human feedback level. As shown in Table 4.2, increasing the

75

0.25 0.20 0.60

050 T
020 L —
=0 5040
i —_— $o.10 2030
2
0.10 « ——— ¢ & 020

0.05
0.05 ~+=1K-doc Corpus =#=1.8M-doc Corpus 010
0.00 + T T T 0.00 0.00
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
Maximum Human Feedback Amount Maximum Human Feedback Amount Maximum Human Feedback Amount

Figure 4.6: Projections of Figure 4.3 to show the impact of human feedback
amount under the TAC-KBP metric.

N\M 10° | 10* | 10° | 10° | 1.8e6
0—10 0 0 0 0 0
10102 | 0 | O | O | + +
102—=10| 0 | O | O | + +
10° - 10*| 0O 0 0 0 +
10* 524 | 0 0 0 0 -
0 — 2e4 0 0 0 + +

Table 4.3: Two-tail t-test with d.f.=29 and p=0.05 on the impact of human
feedback size changes. (We also tried p=0.01 but obtained the same result.) Each
column corresponds to a fixed corpus size M. Each row corresponds to a jump
from one feedback size (N) to the immediate larger size. Each cell value indicates
whether the TAC F1 metric changed significantly: + (resp. -) indicates that the
quality increased (resp. decreased) significantly; 0 indicates that the quality did
not change significantly.

corpus size by a factor of 10 consistently and significantly improves F1.
Although precision decreases as we use larger corpora, the decreasing
trend is sub-log-linear and stops at around 100K docs. On the other hand,
recall and F1 keep increasing at a log-linear rate.

4.3.5 Impact of Human Feedback

Figure 4.6 provides another perspective on the results under the TAC
metric: We fix a corpus size and plot the F1, recall, and precision as

functions of human-feedback amount. Confirming the trend in Figure 4.3,

76

0.25
0.20 —————
b 0.15 —All distant labels
0.10
= = All distant and human labels
0.05 .
@=Varying amount of human labels

0.00

1 10 100 1000 10000 100000
Human Feedback Size on Full Corpus

Figure 4.7: TAC-KBP quality of relation extractors trained using different
amounts of human labels. The horizontal lines are comparison points.

we see that human feedback has little impact on precision or recall with
both corpus sizes.

We calculate t-tests to compare adjacent human feedback levels given
each fixed corpus size level. Table 4.3’s last row reports the comparison,
for various corpus sizes (and, hence, number of distant labels), of (i) using
no human feedback and (ii) using all of the human feedback we collected.
When the corpus size is small (fewer than 10° docs), human feedback has
no statistically significant impact on F1. The locations of +'s suggest that
the influence of human feedback becomes notable only when the corpus
is very large (say with 10° docs). However, comparing the slopes of the
curves in Figure 4.6 against Figure 4.5, the impact of human feedback is
substantially smaller. The precision graph in Figure 4.6 suggests that
human feedback does not notably improve precision on either the full
corpus or on a small 1K-doc corpus.

To assess the quality of human labels, we train extraction models with
human labels only (on examples obtained from distant supervision). We
vary the amount of human labels and plot the F1 changes in Figure 4.7.
Although the F1 improves as we use more human labels, the best model

has roughly the same performance as those trained from distant labels

77

£ o5 Freebase
o v - —
G 06 — Held-out
g 05 .
£ 02— Metric
o 03 ~m
=] 1
s 92 ~ E06-0.7
:Il. . | - ~ ~—_
e R - m05.06
N N T~ .2-U.
P s f\ 0405
§S T e 4-0.
Human ~°) o — 2 = 8
Feedback .@Q K e = S e H0.3-04
. . . Q - 8 =) o o . -
Size (Limit) D 9 b= =) =] o
o S o ©
S ¥0.2-0.3

Corpus Size

Figure 4.8: Impact of input sizes under the Freebase held-out metric. Note that
the human feedback axis is in the reverse order compared to Figure 4.3.

(with or without human labels). This suggests that the accuracy of human
labels is not substantially better than distant labels.

4.3.6 Freebase Held-out Metric

In addition to the TAC-KBP benchmark, we also follow prior work [50,
82, 147] and measure the quality using held-out data from Freebase. We
randomly partition both Freebase and the corpus into two halves. One
database-corpus pair is used for training and the other pair for testing.
We evaluate the precision over the 10° highest-probability predictions on
the test set. In Figure 4.8, we vary the size of the corpus in the train pair
and the number of human labels; the precision reaches a dramatic peak
when we the corpus size is above 10° and uses little human feedback. This
suggests that this Freebase held-out metric is biased toward solely relying
on distant labels alone.

78

TAC-KBP
F1

0.20-0.21

000008T 7/

|

o
=
S
o
=
w

Human Q
Feedback
Size (Limit)

0000T
00000T |
000000T |

Corpus Size

Figure 4.9: Impact of input sizes with v = 0.5 under the TAC-KBP metric.

TAC-KBP
F1

A 9022023

¥0.16-0.17

S
-
S ®0.15-0.16
Feedback § ’ ’
o

Size (Limit)

©0.14-0.15
H0.13-0.14
¥0.12-0.13

.
=
o
o
(=]
o
o
o

o
o000t %"
00000 |

0000T -

Corpus Size

Figure 4.10: Impact of input sizes with v = 0.9 under the TAC-KBP metric.

4.3.7 Sensitivity Studies

In this section, we describe several experiments designed to validate the
robustness of our findings.

First, we vary v and see how experiment results change accordingly.
For example, we compare v = 0.5 (Figure 4.9) and v = 0.9 (Figure 4.10)
against the default value v = 0.8 (Figure 4.3). We see that v seems to have
a monotone impact on the final quality of full corpus with full human
feedback: the higher v is, the better the quality on the max(M, N) corner
and the less moother the full corpus projection curve. Still, even with
v = 0.999 (results not shown but very similar to v = 0.9), the slope of

79

TAC-KBP

) F1
S H0.21-0.22
0.20-0.21
O >~ §0.19-0.20
O -
’190 000 &;\ =~ [0.18-0.19
Y \90 N) 5 H0.17-0.18
O &\ - g #0.16-0.17
R } = g 38 m®0150.16
Human o = 8 S 8§ m0.14-015
o S =l .
Feedback = S o S S
A act o S S ®0.13-0.14
Size (Limit) S =] e 0.12-0.13
Corpus Size ®0.11-0.12

Figure 4.11: Impact of input sizes with a 33%-down-sampled Freebase KB under
the TAC-KBP metric.

the full-corpus projection curve is much smaller than the zero-human
projection curve.

In the second sensitivity study, we evaluate how changing the KB size
(Freebase in this case) influences the result quality. In Figure 4.11, we use
a down-sampled Freebase instance that is only a third the original size,
and found that, even though at each grid point the number of examples
is only a third as before (as expected), when the corpus is large enough,
distant supervision still manages to retain essentially the same quality.
This demonstrates how larger corpora achieve higher quality through
higher redundancy and robustness.

4.3.8 Web-scale Corpora

The corpus for the TAC benchmark is crafted to contain mentions of en-
tities in TAC in the test corpus. In contrast, the Web is less curated, but
does contain mentions of many entities contained in TAC (and many other
databases). To study how a Web corpus impacts distant-supervision qual-
ity, we select the first 100M English webpages from the ClueWeb09 dataset
and measure how distant-supervision quality changes as we vary the
number of webpages used.

80

o
»
o

==TAC-F1
=@-TAC-Recall e
#=TAC-Precision - a "

o
w
o
I
I

I
N
(=]
.
4
4

F1, Recall, or Precision
o
o
(=]
Il
%
)
4

-

0.00
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Corpus size

Figure 4.12: Impact of corpus size on TAC-KBP with ClueWeb

= 025

=] =#=MR-F1

2 0.20 =
o =@=|\IR-Recall

& 0.15 — - —

5 #=MR-Precision S e ; v — &
_~0.10 y~ & 4
g /

@ 0.05

x 9

o 0.00 T

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E4+07 1.E+08
Corpus size

Figure 4.13: Impact of corpus size on MR-KBP with ClueWeb

In Figure 4.12 and Figure 4.13, we plot the TAC-KBP and MR-KBP
quality graphs as a function of changing ClueWeb corpus sizes. Table 4.4
shows the statistical significance test results. For TAC-KBP, increasing
the corpus size improves F1 up to 107 docs (p = 0.05), while at 10® the
two-tailed significance test reports no significant impact on F1 (p = 0.05).
The dip in precision in Figure 4.12 from 10° to either 107 or 108 is significant
(p = 0.05), and it is interesting future work to perform a detailed error
analysis. For MR-KBDP, the corpus size similarly has a consistently positve
impact on recall that converges roughly after 10" documents. Compared
to TAC-KBP, the F1 score is more sensitive to decrease of precision and

converges at around 10° documents and then slightly decreases. The

81

Corpus Size | TAC-KBP F1 | MR-KBP F1
10° — 10* + -
10* — 10° + -
10° — 10° + 0
106 — 107 + 0
107 — 108 0 -

Table 4.4: Two-tail t-test with d.f.=9 and p=0.05 on the impact of corpus size
and feedback size changes respectively. Each row corresponds to a jump from one
corpus size (M) to the immediate larger size. Each cell value indicates whether
the TAC or MR F1 metric changed significantly: + (resp. -) indicates that the
quality increased (resp. decreased) significantly; 0 indicates that the quality did
not change significantly.

reason might be that the MR-KBP test corpus is substantially smaller than
TAC-KBP (75 docs vs. 33K docs).

Recall from Section 4.2 that to preprocess ClueWeb we use MaltParser
instead of Ensemble. Thus, the F1 scores in Figure 4.12 Figure 4.13 are not
comparable to those from the TAC training corpus.

Impact of Corpus Size on Individual Relations
= 1,000

= 10,000

I ¥ 100,000
™ 1,000,000
ol 4l i © 500000
s S N & & o ¢ &
\o&w &7 @6\ z‘é\) é,‘»(\ <5§?°$’ &H\b@ Qe(.o
& b

1
Y?be?

1.00

0.80
0.60
0.40
0.20
b&”‘
&

F1

0.00

S\ 3 & & & o 9 & > &
> < & & S
& & & & & &Y e
“ S E 7 el

o N y &
o & A7 <
¥ 5 & o3 K
O & T Y W S s
o7 £ & % & <€ & @
&8 (,&\) & & < & & o

x < 55
<& <& & &

K7 & g
S 5 N ¢ S
& &S I
& S o
& &

Figure 4.14: Impact of corpus size on individual relations vary between relations.
We vary the training corpus size and measure the quality numbers of individual
relations. The F1 score of each relation is based on the extraction results for the
TAC-KBP slot filling benchmark. The “per” prefix of relation names means that
the subject of this relation is a person; similarly “org” is for organization.

82

4.3.9 Per-relation Analysis

In this section, we dig deeper to analyze the impact of coprus sizes on the
extraction quality of individual target relations with distant supervision.
As shown in Figure 4.14, different relations have different sensitivities to
the increase of corpus sizes. Overall, the qualities of most relations (e.g.,
spouse, siblings, city_of_birth, and school_attended) improve signif-
icantly as we increase the corpus size. Other relations (e.g., member_of

and employee_of) are less sensitive.

4.4 Discussion

We study how the size of two types of cheaply available resources impact
the precision and recall of distant supervision: (1) an unlabeled text corpus
from which distantly labeled training examples can be extracted, and (2)
crowd-sourced labels on training examples. We found that text corpus
size has a stronger impact on precision and recall than human feedback.
We observed that distant-supervision systems are often recall gated; thus,
to improve distant-supervision quality, one should first try to enlarge the
input training corpus and then increase precision.

It was initially counter-intuitive to us that human labels did not have a
large impact on precision. One reason is that human labels acquired from
crowd-sourcing have comparable noise level as distant labels — as shown by
Figure 4.7. Thus, techniques that improve the accuracy of crowd-sourced
answers are an interesting direction for future work. We used a particular
form of human input (yes/no votes on distant labels) and a particular
statistical model to incorporate this information (logistic regression). It
is interesting future work to study other types of human input (e.g., new
examples or features) and more sophisticated techniques for incorporating
human input, as well as machine learning methods that explicitly model
feature interactions.

83

5 ScALING MARrkovV LoaGic usiNng AN RDBMS

The motivating observation of this chapter is that a crucial step in Markov
logic inference, called grounding, essentially consists of relational opera-
tions like SQL. Thus, instead of performing grounding in main memory
and with ad hoc optimizations — as in prior Markov logic systems — we
study how to leverage the scalability and efficiency of an RDBMS for
Makov logic inference. The work in this chapter appears in Niu, Ré, Doan,
and Shavlik [87].

5.1 Motivations, Challenges, and Contributions

Over the past few years, Markov Logic Networks (MLNs) have emerged
as a powerful and popular framework combining logical and probabilistic
reasoning. MLNs have been successfully applied to a wide variety of data
management problems, e.g., information extraction, entity resolution, and
text mining. In contrast to probability models like factor graphs [112] that
require complex distributions to be specified in tedious detail, MLNs allow
us to declare a rigorous statistical model at a much higher conceptual level
using first-order logic. For example, to classify papers by research area,
one could write a rule such as “it is likely that if one paper cites another they
are in the same research area.”

Our interest in MLNSs stems from our involvement in a DARPA project
called “Machine Reading.” The grand challenge is to build software that
can read the Web, i.e., extract and integrate structured data (e.g., entities,
relationships) from Web data, then use this structured data to answer
user queries. The current approach is to use MLNs as a lingua franca to
combine many different kinds of extractions into one coherent picture. To
accomplish this goal, it is critical that MLNs scale to large data sets.

Unfortunately, none of the current MLN implementations scale beyond

84

relatively small data sets (and even on many of these data sets, existing
implementations routinely take hours to run). The first obvious reason
is that these are in-memory implementations: when manipulating large
intermediate data structures that overflow main memory, they either crash
or thrash badly. Consequently, there is an emerging effort across several
research groups to scale up MLNs. In this paper, we describe our system,
Turry!, that leverages an RDBMS to address the above scalability and
performance problems.

There are two aspects of MLNs: learning and inference [103]. We
focus on inference, since typically a model is learned once, and then an
application may perform inference many times using the same model;
hence inference is an on-line process, which must be fast. Moreover, MLN
learning algorithms typically invoke inference as a subroutine repeat-
edly. Conceptually, inference? in MLNs has two phases: a grounding phase,
which constructs a large, weighted SAT formula, and a search phase, which
searches for a low cost (weight) assignment (called a solution) to the SAT
formula from grounding (using WALKSAT [58], a local search procedure).
Grounding is a non-trivial portion of the overall inference effort: on a
classification benchmark (called RC) the state-of-the-art MLN inference
engine, ALcHEMY?, spends over 96% of its execution time in grounding.
The state-of-the-art strategy for the grounding phase (and the one used
by ArLcHEMY) is a top-down procedure (similar to the proof strategy in
Prolog). In contrast, we propose a bottom-up grounding strategy. Intu-
itively, bottom-up grounding allows Turry to fully exploit the RDBMS
optimizer, and thereby significantly speed up the grounding phase of
MLN inference. On an entity resolution task, ALcuHEmy takes over 7 hours

to complete grounding, while Turry’s grounding finishes in less than 2

http://hazy.cs.wisc.edu/tuffy/

2We focus on maximum a posteriori inference which is critical for many integration
tasks.

Shttp://alchemy.cs.washington.edu

http://hazy.cs.wisc.edu/tuffy/
http://alchemy.cs.washington.edu

85

minutes.

But not all phases are well-optimized by the RDBMS: during the search
phase, we found that the RDBMS implementation performed poorly. The
underlying reason is a fundamental problem for pushing local search
procedures into an RDBMS: search procedures often perform inherently se-
quential, random data accesses. Consequently, any RDBMS-based solution
must execute a large number of disk accesses, each of which has a substan-
tial overhead (due to the RDBMS) versus direct main-memory access. Not
surprisingly, given the same amount of time, an in-memory solution can
execute between three and five orders of magnitude more search steps
than an approach that uses an RDBMS. Thus, to achieve competitive per-
formance, we developed a novel hybrid architecture that supports local
search procedures in main memory whenever possible. This is our second
technical contribution.

Our third contribution is a simple partitioning technique that allows
TurFy to introduce parallelism and use less memory than state-of-the-art
approaches. Surprisingly, this same technique often allows Turry to speed
up the search phase exponentially. The underlying idea is simple: in many
cases, a local search problem can be divided into multiple independent
subproblems. For example, the formula that is output by the grounding
phase may consist of multiple connected components. On such datasets,
we derive a sufficient condition under which solving the subproblems
independently results in exponentially faster search than running the
larger global problem (Thm. 5.2). An application of our theorem shows
that on an information extraction testbed, a system that is not aware of this
phenomenon (such as ALcaemy) must take at least 2 more steps than
Turry to reach a solution with the same quality. Empirically we found
that, on some real-world datasets, solutions found by Turry within one
minute have higher quality than those found by non-partitioning systems

(such as ALcHEMY) even after running for days.

86

The exponential difference in running time for independent subprob-
lems versus the larger global problem suggests that in some cases, further
decomposing the search space may improve the overall runtime. To im-
plement this idea for MLNs, we must address two difficult problems: (1)
partitioning the formula from grounding (and so the search space) to
minimize the number of formula that are split between partitions, and (2)
augmenting the search algorithm to be aware of partitioning. We show
that the first problem is NP-hard (even to approximate), and design a
scalable heuristic partitioning algorithm. For the second problem, we
apply a technique from non-linear optimization to leverage the insights
gained from our characterization of the phenomenon described above.
The effect of such partitioning is dramatic. As an example, on a classifica-
tion benchmark (called RC), Turry (using 15MB of RAM) produces much
better result quality in minutes than Arcuemy (using 2.8GB of RAM) even
after days of running. In fact, Turry is able to answer queries on a version
of the RC dataset that is over two orders of magnitude larger. (We estimate
that Arcaemy would need 280GB+ of RAM to process it.)

Contributions, Validation, and Outline To summarize, we make the

following contributions:

® In Section 5.2.1, we design a solution that pushes MLNs into RDBM-
Ses. The key idea is to use bottom-up grounding that allows us to
leverage the RDBMS optimizer; this idea improves the performance

of the grounding phase by several orders of magnitude.

¢ In Section 5.2.2, we devise a novel hybrid architecture to support
efficient grounding and in-memory inference. By itself, this archi-
tecture is far more scalable and, given the same amount of time, can

perform orders of magnitude more search steps than prior art.

87

¢ In Section 5.2.3, we describe novel data partitioning techniques to
decrease the memory usage and to increase parallelism (and so
improve the scalability) of Turry’s in-memory inference algorithms.
Additionally, we show that for any MLN with an MRF that contains
multiple components, partitioning could exponentially improve the
expected (average case) search time.

¢ In Section 5.2.4, we generalize our partitioning results to arbitrary
MLNSs using our characterization of the partitioning phenomenon.
These techniques result in our highest quality, most space-efficient

solutions.

We present an extensive experimental study on a diverse set of MLN
testbeds to demonstrate that our system Turry is able to get better result
quality more quickly and work over larger datasets than the state-of-the-art
approaches.

5.2 Tuffy Systems

In this section, we describe our technical contributions: a bottom-up
grounding approach to fully leverage the RDBMS (Section 5.2.1); a hybrid
main-memory RDBMS architecture to support efficient end-to-end infer-
ence (Section 5.2.2); and data partitioning which dramatically improves

Turry’s space and time efficiency (Section 5.2.3 and Section 5.2.4).

5.2.1 Grounding with a Bottom-up Approach

We describe how Turry performs grounding. In contrast to top-down
approaches (similar to Prolog) that employ nested loops and that is used
by prior MLN systems such as ALcHemy, Tuffy takes a bottom-up approach
(similar to Datalog) by expressing grounding as a sequence of SQL queries.
Each SQL query is optimized by the RDBMS, which allows Turry to com-

88

plete the grounding process orders of magnitude more quickly than prior
approaches.

For each predicate P(A) in the input MLN, Turry creates a relation
Rp(aid, A, truth) where each row a, represents an atom, aid is a globally
unique identifier, A is the tuple of arguments of P, and truth is a three-
valued attribute that indicates if a,, is true or false (in the evidence), or not
specified in the evidence. These tables form the input to grounding, and
Turry constructs them using standard bulk-loading techniques.

In Turry, we produce an output table C(cid, lits, weight) where each
row corresponds to a single ground clause. Here, cid is the id of a ground
clause, lits is an array that stores the atom id of each literal in this clause
(and whether or not it is negated), and weight is the weight of this clause.
We first consider a formula without existential quantifiers. In this case, the
formula F can be written as F(X) = 1; V- - - V Iy where X are all variables
in F. Turry produces a SQL query Q for F that joins together the relations
corresponding to the predicates in F to produce the atom ids of the ground
clauses (and whether or not they are negated). The join conditions in Q
enforce variable equality inside F, and incorporate the pruning strategies
described in Section 2.3.3. For more details on the compilation procedure
see Appendix A.1.1.

5.2.2 A Hybrid Architecture for Inference

Our initial prototype of Tuffy runs both grounding and search in the
RDBMS. While the grounding phase described in the previous section has
good performance and scalability, we found that performing search in an
RDBMS is often a bottleneck. Thus, we design a hybrid architecture that al-
lows efficient in-memory search (in Java) while retaining the performance
benefits of RDBMS-based grounding. To see why in-memory search is
critical, recall that WalkSAT works by selecting an unsatisfied clause C,
selecting an atom in C, and “flipping” that atom to satisfy C. Thus, Walk-

89

Alchemy Tuffy-mm Tuffy
Grounding || rAM™ RDBMS
Search RAM RAM

Figure 5.1: Comparison of architectures

SAT performs a large number of random accesses to the data representing
ground clauses and atoms. Moreover, the data that is accessed in one
iteration depends on the data that is accessed in the previous iteration.
And so, this access pattern prevents both effective caching and parallelism,
which causes a high overhead per data access. Thus, we implement a
hybrid architecture where the RDBMS performs grounding and Turry is
able to read the result of grounding from the RDBMS into memory and
perform inference. If the grounding result is too large to fit in memory,
Turry invokes an implementation of search directly inside the RDBMS
(Appendix A.1.2). This approach is much less efficient than in-memory
search, but it runs on datasets larger than main memory without crashing.
Figure 5.1 illustrates the hybrid memory management approach of Turry.
ALcHEMY is a representative of prior art MLN systems, which uses RAM for
both grounding and search; Turry-mm is a version of Turry we developed
that uses an RDBMS for all memory management; and Turry is the hybrid
approach

While it is clear that this hybrid approach is at least as scalable as
a direct memory implementation (such as ALcHEmY), there are in fact
cases where TurFy can run in-memory search whereas ALcHEmy would

crash. The reason is that the space requirement of a purely in-memory

90

implementation is determined by the peak memory footprint throughout
grounding and search, whereas Turry needs main memory only for search.
For example, on a dataset called Relational Classification (RC), ALcHEMY
allocated 2.8 GB of RAM only to produce 4.8 MB of ground clauses. On
RC, Turry uses only 19 MB of RAM.

5.2.3 Partitioning to Improve Performance

In the following two sections, we study how to further improve Turry’s
space and time efficiency without sacrificing its scalability. The underlying
idea is simple: we will try to partition the data. By splitting the problem
into smaller pieces, we can reduce the memory footprint and introduce
parallelism, which conceptually breaks the sequential nature of the search.
These are expected benefits of partitioning. An unexpected benefit is an
exponentially increase of the effective search speed, a point that we return
to below.

First, observe that the logical forms of MLNss often result in an MRF
with multiple disjoint components (see Appendix A.1.3). For example,
on the RC dataset there are 489 components. Let G be an MRF with
components Gy, - - - , Gy; let I be a truth assignment to the atoms in G and
I; its projection over G;. Then, it’s clear that VI

costﬁLN(I) = Z costI\G/fLN(Ii).
1<i<k

Hence, instead of minimizing costg; (1) directly, it suffices to minimize
each individual costy (I;). The benefit is that, even if G itself does not fit
in memory, it is possible that each G; does. As such, we can solve each G;
with in-memory search one by one, and finally merge the results together.*

*ALcHemy exploits knowledge-based model construction (KBMC) [142] to find the
minimal subgraph of the MRF that is needed for a given query. ALcueEmy, however, does
not use the fact that the MRF output by KBMC may contain several components.

91

Component detection is done after the grounding phase and before the
search phase, as follows. We maintain an in-memory union-find structure
over the nodes, and scan the clause table while updating this union-find
structure. The result is the set of connected components in the MRF. An

immediate issue raised by partitioning is I/O efficiency.

Efficient Data Loading Once an MREF is split into components, loading
in and running inference on each component sequentially one by one may
incur many I/O operations, as there may be many partitions. For example,
the MREF of the Information Extraction (IE) dataset contains thousands
of 2-cliques and 3-cliques. One solution is to group the components into
batches. The goal is to minimize the total number of batches (and thereby
the I/O cost of loading), and the constraint is that each batch cannot exceed
the memory budget. This is essentially the bin packing problem, and we
implement the First Fit Decreasing algorithm [135]. Once the partitions are
in memory, we can take advantage of parallelism. We use a round-robin

scheduling policy.

Improving Search Speed using Partitioning Although processing each
component individually produces solutions that are no worse than pro-
cessing the whole graph at once, we give an example to illustrate that
component-aware processing may result in exponentially faster speed of

search.

Example 5.1. Consider an MRF consisting of N identical connected components
each containing two atoms {X;, Yi} and three weighted clauses

{(Xi,1), (Y, 1), (Xy VY, —1)},

where i =1... N and the second component of each tuple is the weight. Based on
how WalkSAT works, it's not hard to show that, if N = 1, starting from a random

92

state, the expected hitting time> of the optimal state, i.e. X, = Y; = True, is no
more than 4. Therefore, if we run WalkSAT on each component separately, the
expected runtime of reaching the optimum is no more than 4N. Now consider the
case where we run WalkSAT on the whole MRF. Intuitively, reaching the optimal
state requires “fixing” suboptimal components one by one. As the number of
optimal components increases, however, it becomes more and more likely that one
step of WalkSAT “breaks” an optimal component instead of fixing a suboptimal
component. Such check and balance makes it very difficult for WalkSAT to reach
the optimum. Indeed, Appendix A.1.5 shows that the expected hitting time is at
least 2N — an exponential gap!

Let G be an MRF with components Gy, ..., Gn. Component-aware WalkSAT
runs WalkSAT except that for each G;, it keeps track of the lowest-cost
state it has found so far on that G;. In contrast, regular WalkSAT simply
keeps the best overall solution it has seen so far. Fori =1,...,N, let O;
be the set of optimal states of G;, and S; the set of non-optimal states of
G; that differ only by one bit from some x* € Ojy; let Pi(x — y) be the
transition probability of WalkSAT running on G;, i.e., the probability that
one step of WalkSAT would take G; from x to y. Given x, a state of Gj,
denote by v;i(x) the number of violated clauses in G; at state x; define

ai(x)=) Pilx—=y), Bilx) =) Pilx—>y).

yeO; yeS;
For any non-empty subset H C {1, ..., N}, define

r(H) = min;cy Miny o, vi(x)Bi(x)

© maXxicy MaXyes, Vi(x) o (x)

Theorem 5.2. Let H be an arbitrary non-empty subset of {1, ..., N} s.t. [H| > 2
and v = v(H) > 0. Then, in expectation, WalkSAT on G takes at least 2/HI7/(2+7)

SThe hitting time is a standard notion from Markov Chains [36], it is a random variable
for the number of steps taken by WalkSAT to reach an optimum for the first time.

93

Figure 5.2: A loosely connected graph for Example 5.3

more steps to find an optimal solution than component-aware WalkSAT.

The proof is in Appendix A.1.5. In the worst case, there is only one compo-
nent, or r(H) = 0 for every subset of components H (which happens only
if there is a zero-cost solution), and partitioning would become pure over-
head (but negligible in our experiments). On an information extraction
(IE) benchmark dataset, there is some H with [H| = 1196 and r(H) = 0.5.
Thus, the gap on this dataset is at least 2*°° ~ 10%. This explains why
Turry produces lower cost solutions in minutes than non-partition aware

approaches such as ALcHEmY produce even after days.

5.2.4 Further Partitioning MRFs

Although our algorithms are more scalable than prior approaches, if the
largest component does not fit in memory then we are forced to run the
in-RDBMS version of inference, which is inefficient. Intuitively, if the
graph is only weakly connected, then we should still be able to get the

exponential speed up of partitioning. Consider the following example.

Example 5.3. Consider an MRF consisting of two equally sized subgraphs G, and
Gy, plus an edge e = (a, b) between them (Figure 5.2). Suppose that the expected
hitting time of WalkSAT on G; is Hi. Since Hy and H, are essentially independent,
the hitting time of WalkSAT on G could be roughly HiH,. On the other hand,
consider the following scheme: enumerate all possible truth assignments to one of
the boundary variables {a, b}, say a — of which there are two — and conditioning
on each assignment, run WalkSAT on Gy and G, independently. Clearly, the

overall hitting time is no more than 2(H; + Hy), which is a huge improvement

94

over HiH, since H; is usually a high-order polynomial or even exponential in the
size of G;.

To capitalize on this idea, we need to address two challenges: 1) design-
ing an efficient MRF partitioning algorithm; and 2) designing an effective

partition-aware search algorithm. We address each of them in turn.

MREF Partitioning Intuitively, to maximally utilize the memory budget,
we want to partition the MRF into roughly equal sizes; to minimize in-
formation loss, we want to minimize total weight of clauses that span
over multiple partitions, i.e., the cut size. To capture this notion, we
define a balanced bisection of a hypergraph G = (V,E) as a partition
of V = V; UV, such that |V;| = |V,|. The cost of a bisection (Vi, V,) is
He € ElenV; # 0 and e NV, £ 0}].

Theorem 5.4. Consider the MLN T" given by the single rule p(x), v(x,y) — p(y)
where 1 is an evidence predicate. Then, the problem of finding a minimum-cost
balanced bisection of the MRF that results from I is NP-hard in the size of the

evidence (data).

The proof (Appendix A.1.6) is by reduction to the graph minimum bisec-
tion problem [60], which is hard to approximate (unless P = NP, there is no
PTAS). In fact, the problem we are facing (multi-way hypergraph partitioning)
is more challenging than graph bisection, and has been extensively studied
[56, 118]. And so, we design a simple, greedy partitioning algorithm: it
assigns each clause to a bin in descending order by clause weight, subject
to the constraint that no component in the resulting graph is larger than
an input parameter (3. We include pseudocode in Appendix A.1.7.

Partition-aware Search We need to refine the search procedure to be
aware of partitions: the central challenge is that a clause in the cut may

depend on atoms in two distinct partitions. Hence, there are dependencies

95

between the partitions. We exploit the idea in Example 5.3 to design
the following partition-aware search scheme — which is an instance of the
Gauss-Seidel method from nonlinear optimization [12, pg. 219]. Denote by
X1, ..., Xy the states (i.e., truth assignments to the atoms) of the partitions.
First initialize X; = x{ fori = 1...k. Fort =1...T, fori = 1...k, run
WalkSAT on x{ ' conditioned on {x![1 <j < i}U {x;"lli < j < k} to obtain
x!. Finally, return {x] |1 <1i < k}.

Tradeoffs Although fine-grained partitioning improves per-partition
search speed (Theorem 3.1) and space efficiency, it also increases cut sizes
— especially for dense graphs — which would in turn slow down the Gauss-
Seidel inference scheme. Thus, there is an interesting tradeoff of partition-
ing granularity. In Section B.8, we describe a basic heuristic that combines
Theorem 3.1 and the Gauss-Seidel scheme.

5.3 [Experiments

In this section, we validate first that our system Turry is orders of magni-
tude more scalable and efficient than prior approaches. We then validate
that each of our techniques contributes to the goal.

Experimental Setup We select ALcHEMY, the currently most widely used
MLN system, as our comparison point. ALcHEmy and Turry are imple-
mented in C++ and Java, respectively. The RDBMS used by Turry is
PostgreSQL 8.4. Unless specified otherwise, all experiments are run on
an Intel Core2 at 2.4GHz with 4 GB of RAM running Red Hat Enterprise
Linux 5. For fair comparison, in all experiments Turry runs a single thread

unless otherwise noted.

96

Datasets We run Arcaemy and Turry on four datasets; three of them
(including their MLNs) are taken directly from the ALcaemy website®: Link
Prediction (LP), given an administrative database of a CS department, the
goal is to predict student-adviser relationships; Information Extraction (IE),
given a set of Citeseer citations, the goal is to extract from them structured
records; and Entity Resolution (ER), which is to deduplicate citation records
based on word similarity. These tasks have been extensively used in prior
work. The last task, Relational Classification (RC), performs classification
on the Cora dataset [77]; RC contains all the rules in Figure 2.6. Table 6.5

contains statistics about the data.

LP IE RC | ER

#relations 22 18 4 10
#rules 94 1K 15 | 3.8K
#entities 302 2.6K 51K | 510

#evidence tuples || 731 | 0.25M | 0.43M | 676
#query atoms 4.6K | 0.34M 10K | 16K
#components 1| 5341 489 1

Table 5.1: Dataset statistics

5.3.1 High-level Performance

We empirically demonstrate that Turry with all the techniques we have
described has faster grounding, higher search speed, lower memory usage,
and in some cases produces much better solutions than a competitor main
memory approach, ALcHEmy. Recall that the name of the game is to
produce low-cost solutions quickly. With this in mind, we run Turry
and ALcHeMYy on each dataset for 7500 seconds, and track the cost of the
best solution found up to any moment; on datasets that have multiple
components, namely IE and RC, we apply the partitioning strategy in

®http://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu

97

3.0E+04 LP 3.0E+03 IE
+ 2.0E+04 - Alchemy
2 /Tuffy }Ichemy % 2.0£+03 _—
© 1.0E+04 © ff
0.0E+00 - —_—— 1.0E+03 - Tu y .
0 50 100 0 20 40
6.0E+03 - RC 2.0E+05 ER
+ 4.0E+03 1 " |A|chemy o Alchemy grounding took 7 hr.
o Tu 8 1.0E+05
8 206403 | — 1Y S / Tuffy
|
0.0E+00 - . . . 0.0E+00 - .
0 2000 4000 6000 0 2000 4000 6000 8000

Figure 5.3: Time-cost plots of ALcHEMY vs. Turry; the x axes are time (sec).

Section 5.2.3 on Turry. As shown in Figure 5.3, Turry often reaches a best
solution within orders of magnitude less time than ALcHEmY; secondly,
the result quality of Turry is at least as good as — sometimes substantially
better (e.g., on IE and RC) than — ALcHeEmy. Here, we have zoomed the
time axes into interesting areas. Since “solution cost” is undefined during
grounding, each curve begins only when grounding is completed’. We
analyze the experiment results in more detail in the following sections.

5.3.2 Effect of Bottom-up Grounding

We validate that the RDBMS-based grounding approach in Turry allows
us to complete the grounding process orders of magnitude more efficiently
than Arcuemy. To make this point, we run Turry and ALcHEMY on the
four datasets, and show their grounding time in Table 5.2. We can see that
Turry outperforms ALcHEmY by orders of magnitude at run time in the
grounding phase (a factor of 225 on the ER dataset). To understand the

"The L-shaped curves indicate that search converges very quickly compared to
grounding time.

98

LP | IE RC ER
Arcuemy || 48 | 13 | 3,913 | 23,891
Turry 6|13 40 106

Table 5.2: Grounding time (sec)

differences, we dug deeper with a lesion study (i.e., disabling one aspect
of a system at a time), and found that sort join and hash join algorithms
(along with predicate pushdown) are the key components of the RDBMS
that speeds up the grounding process of Turry (Appendix A.2.2). Turry
obviates the need for ALcHEMY to reimplement the optimization techniques
in an RDBMS.

5.3.3 Effect of Hybrid Architecture

We validate two technical claims: (1) the hybrid memory management
strategy of Turry (even without our partitioning optimizations) has com-
parable search rates to existing main memory implementations (and much
faster than RDBMS-based implementation) and (2) Turry maintains a
much smaller memory footprint (again without partitioning). Thus, we
compare three approaches: (1) Turry without the partitioning optimiza-
tions, called Turry-p (read: Tuffy minus p), (2) a version of Turry (also
without partitioning) that implements RDBMS-based WalkSAT (detailed
in Appendix A.1.2), Turry-mm, and (3) ALCHEMY.

Figure 5.4 illustrates the time-cost plots on LP and RC of all three
approaches. We see from RC that Turry-p is able to ground much more
quickly than ArcaeEmy (40 sec compared to 3913 sec). Additionally, we
see that, compared to Turry-mm, TurrY-p’s in-memory search is orders of
magnitude faster at getting to their best reported solution (both approaches
finish grounding at the same time, and so start search at the same time).
To understand why, we measure the flipping rate, which is the number
of steps performed by WalkSAT per second. As shown in Table 5.3, the

LP

. 2.0E+04 _: Tuffy-p (dash)
4 . Alchemy (solid)
© 1.0E+04] '--....,,/Tuffy-mm
0.0E+00 +
0 1000 2000
time (sec)

99

4.0E+05 RC
| Tuffy-mm
8 2.0E+05 : ~— Alchemy
T Tuffy-p |
0.0E+00 —— b
0 4000 8000
time (sec)

Figure 5.4: Time-cost plots of ALcHEMY vs. TurrY-p (i.e., Turry without parti-
tioning) vs. Turry-mm (i.e., Turry with RDBMS-based search)

LP IE RC | ER
Arcuemy | 0.20M M| 19K | 09K
TurFy-mm 0.9 13 0.9 | 0.03
Turry-p 0.11M | 0.39M | 0.17M | 79K
Table 5.3: Flipping rates (#flips/sec)
LP IE RC ER
clause table 52MB | 0.6 MB | 48 MB | 164 MB
ArcaEmy RAM | 411 MB | 206 MB | 28 GB | 3.5GB
Turry-p RAM 9 MB 8MB | 19 MB | 184 MB

Table 5.4: Space efficiency of ALcHEMY vs. TUFrrY-p (without partitioning)

reason is that Turry-mm has a dramatically lower flipping rate. We discuss

the performance bound of any RDBMS-based search implementation in

Appendix A.2.1.

To validate our second claim, that Turry-p has a smaller memory foot-

print, we see in Table 5.4, that on all datasets, the memory footprint of

TurrFy is no more than 5% of ALcuemy. Drilling down, the reason is that the

intermediate state size of ALcHEMY’s grounding process may be larger than

the size of grounding results. For example, on the RC dataset, ALcHEmMY

100

allocated 2.8 GB of RAM only to produce 4.8 MB of ground clauses. While
ArcHEMY has to hold everything in memory, Turry only needs to load the
grounding result from the RDBMS at the end of grounding. It follows that,
given the same resources, there are MLNSs that Turry can handle efficiently
while ALcaemy would crash. Indeed, on a dataset called “ER+"” which is
twice as large as ER, ALcHeEmy exhausts all 4GB of RAM and crashes soon
after launching, whereas Turry runs normally with peak RAM usage of
roughly 2GB.

From these experiments, we conclude that the hybrid architecture is
crucial to Turry’s overall efficiency.

5.3.4 Effect of Partitioning

In this section, we validate that, when there are multiple components
in the data, partitioning not only improves Turry’s space efficiency, but
— due to Theorem 5.2 — may actually enable Turry to find substantially
higher quality results. We compare Turry’s performance (with partitioning
enabled) against Turry-p: a version of Turry with partitioning disabled.

We run the search phase on each of the four datasets using three ap-
proaches: ALcHeEmMy, Turry-p, and Turry (with partitioning). Turry-p and
Avrcuemy run WalkSAT on the whole MRF for 107 steps. Turry runs Walk-
SAT on each component in the MRF independently, each component G;
receiving 107|G;|/|G| steps, where |G;| and |G| are the numbers of atoms in
this component and the MRF, respectively. This is weighted round-robin
scheduling.

As shown in Table 5.5, when there are multiple components in the MRF,
partitioning allows Turry to use less memory than Turry-p. (The IE dataset
is too small to yield notable differences). We see that Turry’s component-
aware inference can produce significantly better results than Turry-p. We
then extend the run time of all systems. As shown in Figure 5.5, there

continues to be a gap between Turry’s component-aware search approach

101

LP IE RC ER
#components 1| 5341 489 1
Turry-p RAM || 9MB | 8MB | 19MB | 184MB
Turry RAM || 9MB | 8MB | 15MB | 184MB
Turry-p cost || 2534 | 1933 | 1943 | 18717
TurFy cost 2534 | 1635 | 1281 | 18717

Table 5.5: Performance of Turry vs. Turry-p (i.e., TUrrY without partitioning)

2600 - 3000 -
Tuffy-p (dotted) IE " RC/Tuffy-p
2200 - Alchemy (SO“d)\ 2000 4 Qo @recciosccccccne oS
- ¢ -
o LI—-—.-_._.
1400 - \ 1000 +
Tuffy Alchemy grounding took over 1 hr.
1000 T T T 1 o T T 1
0 20 40 60 80 0 100 200 300
time (sec) time (sec)

Figure 5.5: Time-cost plots of Turry vs TurrY-p (i.e., TurrY without partition-

ing)

and the original WalkSAT running on the whole MRF. This gap is predicted
by our theoretical analysis in Section 5.2.3. Thus, we have verified that
partitioning makes Turry substantially more efficient in terms of both
space and search speed.

We also validate that Turry’s loading and parallelism makes a substan-
tial difference: without our batch loading technique, Turry takes 448s to
perform 10° search steps per component on RC, while 117s to perform
the same operation with batch loading. With the addition of 8 threads
(on 8 cores), we further reduce the runtime to 28s. Additional loading
and parallelism experiments in Appendix A.2.3 support our claim that
our loading algorithm and partitioning algorithm contribute to improving
processing speed.

102

3E+3 RC 3.0E+3 - LP 8E+4 - ER
:gmg ~9MB 6e+a | 1| ==200MB
2E43 - 2.8E+3 -
2 1oMB 8 -=-5MB & sgea | -=-100MB
S] 3.5MB 8 50MB
1E+3 - n 2.6E+3 - _— =
= - Nﬁ-__‘..
0OE+0 T T 1 2.4E+3 OE+0 T T 1
0 100 200 300 0 50 100 150 0 500 1000 1500
time (sec) time (sec) time (sec)

Figure 5.6: Time-cost plots of Turry with different memory budgets

5.3.5 Effect of Further Partitioning

To validate our claim that splitting MRF components can further improve
both space efficiency and sometimes also search quality (Section 5.2.4),
we run Turry on RC, ER, and LP with different memory budgets — which
are fed to the partitioning algorithm as the bound of partition size. On
each dataset, we give Turry three memory budgets, with the largest one
corresponding to the case when no components are split. Figure 5.6 shows
the experiment results. On RC, we see another improvement of the result
quality (cf. Figure 5.5). Similar to Example 5.3, we believe the reason to be
graph sparsity: “13MB” cuts only about 420 out of the total 10K clauses.
In contrast, while MRF partitioning lowers RAM usage considerably on
ER, it also leads to slower convergence — which correlates with poor parti-
tioning quality: the MRF of ER is quite dense and even 2-way partitioning
(“100MB”) would cut over 1.4M out of the total 2M clauses. The dataset
LP illustrates the interesting tradeoff where a coarse partition is beneficial
whereas finer grained partitions would be detrimental. We discuss this
tradeoff in Appendix A.1.8.

103

54 Summary

Motivated by a large set of data-rich applications, we study how to push
MLN inference inside an RDBMS. We find that the grounding phase of
MLN inference performs many relational operations and that these opera-
tions are a substantial bottleneck in state-of-the-art MLN implementations
such as Arcuemy. Using an RDBMS, Turry not only achieves scalability,
but also speeds up the grounding phase by orders of magnitude. We then
develop a hybrid solution with RDBMS-based grounding and in-memory
search. To improve the space and time efficiency of Turry, we study a
partitioning approach that allows for in-memory search even when the
dataset does not fit in memory. We showed that further partitioning allows

Turry to produce higher quality results in a shorter amount of time.

104

6 ScAaLING MARkoOV Loaic via TAask

DECOMPOSITION

The central observation of this chapter is as follows: A KBC task usually
involves routine subtasks such as classification and coreference resolution.
Moreover, such subtasks may correspond to a subset of rules in an MLN
program. Thus, instead of running a generic MLN inference algorithm
on the entire program (as done by state-of-the-art MLN inference algo-
rithms), we can partition the rule set into subtasks and invoke specialized
algorithms for corresponding subtasks. Most of the work in this chapter
appears in Niu, Zhang, Ré, and Shavlik [88, 90].

6.1 Motivations, Challenges, and Contributions

Markov logic [103] is a knowledge-representation language that uses weighted
tirst-order logic to specify graphical models [63]. It has been applied to

a wide range of applications, including many in information extraction
and data mining [4, 97, 110, 126, 149]. The resulting graphical models can
be huge (hundreds of millions of nodes or more in our applications), and
so a key technical challenge is the scalability and performance of Markov
logic inference.

Semantically, a Markov logic program, or Markov logic network (MLN),
specifies a graphical model called a Markov random field (MRF). Thus,
one approach to improving the scalability of MLNs is to apply inference
techniques from the graphical-model literature. One such technique is
dual decomposition [123, 143] from the mathematical programming liter-
ature that has recently been applied to MRF inference [54, 64, 66, 136].
In addition to increased scalability, dual decomposition also offers the
possibility of dual certificates! that can bound the distance of a solution

Namely an (exact or approximate) lower (resp. upper) bound to a minimization

105

from optimality, e.g., for maximum a posteriori (MAP) inference.

There are two steps in applying dual decomposition: (1) decompose
the inference problem into multiple parts, and (2) iteratively combine solu-
tions from individual parts. The intuition is that the individual parts will
be more tractable than the whole problem — so much so that the improved
performance of individual parts will compensate for the overhead of many
iterations of repeated inference. Following the literature [64, 66], we first
implement MRF-level decomposition and compare it with state-of-the-art
MLN inference algorithms. On simpler MLN-generated MRFs, MRF-level
decomposition can achieve competitive performance compared to mono-
lithic inference (i.e., running generic MLN inference algorithm without
decomposition). On more complex MLN-generated MRFs, the perfor-
mance and quality of both monolithic inference and MRF decomposition
approaches may be suboptimal.

Our key observation is that MRF-level decomposition strategies in step
(1) ignore valuable structural hints that often occur in MLN programes.
For example, a large Markov logic program may have several “subrou-
tines” that each perform a standard, well-studied task such as coreference
resolution or labeling, e.g., with a conditional random field (CRF) [70]. In
contrast to traditional approaches that either use a generic MLN inference
algorithm or decompose into semantically meaningless parts like trees, our
idea is to exploit this information so that we may use existing, specialized
algorithms for such individual subtasks. For example, we may choose
to solve a labeling task with a CRF and so use the Viterbi algorithm [70].
Importantly, even if we use different algorithms for each part, dual de-
composition preserves the joint-inference property —i.e., different parts
are not solved in isolation. The hope is to perform higher-quality, more
scalable inference than previous monolithic approaches.

To illustrate this idea, we describe several such correspondences be-

(resp. maximization) problem.

106

MRF-level Program-level
Input MRF component | MLN rule set
Parts Trees Subprograms (Tasks)
Inference Max-product Task-specific
Multipliers | Special factors Singleton rules

Table 6.1: Comparing MRF-level and program-level dual decomposition ap-
proaches to MLLN inference.

tween MLN structure and specialized inference algorithms, including
logistic regression and linear-chain conditional random fields. A user may
declare (or an algorithm may detect) which of these specialized algorithms
to use on an individual part of the MLN program. We call our prototype
system that integrates these specialized algorithms FeLix.
Experimentally, we validate that our (MRF-level and program-level)
dual-decomposition approaches have superior performance than prior
MLN inference approaches on several data-mining tasks. Our main results
are that (1) on simple MLNs taken from the literature, MRF-level decom-
position outperforms monolithic inference, and FeLix has competitive
efficiency and quality compared to monolithic inference and MRF-level
decomposition; and (2) on more complex MLNs (also taken from the lit-
erature), FELix achieves substantially higher efficiency and quality than

monolithic inference and MRF-level decomposition.

6.2 Dual Decomposition for MLNs

The dual decomposition technique (Section 2.3.4) leaves open the question
of how to decompose a function f. The two approaches that we implement
for dual decomposition work at different levels of abstraction: at the MRF
level or at the MLN-program level. Still, the two methods are similar: both
pass messages in a master-slave scheme, and produce a MAP solution

after inference in a similar way. As a result, we are able to implement both

107

approaches on top of the Turry [87] system. Table 6.1 provides a high-
level comparison between these two approaches. We describe each step of
the process in turn: decomposition (Section 6.2.1), master-slave message
passing (Section 6.2.2), and producing the final solution (Section 6.2.3).

6.2.1 Decomposition

In decomposition, we partition the input structure and set up auxiliary
structures to support message passing. For MRF-level decomposition, we
partition an MRF into multiple trees that are linked via auxiliary single-
ton factors; for program-level decomposition, we partition an MLN into

subprograms that are linked via auxiliary singleton rules.

MRF-level Decomposition The input to the decomposition algorithm
is an MRF which is the result of grounding an input MLN. The MRF is
represented as a factor graph (i.e., a bipartite graph between ground-tuple
nodes and ground-formula factors).? Following Komodakis et al. [65, 66]
and Wainwright et al. [136], we decompose the MRF into a collection of
trees (smaller factor graphs with disjoint factors) that cover this factor
graph, i.e., each node in the factor graph is present in one or more trees.
Nodes that are in more than one tree may take conflicting values; resolving
these conflicts is the heart of the message-passing procedure in the next
phase.

We decompose each component of this factor graph independently.
The goal is to partition the factors (including their incident edges) into
several groups so that each group forms a tree. To do this, we run a greedy
algorithm that begins by choosing a ground-formula factor at random. We
create a tree with this factor, and then iteratively pick a neighboring factor
that shares at least one node with some factor in this tree. We check if

adding this neighboring factor to the tree would introduce cycles. If not, we

2This representation allows for non-pairwise MRFs.

108

A A
r r
Tasks ! <-- Master - -> z
Task: Classification | : Task: Generic
1 U
v v
Relations ~GoodNews Happy, Happy, BadNews Sad

Figure 6.1: A program-level decomposition for Example 6.1. Shaded boxes are
evidence relations. Solid arrows indicate data flow; dash arrows are control.

add the neighboring factor to the tree and proceed to the next neighboring
factor (in a breadth-first manner). Once all neighboring factors have been
exhausted, we remove this tree from the factor graph, and then repeat the
above process for the next tree.

Some nodes may be shared by multiple trees. To allow messages to
be passed in the next step, we create a special singleton factor for each
copy of a shared node. The weight of this factor represents a Lagrange

multiplier and may change between iterations.

Program-level Decomposition In contrast, FELix performs decomposi-
tion at the program-level: the input is the (first-order) rule set of an MLN
program, and FeLix partitions it into multiple tasks each of which can be
solved with different algorithms. One design decision that we make in
the program-level approach is that entire relations are shared or not — as
opposed to individual ground tuples. This choice allows FeLix to use a
relational database management system (RDBMS) for all data movement,
which can be formulated as SQL queries; in turn this allows us to deal
with low-level issues like memory management. We illustrate the idea

with an example.

Example 6.1. Consider a simple MLN which we call T*:

109

1 GoodNews(p) => Happy(p) &1
1 BadNews(p) => Sad(p) dr

5 Happy(p) <=> —Sad(p) $3

where GoodNews and BadNews are evidence and the other two relations are queries.
Consider the decomposition I = {¢1} and T, = {bo, $3}. Ty and T, share the
relation Happy; so we create two copies of this relation: Happy, and Happy,, one
for each subprogram. We introduce Lagrange multipliers A,,, one for each possible
ground tuple Happy(p). We thereby obtain a new program T :

1 GoodNews(p) => Happy(p) Cb{
Ap Happyi(p) $1
1 BadNews(p) => Sad(p) o))
5 Happy>(p) <=> —Sad(p) d3
—Ap Happy2(p) ®2

where each @; represents a set of singleton rules, one for each value of p (i.e., for
each specific person in a given testbed). This program contains two subprograms,
N ={d{, 1} and T} = {ba, G, @2}, that can be solved independently with any
inference algorithm.

As illustrated in Figure 6.1, the output of our decomposition method
is a bipartite graph between a set of subprograms and a set relations. In
a program-level approach, FeLix attaches an inference algorithm to each
subprogram; we call this pair of algorithm and subprogram a task. We
discuss how to select decompositions and assign algorithms in Section 6.3.

6.2.2 Message Passing

We apply the master-slave message passing scheme [65, 66] for both MRF-
level and program-level decomposition. The master-slave approach alter-
nates between two steps: (1) perform inference on each part independently
to obtain each part’s predictions on shared variables, and (2) a process

110

called the Master examines the (possibly conflicting) predictions and sends
messages in the form of Lagrange multipliers to each task. Below we de-
scribe this process using the notation from program-level decomposition.
Essentially, the same algorithm applies to MRF-level decomposition; we
describe the minor differences at the end of the section.

The Master chooses the values of the Lagrange multipliers via an opti-
mization process [65, 66]. In particular, we can view the Master as optimiz-
ing max, g(A) using an iterative solver, in our case projected subgradient
ascent [143, p. 174]. Specifically, let p be a tuple of a query relation r;
in the given decomposition, p may be shared between k subprograms
and so there are k copies of p —call them py,...,px. Fori=1,...,k, let
pi € {0,1} denote the value of p predicted by task i at step t and A} denote
the corresponding Lagrange multiplier. At step t, the Master updates A}
by comparing the predicted value of p; by task i to the average value for p
output by all inference tasks. This leads to the following update rule:

e = 1}|)

A= A 4 (pf -

where «; is the step size for this update. Following standard practice
in numerical optimization [5], in this paper’s experiments, we use the
diminishing step size rule «; = 1/t for both types of decomposition. The
subgradient ascent procedure stops either when all copies have reached
an agreement or when FeLix has run a pre-specified maximum number of

iterations.

MRF-level Approach Message passing for MRF-level decomposition
follows the same master-slave scheme as above. A difference is that to
perform inference on each tree, we can perform exact inference (to predict
each p;) by running the max-product algorithm [67]. A key benefit of this

approach is that it allows tractable computation of a dual certificate. We

111

have implemented dual certificates, but postpone them to the technical-

report version as they are not essential to our contribution.

6.2.3 Producing the Final Solution

Inference is a continuous process, so some copies of variables may not have
converged at the end of a run. The last step is to choose a final solution
based on solutions from the decomposed parts.

MRF-level Decomposition To obtain a solution to the original MLN
from individual solutions on each tree, we use the heuristic proposed by
Komogorov et al. [64] (and used in Komodakis et al. [66]) that sequentially
fixes shared-variable values based on max-product messages in individual

trees.

Program-level Decomposition If a shared relation is not subject to any
hard rules, FeLix takes majority votes from the predictions of related tasks.
(If all copies of this relation have converged, the votes would be unan-
imous.) To ensure that hard rules in the input MLN program are not
violated in the final output, we insist that for any query relation r, all hard
rules involving r (if any) be assigned to a single task, and that the final
value of r be taken from this task.® This guarantees that the final output is
a possible world for I' (provided that the hard rules are satisfiable).

6.3 Specialized Tasks

With program-level decomposition, we can use different algorithms for
different subprograms. FELix uses specialized algorithms to handle tasks,
which can be more efficient than generic MLN inference. As an existence

3This policy might result in cascaded subtasks. More sophisticated policies are an
interesting future direction.

112

Task Implementation

Classification Logistic Regression [13]
Segmentation Conditional Random Fields [70]
Coreference Correlation Clustering [2, 8]

Table 6.2: Example specialized tasks and their implementations in FeLIx.

proof, we describe several tasks that are common in text processing (see
Table 6.2). We leave more comprehensive taxonomies of such tasks as

future work.

6.3.1 Individual Tasks

We describe each task, how it arises in an MLN, a specialized algorithm,
and an informal argument describing why being aware of the special struc-
ture may outperform MRF-level decomposition or monolithic approaches.

Classification Classification is a fundamental statistical problem and
ubiquitous in applications. Classification arises in Markov logic as a query
predicate R(x,y) with hard rules of the form

R(x, Y1) Ayi # Yo => ~R(x,Y2),

which mandates that each object (represented by a possible value of x)
can only be assigned at most one label (represented by a possible value
of y). For example, the rules Fs and F; in Figure 2.6 form a classification
task that determines whether each affil tuple (considered as an object
with Boolean labels) holds. If the only query relation in a subprogram [}
is R and R is mentioned at most once in each rule in I (except the rule
above), then T is essentially a logistic regression (LR) classification model.
The inference problem for LR is trivial given model parameters (here rule
weights) and feature values (here ground formulae).

On the other hand, suppose there are N objects and K labels. Then

113

it would require N (];) factors to represent the above rule in an MRF. For
tasks such as entity linking (e.g., mapping textual mentions to Wikipedia
entities), the value of K could be in the millions.

Segmentation Conditional random fields (CRFs) [70] have been widely
applied to text applications. In particular, linear-chain CRFs are a popular
way for performing word-sequence segmentation and labeling, and can be
solved efficiently with dynamic programming algorithms. A linear-chain
CRF model consists of unigram features and bigram features. In Markov
logic, unigram features have the same form as LR rules, while bigram

features are soft rules of the form
L(x1,%2) => R(x1,y1) A R(x2,Y2),

where L is an evidence relation containing correlated object pairs (e.g.,
consecutive tokens in a sentence). If the correlation structure L represents
chains over the objects (i.e., x values), then we can solve a subproblem
with unigram and bigram rules like these with the Viterbi algorithm. In
contrast, the MRF representation (with Boolean variables) of this model is
not a chain, and so cannot be solved with Viterbi.

Coreference Another common task is coreference resolution (coref),
e.g., given a set of N strings (say phrases in a document) we want to decide
which strings represent the same real-world entity. This arises in MLNs
as a query relation R that is subject to hard rules encoding an equivalent
relation, including the reflexivity, symmetry, and transitivity properties.
The input to a coreference task is a single relation B(o1, 02, wgt) where
wgt = Bo1,02 € R indicates how likely the objects 01, 02 are coreferent
(with 0 being neutral). The output of a coreference task is an instance
of relation R(01, 02) that indicates which pairs of objects are coreferent.

Assuming that 41,02 = 0 if (01, 02) is not covered by the relation B, then

114

Properties Symbol Example

Reflexive REF r(x,y) = p(x,x)
Symmetric SYM rix,y) = ply,x)
Transitive TRN r(x,y),ply,z) = plx z)
Key KEY rixy),plxz) = y=z

Not Recursive NoREC Can be defined w/o recursion.
Tree Recursive TrREC Tree-structured MRF

Table 6.3: Properties assigned to predicates by the FeLix compiler.

each valid R incurs a cost (called disagreement cost)

COStcoref(R) = Z |Bol,02| + Z |Bol,02|-

0l,02:(01,02)¢R 0l,02:(01,02)€R
and Boy,02>0 and Bo;,0,<0

In Figure 2.6, F; through F5 can be mapped to a coreference task for the
relation pCoref. F; through F; encode the reflexivity, symmetry, and tran-
sitivity properties of pCoref, and the ground formulae of F, and Fs specify
the weighted-edge relation B. The goal is to find a relation R that achieves
the minimum cost.

Coreference is a well-studied problem [35], and there are approximate
inference techniques for coreference resolution [2, 8, 119]. FeLix imple-
ments both correlation clustering algorithms [2] and Singh et al.’s sampling
algorithm [119]. In contrast, explicitly representing a coreference task in
an MRF may be inefficient: a direct implementation of transitivity requires

N3 factors.

6.3.2 Task Detection

In our prototype, we allow a user to manually decompose an MLN pro-
gram and specify a specific inference algorithm to be run on each sub-
program. Ideally FeLix should be able to automatically recognize MLN

115

Task Required Properties
Classification KEY, NoREC
Segmentation KEY, TrREC
Coreference REF, SYM, TRN

Generic MLN Inference none

Table 6.4: Tasks and their required properties.

subprograms that could be processed as specialized tasks. In this section
we describe a best-effort compiler that is able to automatically detect the
presence of classification, segmentation, and coref tasks.* If a subprogram
does not match any specialized algorithm, we run a generic MLN inference
algorithm (WalkSAT [58]).°

To automatically decompose an MLN program I" into tasks, FeLix uses
a two-step approach. FeLix’s first step is to annotate each query predicate
p with a set of properties. An example property is whether or not p is
symmetric. Table 6.3 lists of the set of properties that FeLix attempts
to discover with their definitions. Once the properties are found, FeLix
uses Table 6.4 to list all possible options for a predicate. When there are
multiple options, the current prototype of FeLix simply chooses the first
task to appear in the following order: (Coref, Classification, Segmentation,
Generic). This order intuitively favors more specific tasks. To compile
an MLN into tasks, FeLix greedily applies the above procedure to split
a subset of rules into a task, and then iterates until all rules have been
consumed.

The most technically difficult part of the compiler is determining the
properties of the predicates. There are two types of properties that FeLix
looks for: (1) schema-like properties of any possible worlds that satisfy I'
and (2) graphical structures of correlations between tuples.

* As we will see in Table 6.6, our automatic matching algorithm is able to find five
out of the six decompositions in the experiments.
5 Alternatively we could also run MRF-level dual decomposition on this subprogram.

116

Schema Properties Although the set of properties in Table 6.3 is moti-
vated by considerations from statistical inference, the first four properties
depend only on the hard rules in T'. To detect these schema-like properties,
FeLIx uses a set of sound (but not complete) rules that are described by
simple patterns. For example, we can conclude that a predicate R is transi-
tive if program contains syntactically the rule R(x,y), R(y, z) => R(x, z)

with weight oo.

Graphical Structure The second type of properties that FELix considers
characterize the graphical structure of the ground database (in turn, this
structure describes the correlations that must be accounted for in the
inference process). The ground database is a function of both soft and
hard rules in the input program, and so we consider both types of rules
here. FeLix's compiler attempts to deduce a special case of recursion that
is motivated by (tree-structured) conditional random fields that we call
TrREC. Suppose that there is a single recursive rule that contains p in both
the body and the head is of the form:

p(x,y), Tly,z) => p(x,z) (6.1)

where the first attribute of T is a key and the transitive closure of T is a
partial order. In the ground database, p will be “tree-structured”. MAP
and marginal inference for such rules are in P-time [137]. FeLix has a

regular expression to deduce this property.

6.4 Experiments

Our main hypotheses are that (1) MRF-level decomposition can outper-
form monolithic inference; and (2) on smaller datasets, FeLix achieves sim-
ilar performance to MRF-level decomposition and monolithic inference,

while on larger datasets it achieves higher performance than MRF-level

117

decomposition and monolithic inference. We validate them on several
testbeds.

We also validate that specialized algorithms indeed have higher effi-
ciency and quality than generic MLN inference algorithms or MRF de-
composition; therefore being able to integrate specialized algorithms is a
key reason for FeLix’s high performance.

Datasets and MLNs We use four publicly available MLN testbeds from
ALcHEMY’s website.® In addition, we create an MLN program for named-
entity recognition based on skip-chain CRFs[129], and we describe an MLN
program that was developed for TAC-KBP, a knowledge-base population
challenge.” Table 6.5 shows some statistics of these datasets.

We describe the MLN testbeds from ArLcHemy’s website: (1) IE, where
one performs segmentation on Cora citations using unigram and bigram
features (see the “Isolated” program [97]). (2) IER], where one performs
joint segmentation and entity resolution on Cora citations (see the “Jnt-
Seg-ER” program [97]). (3) ER, where one performs entity resolution on
four predicates with pairwise signals as well as inter-predicate correlation
rules (see the “B+N+C+T” program [120]). (4) WebKB, where one predicts
(non-exclusive) categories of webpages from academic departments based
on content words and links between pages [76].

The last two are (5) NER, where one performs named-entity recogni-
tion on a dataset with 10K tokens using the skip-chain CRF model [129]
(encoded in three MLN rules), and (6) KBP, which is an implementation of
the TAC-KBP (knowledge-base population) challenge using an MLN that
performs entity linking (mapping textual mentions to Wikipedia entities),
slot filling (mapping co-occurring mentions to a set of possible relation-
ships), entity-level knowledge-base population, and fact verification from
an existing partial knowledge base. Using this MLN, the results for TAC-

®http://alchemy.cs.washington.edu/
"http://nlp.cs.qc.cuny.edu/kbp/2010/

http://alchemy.cs.washington.edu/
http://nlp.cs.qc.cuny.edu/kbp/2010/

118

Relations Rules Evidence MRF DB
IE 17 34 150K 137K 11MB
IER] 18 357 150K 564K 44MB
ER 10 29 15K 19M 1.4GB
WebKB 3 57 282K 520K 41MB
NER 2 4 10K 1.7M 134MB
KBP 7 6 43M 20M 1.6GB
KBP+ 7 6 240M 64B 5.1TB

Table 6.5: Dataset sizes. The columns are the number of relations in the input
MLN, the number of MLLN rules, the number of evidence tuples, and the number of
MREF factors after grounding with Turry, and the size of in-database representation
of the MIRF.

KBP are comparable to the state of the art [53] — we achieved a F1 score of
0.80 on entity linking (human performance is about 0.90) and 0.31 on slot
filling.

Among those datasets, IE, WebKB, and NER are simpler programs
as they only have unigram and sparse bigram rules and classification
constraints with very few labels; IER], ER, and KBP are more complex
programs as they involve transitivity rules and classification constraints
with many labels. To test the scalability of FeLix, we also run the KBP
program on a 1.8M-doc TAC-KBP corpus (“KBP+").

Experimental Setup We run Turry [87] and ALcHEMY as state-of-the-art
monolithic MLN inference systems. We implement MRF-level decomposi-
tion and program-level decomposition (i.e., FELix) approaches on top of
the open-source Turry system.? As Turry has similar or superior perfor-
mance to ALcHEMY on each dataset, here we use Turry as a representative
for state-of-the-art MLN inference and report ALcHEMY’s performance in
the technical-report version of this paper. We use the following labels

8http://hazy.cs.wisc.edu/tuffy

http://hazy.cs.wisc.edu/tuffy

2000000

40000 4000
] IE OBA WebKB NER
o0 3000 1500000 | Erve TREE
8 20000 2000 1000000 T
8 TUFFY TREE 1 e ———— e
10000 | i 1000 500000
lké.,-_ et —— TUFFY TREE 0BA 7
0 0 0
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
time (sec) time (sec) time (sec)
400000
160000 600000
TUFFY* IER) ER TUFFY* KBP
—
120000 300000 - 450000 gy

-
]

g 80000 TREEF 200000 0BA TUFFY* 300000 4

OBA

40000 100000 i 150000

OBA
0 0 0
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 5000 10000 15000 20000

time (sec) time (sec) time (sec)

Figure 6.2: High-level performance results of various approaches to MLN infer-
ence. For each dataset and each system, we plot a time-cost curve. TREE ran out of
memory on ER and KBP. Labels ending with an asterisk indicate that some points
in the corresponding curves correspond to infeasible solutions (i.e., solutions with
infinite cost), and the curves were obtained by “softening” hard rules to have
weight 100.

for these three approaches: (1) TUFFY, in which Turry performs RDBMS-
based grounding (i.e., MLN-to-MRF transformation) and uses WalkSAT
as its inference algorithm; (2) TREE, in which we replace Turry’s WalkSAT
algorithm with tree-based MRF-level dual decomposition as described
in Section 6.2; and (3) OBA, in which we implement program-level dual
decomposition as described Sections 6.2 and 6.3; we use Singh et al.’s
algorithm [119] for Coref. Table 6.6 lists FeLix's decomposition scheme for
each dataset.

All three approaches are implemented in Java and use PostgreSQL
9.0.4 as the underlying database system. Unless specified otherwise, all
experiments are run on a RHEL 6.1 server with four 2.00GHz Intel Xeon
CPUs (40 total physical cores plus hyperthreading) and 256 GB of RAM.
Although all three approaches can be parallelized on most datasets, we
use single-thread runtime when plotting graphs. Recall that we use the
step size rule a; = 1. It is known that alternative step size rules may result
in faster convergence, and we report a study of these step size rules in the

120

LR CRF Coref WalkSAT

IE 1 0 0 1
IER] 1 0 1 1
ER 0 0 4 1
WebKB 0 0 0 2
NER 0 1 0 1
KBP 2 0 0 1

Table 6.6: Number of tasks of each type in the decompositions used by FeLix.
Our automatic matching algorithm finds all decompositions except for WebKB.

technical-report version of this paper.

6.4.1 Overall Efficiency and Quality

We validate that TREE can outperform TUFFY and that FeLix in turn
outperforms both TREE and TUFFY on complex programs. To support
these claims, we compare the efficiency and quality of all three approaches
on the datasets listed above. We run each system on each dataset for 5000
seconds (except for the largest dataset KBP, for which we run 5 hours), and
plot the MLN cost against runtime.

From Figure 6.2 we see that, on the three simpler programs (i.e., IE,
WebKB, and NER), all three approaches were able to converge to about the
same result quality. Although TREE and TUFFY have similar performance
on IE and WebKB, on NER the TREE approach obtains a low-cost solution
within two minutes whereas TUFFY takes more than one hour to reach
comparable quality. FeLix has slower convergence behavior than TUFFY
and TREE on IE and WebKB, but it does converge to a similar solution.
We note that alternate step size rules may significantly improve FeLix’s
performance on these datasets.

On the more complex programs (i.e., IER], ER, and KBP), FeLix achieves
dramatically better performance compared to TUFFY and TREE: while

121

TUFFY and TREE fail to find a feasible solution (i.e., a solution with finite
cost) after 5000 seconds on each of these datasets, FeLIx converges to a
feasible solution within minutes on each dataset. There are complex struc-
tures in these MLNs; e.g., transitivity for entity resolution and uniqueness
constraints for entity linking in KBP. TUFFY and TREE were not able to
find feasible solutions that satisfy such complex constraints, and the corre-
sponding curves were obtained by replacing hard rules with a “softened”
version with weight 100. Still, we see that the results from both TUFFY
and TREE are substantially worse than FeLix. From the above comparison,
we conclude that overall the FeLix approach is able to achieve significantly
higher efficiency and quality than TUFFY and TREE approaches.

Scalability To test scalability, we also run FeLix on the large KBP+ dataset
with a parallel RDBMS (from Greenplum Inc.). This MLN converges within

a few iterations; an iteration takes about five hours in FeLix.

6.4.2 Specialized Tasks

We next validate that the ability to integrate specialized tasks into MLIN
inference is key to FeLix’s higher efficiency and quality. To do this, we
demonstrate that FeLix’s specialized algorithms outperform generic MLN
inference algorithms in both quality and efficiency when solving special-
ized tasks. To evaluate this claim, we run FeLix, Turry, TREE, and ALcHEMY
on three MLN programs encoding the following tasks: logistic regression-
based classification (LR), linear-chain CRF-based classification (CRF), and
correlation clustering (CC). To measure application quality (F1 scores),
we select some datasets with ground truth: we use a subset of the Cora
dataset’ for CC, and a subset of the CoONLL 2000 chunking dataset'® for LR
and CRF. As shown in Table 6.7, while it always takes less than a minute

9ht‘cp ://alchemy.cs.washington.edu/data/cora
10http ://www.cnts.ua.ac.be/conl12000/chunking/

http://alchemy.cs.washington.edu/data/cora
http://www.cnts.ua.ac.be/conll2000/chunking/

122

Task System Initial Final Cost F1
FeLix 21s 21s 2.4e4 0.79

LR Turry 58s 59s 2.4e4 0.79
TREE 58 s 196s 2.4e4 0.79
Avrcuemy 3140s 3152s 3.4ed 0.14
FeLix 35s 35s 4.6eb 0.90

CRF Turry 148 s 186s oo (6.4e5) 0.14 (0.14)
TREE 150 s 911s 4.7¢5 0.16
ArLcuemy 740s 760s 1.4e6 0.10
FeLix 11s 11s 1.8e4 0.35

CC Turry 977s 1730s oo (2.0e4) 0.33(0.32)
TREE 982s 11433s oo (3.3e4) 0.16(0.16)

ArcHEmy 2622s 2640s oo (4.6e5) 0.54 (0.49)

Table 6.7: Performance and quality comparison on individual tasks. “Initial”
(resp. “Final”) is the time when a system produced the first (resp. converged)
result. “F1” is the F1 score of the final output. For system-task pairs with infinite
cost, we also “soften” hard rules with a weight 100, and report corresponding
cost and F1 in parentheses. Each cost/F1 value is an average over five runs.

for FeLix on each task, the other approaches take much longer. Moreover,

FeLix has the best inference quality (i.e., cost) and application quality (i.e.,
F1).1

6.5 Summary

We study how to apply dual decomposition to Markov logic inference. We
find that MRF-level decomposition empirically outperforms traditional,
monolithic approaches to MLN inference on some programs. However,
MRE-level decomposition ignores valuable structural hints in Markov logic
programs. Thus, we propose an alternative decomposition strategy that

partitions an MLN program into high-level tasks (e.g., classification) that

The only exception is ALcuemy’s F1 on CC, an indication that the CC program is
suboptimal for the application.

123

can be solved with specialized algorithms. On several datasets, we empiri-
cally show that our program-level decomposition approach outperforms
both monolithic inference and MRF-level decomposition approaches to
MLN inference.

Our future work is in several directions. First, we plan to investigate
how to algorithmically use dual certificates in program-level dual decom-
position, e.g., to support early stopping. The current prototype of FeLix
uses classical schemes for the iterative steps of DD, and so the convergence
rate could be further improved by using recent techniques [42, 54]. To
support broader applications, we plan to extend FeLix with new tasks.
An interesting challenge is to develop an architecture that allows one to
quickly and easily add in new inference techniques. Another interesting
topic is how to automatically perform decomposition and select inference
algorithms for an MLN based on program structure. To improve the effi-
ciency of non-specialized tasks, we could apply existing MLN inference
techniques, e.g., lifted inference. Lastly, our prototype implementation
of FeLix executes each task from scratch at each iteration; incremental or

warm-start inference could improve the overall efficiency.

124

7 CoNcLUSION AND FUTURE WORK

7.1 Conclusion

This dissertation demonstrates that the distant supervision technique for
statistical learning and the Markov logic framework for statistical inference
are indeed effective approaches to web-scale KBC. The technical contribu-
tions include the ELeMENTARY architecture to knowledge-base construction,
a systematic study of distant supervision, and two novel techniques for
scaling Markov logic inference. Using ELEMENTARY, we built a system
called DeepDive that reads hundreds of millions of web pages to enhance
Wikipedia with facts of tens of relations. We have also deployed ELEMEN-
TARY to two additional domains: ANcieEnTTExT, where we help English
professors study 140K books from the 18th century, and GEoDeepDIvE,
where we help geoscientists organize information in 20K journal papers

in geology.

7.2 Future Work

Beyond the current prototype of ELEMENTARY, there are several interesting
future research directions. We discuss them below.

The Crowd Crowdsourcing did not display a strong impact on the qual-
ity of distant supervision in our previous study [148]. In our experiments,
we only asked the crowd to verify the examples obtained via distant super-
vision. However, there are many other types of input that one could take
from the crowd. It is plausible that certain types of input from the crowd
could have much larger impacts than we observed. For example, one may
solicit new examples or even new features (e.g., linguistic patterns) via
crowdsourcing. It is interesting to explore possibilities like these.

125

Inference Efficiency There are two types of computational redundancies
in the inference systems of ELEMENTARY. First, the message passing scheme
in FeLix currently is an iterative process that invokes individual inference
algorithms to execute from scratch at each iteration. Second, developing
KBC systems is also an iterative process, and so the underlying models of a
KBC system (say, an MLN) would evolve over time; currently ELEMENTARY
would need to perform all inference tasks from scratch upon such changes.
Ideally we would like to address these inefficiencies, say using some form

of incremental inference.

Statistical Modeling Languages Because a Markov logic program con-
sists of logical formulae, the graphical model compiled from an MLN
only consists of CNF or DNF factors. This limitation is a key reason for
the representational and computational inefficiency of monolithic MLN
inference systems like ALcaeEmy and Turry. For example, if we represent
a liner-chain CRF model with more than two labels in Markov logic, the
graphical model compiled from the Markov logic program would no
longer be form a chain. The reason is that the MLN-based graphical model
uses multiple Boolean variables and hard constraints to essentially emu-
late one multinomial variable in the CRF model. Although FeLix is able
to opportunistically address such issues by “reverse-engineering” such
inefficient representations in MLNSs, a cleaner solution would be to avoid
such representations altogether. Furthermore, certain types of correlations
(e.g., COUNT) that can be useful for a statistical KBC system cannot be
easily expressed in an MLN. Addressing the above issues requires careful
thoughts on a new language for specifying graphical models.

Feature Engineering Markov logic (or any flexible framework for statis-
tical inference) provides the ability to integrate diverse input signals (or
statistical features), but not all features have the same impact on the quality
of KBC. From our experience of developing DeepDive and GEoDEeePDIVE,

126

we have found that the process of debugging and tuning features tends
to be iterative and have humans in the loop. This feature engineering
process is often tedious and painstaking. An interesting direction is to
provide tools to assist developers with feature engineering; e.g., automatic

parameter tuning and smart diagnosis of an ELEMENTARY pipeline.

127

BIBLIOGRAPHY

[1]

E. Agichtein and L. Gravano. Snowball: Extracting relations from
large plain-text collections. In Proceedings of the fifth ACM conference
on Digital libraries, pages 85-94. ACM, 2000.

N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent
information: Ranking and clustering. JACM, 55:23, 2008.

D. Allen and A. Darwiche. New advances in inference by recursive
conditioning. In Proceeding of the Conference on Uncertainty in Artificial
Intelligence, 2003.

D. Andrzejewski, L. Livermore, X. Zhu, M. Craven, and B. Recht.
A framework for incorporating general domain knowledge into
latent Dirichlet allocation using first-order logic. In Proceedings of
the International Joint Conferences on Artificial Intelligence, 2011.

K. Anstreicher and L. Wolsey. Two ak3A ,, A°well-knownal.sA Al
properties of subgradient optimization. Mathematical Programming,
120(1):213-220, 2009.

L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple rela-
tional processing of uncertain data. In Proceedings of the International
Conference on Data Engineering, 2008.

A. Arasu and H. Garcia-Molina. Extracting structured data from
web pages. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 337-348. ACM, 2003.

A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with con-
straints using Dedupalog. In Proceedings of the International Conference
on Data Engineering, 2009.

[15]

128

N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine
Learning, 56(1):89-113, 2004.

O. Benjelloun, A. Sarma, A. Halevy, M. Theobald, and J. Widom.
Databases with uncertainty and lineage. Proceedings of International
Conference on Very Large Data Bases, 17:243-264, 2008.

D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall, 1989.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, New York, 2004.

R. D. S. Braz, E. Amir, and D. Roth. Lifted first-order probabilis-
tic inference. In Proceedings of the International Joint Conferences on
Artificial Intelligence, pages 1319-1325, 2005.

S. Brin. Extracting patterns and relations from the world wide web.
In Proceedings of the International Conference on World Wide Web, pages
172-183. Springer, 1999.

A. Cali, G. Gottlob, and A. Pieris. Query answering under expressive
entity-relationship schemata. Conceptual Modeling—ER 2010, 1:347-
361, 2010.

A. Carlson,]. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr, and
T. Mitchell. Toward an architecture for never-ending language learn-

ing. In Proceedings of the Conference on Artificial Intelligence, pages
1306-1313, 2010.

X. Chai, B. Vuong, A. Doan, and J. Naughton. Efficiently incorpo-

rating user feedback into information extraction and integration

[22]

[23]

129

programs. In Proceedings of the 35th SIGMOD international conference
on Management of data, pages 87-100. ACM, 2009.

F. Chen, X. Feng, R. Christopher, and M. Wang. Optimizing statistical
information extraction programs over evolving text. In Proceedings
of the International Conference on Data Engineering, volume 5, page 6,
2012.

P. Chen. The entity-relationship model: Toward a unified view of
data. ACM Transactions on Database Systems, 1:9-36, 1976.

L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan. SystemT: An algebraic approach to declarative
information extraction. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, 2010.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,
K. Nigam, and S. Slattery. Learning to extract symbolic knowl-
edge from the world wide web. In Proceedings of the 1998 National
Conference on Artificial Intelligence, 1998.

M. Craven and J. Kumlien. Constructing biological knowledge bases
by extracting information from text sources. In Proceedings of the
Seventh International Conference on Intelligent Systems for Molecular
Biology, pages 77-86, 1999.

N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In Proceedings of International Conference on Very Large
Data Bases, 2004.

R. de Salvo Braz, E. Amir, and D. Roth. MPE and partial inversion in
lifted probabilistic variable elimination. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 1123-1130, 2006.

[26]

[27]

[28]

[32]

[33]

130

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing
on large clusters. In Proceeding of the USENIX Symposium on Operating
Systems Design and Implementation, pages 137-150, 2004.

E. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation
clustering in general weighted graphs. Theoretical Computer Science,
361(2-3):172-187, 2006.

P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan, and R. Ra-
makrishnan. DBLife: A community information management plat-
form for the database research community. In Proceeding of the
Conference on Innovative Data Systems Research, 2007 .

A. Deshpande and S. Madden. MauveDB: Supporting model-based
user views in database systems. Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, 1:73-84, 2006.

P. Domingos and D. Lowd. Markov Logic: An Interface Layer for
Artificial Intelligence. Morgan & Claypool, 2009.

M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin. Entity
disambiguation for knowledge base population. In ACL, pages 277-
285, 2010.

J. Duchi, D. Tarlow, G. Elidan, and D. Koller. Using combinatorial
optimization within max-product belief propagation. In Proceedings

of the Annual Conference on Neural Information Processing Systems, 2007.

O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked,
S. Soderland, D. Weld, and A. Yates. Web-scale information ex-
traction in knowitall:(preliminary results). In Proceedings of the 13th
international conference on World Wide Web, pages 100-110. ACM, 2004.

[34]

[40]

131

O. Etzioni, A. Fader, J. Christensen, S. Soderland, and M. Center.
Open information extraction: The second generation. In Twenty-

Second International Joint Conference on Artificial Intelligence, 2011.

I. Fellegi and A. Sunter. A theory for record linkage. Journal of the
American Statistical Association, 1299:51, 1969.

W. Feller. An introduction to probability theory and its applications. Vol.
I. New York: John Wiley\ & Sons, 1950.

X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architec-
ture for in-RDBMS analytics. In Proceedings of the SIGMOD Interna-
tional Conference on Management of Data, 2012.

B. R. Feng Niu, C. R¢é, and S. J. Wright. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. In NIPS, 2011.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyan-
pur, A. Lally, J. Murdock, E. Nyberg, J. Prager, et al. Building Watson:
An overview of the DeepQA project. AI Magazine, 31(3):59-79, 2010.

J. Finkel, T. Grenager, and C. Manning. Incorporating non-local
information into information extraction systems by Gibbs sampling.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, pages 363-370, 2005.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning prob-
abilistic relational models. In Proceedings of the International Joint
Conferences on Artificial Intelligence, 1999.

A. Globerson and T. Jaakkola. Fixing max-product: Convergent
message passing algorithms for MAP LP-relaxations. Advances in
Neural Information Processing Systems, 21:1, 2007.

[43]

132

M. Gormley, A. Gerber, M. Harper, and M. Dredze. Non-expert
correction of automatically generated relation annotations. In Pro-
ceedings of the NAACL HLT Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk, pages 204-207, 2010.

M. Greenwood and M. Stevenson. Improving semi-supervised acqui-
sition of relation extraction patterns. In Proceedings of the Workshop on
Information Extraction beyond the Document, pages 29-35. Association
for Computational Linguistics, 2006.

R. Gupta, A. Diwan, and S. Sarawagi. Efficient inference with
cardinality-based clique potentials. In Proceedings of the International
Conference on Machine Learning, 2007.

M. Hearst. Automatic acquisition of hyponyms from large text cor-
pora. In Proceedings of the 14th Conference on Computational Linguistics-
Volume 2, pages 539-545, 1992.

J. Hilbe. Logistic Regression Models. CRC Press, 2009.

J. Hoffart, M. A. Yosef, I. Bordino, H. FA"$A®rstenau, M. Pin, M. Span-
iol, B. Taneva, S. Thater, G. Weikum, and G. Weikum. Robust disam-
biguation of named entities in text. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 782-792,
2011.

R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty, and D. Weld.
Amplifying community content creation with mixed initiative infor-
mation extraction. In Proceedings of the 27th international conference
on Human factors in computing systems, pages 1849-1858. ACM, 2009.

R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. Weld.

Knowledge-based weak supervision for information extraction of

133

overlapping relations. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pages 541-550, 2011.

R. Hoffmann, C. Zhang, and D. Weld. Learning 5000 relational
extractors. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, pages 286—295, 2010.

R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. Haas.
MCDB: A monte carlo approach to managing uncertain data. In
Proceedings of the SIGMOD International Conference on Management of
Data, 2008.

H. Ji, R. Grishman, H. Dang, K. Griffitt, and J. Ellis. Overview of
the TAC 2010 knowledge base population track. In Text Analysis
Conference, 2010.

V. Jojic, S. Gould, and D. Koller. Accelerated dual decomposition
for map inference. In Proceedings of the International Conference on
Machine Learning, 2010.

B. Kanagal and A. Deshpande. Online filtering, smoothing and prob-
abilistic modeling of streaming data. In Proceedings of the International
Conference on Data Engineering, 2008.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hyper-
graph partitioning: Applications in VLSI domain. IEEE Transactions
on VLSI Systems, 7:69-79, 2002.

G. Kasneci, M. Ramanath, F. Suchanek, and G. Weikum. The YAGO-
NAGA approach to knowledge discovery. SIGMOD Record, 37(4):41-
47, 2008.

H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to
solving problems with hard and soft constraints. The Satisfiability
Problem: Theory and Applications, 17:1, 1997.

[59]

[60]

134

K. Kersting, B. Ahmadi, and S. Natarajan. Counting belief prop-
agation. In Proceeding of the Conference on Uncertainty in Artificial
Intelligence, 2009.

S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph
and bipartite clique. In Proceeding of the IEEE Annual Symposium on
Foundations of Computer Science, 2004.

T. Khot, S. Natarajan, K. Kersting, and J. Shavlik. Learning markov
logic networks via functional gradient boosting. In IEEE 11th Inter-
national Conference on Data Mining (ICDM), pages 320-329, 2011.

S. Kok and P. Domingos. Learning the structure of markov logic
networks. In Proceedings of the 22nd international conference on Machine
learning, pages 441-448. ACM, 2005.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for en-
ergy minimization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(10):1568-1583, 2006.

N. Komodakis and N. Paragios. Beyond pairwise energies: Efficient
optimization for higher-order MRFs. In Proceeding of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2985-2992,
20009.

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via
dual decomposition: Message-passing revisited. In Proceeding of the
IEEE International Conference on Computer Vision, pages 1-8, 2007.

F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory,
47(2):498-519, 2001.

135

N. Kushmerick. Wrapper induction for information extraction. PhD
thesis, University of Washington, 1997.

N. Kushmerick. Wrapper induction: Efficiency and expressiveness.
Artificial Intelligence, 118(1):15-68, 2000.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In

Proceedings of the International Conference on Machine Learning, 2001.

N. Lao, T. Mitchell, and W. Cohen. Random walk inference and
learning in a large scale knowledge base. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, pages
529-539, 2011.

D. Lewis and W. Gale. A sequential algorithm for training text
classifiers. In Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
3-12,199%4.

D. Lin and P. Pantel. DIRT-discovery of inference rules from text.
Knowledge Discovery and Data Mining, 1:323-328, 2001.

D. Lin and P. Pantel. Discovery of inference rules for question-
answering. Natural Language Engineering, 7(4):343-360, 2001.

B. Liu, L. Chiticariu, V. Chu, H. Jagadish, and F. Reiss. Automatic rule
refinement for information extraction. In Proceedings of International
Conference on Very Large Data Bases, 2010.

D. Lowd and P. Domingos. Efficient weight learning for Markov
logic networks. In European Conference on Principles of Data Mining
and Knowledge Discovery, pages 200-211, 2007.

[771]

[78]

[79]

[82]

136

A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the
construction of internet portals with machine learning. Information
Retrieval Journal, 3:127-163, 2000.

A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic pro-
gramming via imperatively defined factor graphs. In Proceedings of

the Annual Conference on Neural Information Processing Systems, 2009.

E. Michelakis, R. Krishnamurthy, P. Haas, and S. Vaithyanathan. Un-
certainty management in rule-based information extraction systems.
In Proceedings of the SIGMOD International Conference on Management
of Data, 2009.

L. Mihalkova and R. Mooney. Bottom-up learning of Markov logic
network structure. In Proceedings of the International Conference on
Machine Learning, 2007.

L. Mihalkova and M. Richardson. Speeding up inference in statistical
relational learning by clustering similar query literals. In Proceeding
of the International Workshop on Inductive Logic Programming, 2010.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision
for relation extraction without labeled data. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, pages
1003-1011, 2009.

R. Mooney. Relational learning of pattern-match rules for informa-
tion extraction. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence, pages 328-334, 1999.

N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge
harvesting with high precision and high recall. In Proceedings of the
Web Search and Data Mining, 2011.

[85]

137

T.Nguyen and A. Moschitti. End-to-end relation extraction using dis-
tant supervision from external semantic repositories. In Proceeding
of the Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 277-282, 2011.

T. Nguyen and A. Moschitti. Joint distant and direct supervision for
relation extraction. In Proceeding of the International Joint Conference

on Natural Language Processing, pages 732-740, 2011.

F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up statistical
inference in Markov logic networks using an RDBMS. In Proceedings
of International Conference on Very Large Data Bases, 2011.

F. Niu, C. Zhang, C. Ré, and J. Shavlik. Felix: Scaling Inference for
Markov Logic with an Operator-based Approach. ArXiv e-prints,
2011.

F. Niu, C. Zhang, C. Ré, and]J. Shavlik. Deepdive: Web-scale
knowledge-base construction using statistical learning and infer-
ence. Second Int.l Workshop on Searching and Integrating New Web Data
Sources, 2012.

F. Niu, C. Zhang, C. Ré, and]J. Shavlik. Elementary: Large-scale
knowledge-base construction via machine learning and statistical
inference. International Journal On Semantic Web and Information
Systems Special Issue on Web-Scale Knowledge Extraction, 2012.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kiibler, S. Mari-
nov, and E. Marsi. Maltparser: A language-independent system

for data-driven dependency parsing. Natural Language Engineering,
13(02):95-135, 2007.

P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic pat-
terns for automatically harvesting semantic relations. In Proceedings

[99]

[100]

138

of the Annual Meeting of the Association for Computational Linguistics,
pages 113-120. Association for Computational Linguistics, 2006.

T. Park and A. Van Gelder. Partitioning methods for satisfiability
testing on large formulas. Information and Computation, 62:179-184,
2000.

J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausi-

ble inference. Morgan Kaufmann, 1988.

D. Poole. First-order probabilistic inference. In Proceedings of the
International Joint Conferences on Artificial Intelligence, pages 985-991,
2003.

H. Poon and P. Domingos. Sound and efficient inference with prob-
abilistic and deterministic dependencies. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2006.

H. Poon and P. Domingos. Joint inference in information extraction.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2007.

H. Poon and P. Domingos. Joint unsupervised coreference resolution
with Markov Logic. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2008.

H. Poon and P. Domingos. Unsupervised semantic parsing. In
Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 1-10. Association for Computational Linguistics,
20009.

H. Poon, P. Domingos, and M. Sumner. A general method for re-
ducing the complexity of relational inference and its application to
MCMC. In Proceedings of the AAAI Conference on Artificial Intelligence,
2008.

139

[101] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In Proceedings of the International Conference on

Data Engineering, 2007.

[102] C. Ré,]. Letchner, M. Balazinska, and D. Suciu. Event queries on
correlated probabilistic streams. In Proceedings of the SIGMOD Inter-
national Conference on Management of Data, 2008.

[103] M. Richardson and P. Domingos. Markov logic networks. Machine
Learning, 62:107-136, 2006.

[104] S. Riedel. Improving the accuracy and efficiency of MAP inference
for Markov logic. In Proceeding of the Conference on Uncertainty in
Artificial Intelligence, 2008.

[105] S. Riedel and I. Meza-Ruiz. Collective semantic role labeling with
Markov logic. In Proceedings of the Conference on Computational Natural
Language Learning, 2008.

[106] S. Riedel, L. Yao, and A. McCallum. Modeling relations and their
mentions without labeled text. In Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases: Part
111, pages 148-163, 2010.

[107] E. Riloff. Automatically constructing a dictionary for information
extraction tasks. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 811-811, 1993.

[108] A. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decom-
position and linear programming relaxations for natural language
processing. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1-11, 2010.

140

[109] A.Sahuguet and F. Azavant. Building intelligent web applications
using lightweight wrappers. Data & Knowledge Engineering, 36(3):283—
316, 2001.

[110] S. Satpal, S. Bhadra, S. Sellamanickam, R. Rastogi, and P. Sen. Web
information extraction using markov logic networks. In KDD, pages
1406-1414, 2011.

[111] P. Sen, A. Deshpande, and L. Getoor. Bisimulation-based approxi-
mate lifted inference. In Proceeding of the Conference on Uncertainty in
Artificial Intelligence, pages 496-505, 2009.

[112] P. Sen, A. Deshpande, and L. Getoor. PrDB: Managing and ex-
ploiting rich correlations in probabilistic databases. Proceedings of
International Conference on Very Large Data Bases, 18:1065-1090, 2009.

[113] B. Settles. Active Learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan & Claypool, 2012.

[114] B. Settles and M. Craven. An analysis of active learning strategies for
sequence labeling tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 1070-1079, 2008.

[115] J. Shavlik and S. Natarajan. Speeding up inference in Markov
logic networks by preprocessing to reduce the size of the resulting
grounded network. In Proceedings of the International Joint Conferences
on Artificial Intelligence, 2009.

[116] W. Shen, A. Doan, J. Naughton, and R. Ramakrishnan. Declarative
information extraction using datalog with embedded extraction
predicates. In Proceedings of International Conference on Very Large
Data Bases, 2007.

141

[117] V. Sheng, F. Provost, and P. Ipeirotis. Get another label? Improving
data quality and data mining using multiple, noisy labelers. In Pro-
ceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 614-622, 2008.

[118] H. Simon and S. Teng. How good is recursive bisection? SIAM
Journal on Scientific Computing, 18:1436-1445, 1997.

[119] S. Singh, A. Subramanya, F. Pereira, and A. McCallum. Large-scale
cross-document coreference using distributed inference and hierar-
chical models. In Proceeding of the Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, 2011.

[120] P.Singla and P. Domingos. Entity resolution with Markov logic. In
Proceedings of the International Conference on Data Mining, 2006.

[121] P. Singla and P. Domingos. Memory-efficient inference in relational
domains. In Proceedings of the AAAI Conference on Artificial Intelligence,
2006.

[122] P. Singla and P. Domingos. Lifted first-order belief propagation. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2008.

[123] D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual
decomposition for inference. Optimization for Machine Learning, 1:1-
11, 2010.

[124] M. Stevenson and M. Greenwood. Learning information extrac-
tion patterns using wordnet. In Proceedings of the Third International
WordNet Conference, pages 95-102, 2006.

[125] F. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic
knowledge. In Proceedings of the International Conference on World
Wide Web, pages 697-706. ACM, 2007.

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

142

F. Suchanek, M. Sozio, and G. Weikum. SOFIE: A self-organizing
framework for information extraction. In Proceedings of the Interna-
tional Conference on World Wide Web, 2009.

M. Surdeanu and C. Manning. Ensemble models for dependency
parsing: cheap and good? In Human Language Technologies: Confer-
ence of the North American Chapter of the Association of Computational
Linguistics, pages 649-652, 2010.

M. Surdeanu, D. McClosky, J. Tibshirani, J. Bauer, A. Chang,
V. Spitkovsky, and C. Manning. A simple distant supervision ap-
proach for the TAC-KBP slot filling task. In Proceedings of Text Analysis
Conference 2010 Workshop, 2010.

C. Sutton and A. McCallum. Collective segmentation and labeling
of distant entities in information extraction. Technical Report 04-49,
University of Massachusetts, 2004.

C. Sutton and A. McCallum. An introduction to conditional random
fields for relational learning. Introduction to statistical relational learn-
ing. MIT Press, 2006.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic mod-
els for relational data. In Proceeding of the Conference on Uncertainty
in Artificial Intelligence, 2002.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing
in practice: The Condor experience. Concurrency and Computation:
Practice and Experience, 17(2-4):323-356, 2005.

M. Theobald, M. Sozio, F. Suchanek, and N. Nakashole. URDF:
Efficient Reasoning in Uncertain RDF Knowledge Bases with Soft
and Hard Rules. Technical report, MP]I, 2010.

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

143

R. Tibshirani. Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), 58:267—

288, 1996.
V. Vazirani. Approximation algorithms. Springer Verlag, 2001.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via
agreement on trees: message-passing and linear programming. IEEE
Transactions on Information Theory, 51(11):3697-3717, 2005.

M. Wainwright and M. Jordan. Graphical Models, Exponential Families,
and Variational Inference. Now Publishers, 2008.

D. Wang, E. Michelakis, M. Garofalakis, and J. Hellerstein.
Bayesstore: Managing large, uncertain data repositories with proba-
bilistic graphical models. Proceedings of the VLDB Endowment, pages
340-351, 2008.

W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Ex-
ploiting random walk strategies. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2004.

G. Weikum and M. Theobald. From information to knowledge: Har-
vesting entities and relationships from web sources. In Proceedings
of the ACM Symposium on Principles of Database Systems, 2010.

D. Weld, R. Hoffmann, and F. Wu. Using Wikipedia to bootstrap
open information extraction. SIGMOD Record, 37:62—68, 2009.

M. Wellman, J. Breese, and R. Goldman. From knowledge bases to
decision models. The Knowledge Engineering Review, 7:35-53, 1992.

L. Wolsey. Integer Programming. Wiley, 1998.

[144]

[145]

[146]

[147]

[148]

[149]

144

F. Wu and D. Weld. Autonomously semantifying wikipedia. In ACM
Conference on Information and Knowledge Management, pages 41-50,
2007.

F. Wu and D. Weld. Automatically refining the Wikipedia infobox

ontology. In Proceeding of the 17th international conference on World
Wide Web, pages 635-644. ACM, 2008.

F. Wu and D. Weld. Open information extraction using Wikipedia.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, pages 118-127, 2010.

L. Yao, S. Riedel, and A. McCallum. Collective cross-document rela-
tion extraction without labelled data. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 1013-1023,
2010.

C. Zhang, F. Niu, C. Ré, and J. Shavlik. Big data versus the crowd:
Looking for relationships in all the right places. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, 2012.

J. Zhu, Z. Nie, X. Liu, B. Zhang, and J. Wen. Statsnowball: A statisti-
cal approach to extracting entity relationships. In Proceedings of the
International Conference on World Wide Web, 2009.

145

A TUFFY

This chapter contains supplemental material for Chapter 5.

A.1 Additional Systems Details

A11 A Compilation Algorithm for Grounding

Algorithm 11 is a basic algorithm of expressing the grounding process
of an MLN formula in SQL. To support existential quantifiers, we used
PostgreSQL’s array aggregate feature.

Algorithm 11 MLN Grounding in SQL

Input: an MLN formula ¢ = VV¥_,1; where each l; is a literal supported
by predicate table r(1;)
Output: a SQL query Q that grounds ¢
1: FROM clause of Q includes ‘r(1;) t;” for each literal 1;
2: SELECT clause of Q contains “t;.aid” for each literal 1;
3: For each positive (resp. negative) literal 1;, there is a WHERE predicate
‘ti.truth # true’ (resp. ‘ti.truth # false’)
4: For each variable x in ¢, there is a WHERE predicate that equates the
corresponding columns of t;’s with 1; containing x
5: For each constant argument of 1;, there is an equal-constant WHERE
predicate for table t;
6: Form a conjunction with the above WHERE predicates

A.1.2 Implementing WalkSAT in RDBMS

WalkSAT is a stochastic local search algorithm; its random access patterns
pose considerable challenges to the design of Turry. More specifically,
the following operations are difficult to implement efficiently with on-
disk data: 1) uniformly sample an unsatisfied clause; 2) random access

(read/write) to per-atom or per-clause data structures; and 3) traverse

146

clauses involving a given atom. Atoms are cached as in-memory arrays,
while the per-clause data structures are read-only. Each step of WalkSAT
involves a scan over the clauses and many random accesses to the atoms.

Although our design process iterated over numerous combinations of
various design choices, we were still unable to reduce the gap as reported
in Section 5.3.2. For example, compared to clause table scans, one might
suspect that indexing could improve search speed by reading less data
at each step. However, we actually found that the cost of maintaining
indices often outweighs the benefit provided by indexing. Moreover, we
found it very difficult to get around RDBMS overhead such as PostgreSQL’s
mandatory MVCC.

A.1.3 MLNs Causing MRF Fragmentation

MLN rules usually model the interaction of relationships and attributes of
some underlying entities. As such, one can define entity-based transitive
closures, which directly corresponds to components in the MRF. Since
in real world data the interactions are usually sparse, one can expect to
see multiple components in the MRF. A concrete example is the paper
classification running example, where the primary entities are papers, and
the interactions are defined by citations and common authors. Indeed,
our RC dataset yields hundreds of components in the MRF (see Table 5.5).

A.14 Data Loading as Bin Packing

The data loading problem as described in Section 5.2.3 is essentially the
bin packing problem. Formally, given as input a set of items I = {i;,...,in}
with weights wy, ..., wy and a size constraint M, the bin packing problem
is to produce a partition I = B; U - - - U By such that Ziij w; < M for
j =1,...,k for the smallest possible k.

147

Theorem A.1 (From [135]). Let OPT denote the number of bins in an optimal
solution. For all € > 0, there does not exist an algorithm that runs in polynomial

time and produces (1.5 — ¢)OPT bins for any input unless P = NP.

Turry implements an approximation algorithm that uses at most 1.7OPT +
2 bins. It is an efficient algorithm called First Fit Decreasing [135]. It sorts
the components (or their ids) by decreasing size, then it greedily puts as
many items as possible in each batch (without violating the space budget).

A.1.5 Theorem 5.2

Proof of Theorem 5.2. We follow the notations of the theorem. Without loss
of generality and for ease of notation, suppose H = {1,...,N}. Denote
by Q the state space of G. Let Qx C Q be the set of states of G where
there are exactly k non-optimal components. For any state x € Q, define
H(x) = E[H«(Qo)], i.e., the expected hitting time of an optimal state from
x when running WalkSAT. Define . = min,cq, H(x); in particular, fo =0,
and f; corresponds to some state that differs from an optimal by only one
bit. Define gy = fyx+1 —fx. Forany x,y € Q, let Pr(x — y) be the transition
probability of WalkSAT, i.e., the probability that next state will be y given
current state x. Note that Pr(x — y) > 0 only if y € N(x), where N(x)
is the set of states that differ from x by at most one bit. For any A C Q,
define Pr(x — A) = ZUGA Pr(x — y).

For any x € Qy, we have

H(x) = 1+) Pr(x —y)H(y)
yeQ

= 1+ Z Z Pr(x — y)H(y)

te{-1,0,1} y€Qx+t

> 1+ Z Z Pr(x — y)fiit-

te{—1,0,1} y€Qx+t

148

Define
PY =Pr(x = Qiy41), P*X =Pr(x = Qi_1),

then Pr(x — Qx) =1—P% —P*, and
H(X) 2 1 + fk(l — P}r — Pf) —+ fkflpi + fk+1Pi.

Since this inequality holds for any x € Qy, we can fix it to be some
x* € Q s.t. H(x*) = fr. Then gy 1P* > 1+ gP¥, which implies
gr—1 = gKPY /PX.

Now without loss of generality assume that in x*, Gy, ..., Gy are non-
optimal while Gy, ..., Gn are optimal. Let x] be the projection of x* on
G;. Then since

v _ ivil)ea(x))

v _ T vilx)Bi)
B Y vilx)

P , P
B ZlN vi(x])

4

we have

PINERY (x7)B;(x7) - (N —k)
X Z20k———
2 1 vilxPog(xg) k

where the second inequality follows from the definition of r.

Jk—1 = gk

For all k < rN/(r + 2), we have gx_1 > 2gx. Since g > 1 for any k,
f1 = go = 2"™N/("+2)| That is, not aware of components, WalkSAT would
take an exponential number of steps in expectation to correct the last bit
to reach an optimum. O

According to this theorem, the gap on Example 5.1 is at least 2N/3;
in fact, a more detailed analysis reveals that the gap is at least (Ng) ~
O2N/vN). Figure A.1 shows the experiment results of running ALcHEMmY,
Turry, and Turry-p (i.e., Turry without partitioning) on Example 5.1 with
1000 components. Note that the analysis of Theorem 5.2 actually applies to
not only WalkSAT, but stochastic local search in general. Since stochastic

local search algorithms are used in many statistical models, we believe

149

2000
Performance on Example 1
+ 1500 } * r— -A
1) . Tuffy-p (diamonds)
o Alchemy (triangles
© 1000 = Y {triangles)
N Tuffy
500 T T T 1
0 20 40 60 80
time (sec)

Figure A.1: Effect of partitioning on Example 5.1

that our observation here and corresponding techniques have much wider
implications than MLN inference.

A.1.6 Hardness of MRF Partitioning

A bisection of a graph G = (V, E) with an even number of vertices is a pair
of disjoint subsets V;, V, C V of equal size. The cost of a bisection is the
number of edges adjacent to both V; and V,. The problem of Minimum
Graph Bisection (MGB) is to find a bisection with minimum cost. This
problem admits no PTAS [60]. The hardness of MGB directly implies the
hardness of partitioning MRFs. As such, one may wonder if it still holds
w.r.t. the domain size for a given MLN program (hence of size O(1)). The
following theorem shows that the answer is yes.

Theorem A.2. MGB can be reduced to the problem of finding a minimum bisec-
tion of the MRF generated an MLLN of size O(1).

Proof. Consider the MLN that contains a single formula of the following

form:

p(x),r(x,y) = ply),

150

where p is query and r is evidence. For any graph G = (V, E), we can set
the domain of the predicates to be V, and let r = E. The MRF generated
by the above MLN is identical to G. O]

A.1.7 MRF Partitioning Algorithm

We provide a very simple MRF partitioning algorithm (Algorithm 12) that
is inspired by Kruskal’s minimum spanning tree algorithm. It agglomera-
tively merges atoms into partitions with one scan of the clauses sorted in
the (descending) absolute values of weights. The hope is to avoid cutting
high-weighted clauses, thereby (heuristically) minimizing weighted cut
size.

To explain the partitioning procedure, we provide the following defi-
nitions. Each clause c in the MRF G = (V, E) is assigned to an atom in c.
A partition of the MRF is a subgraph G; = (V;, E;) defined by a subset of
atoms V; C V; E; is the set of clauses assigned to some atom in V;. The size
of G; as referred to by Algorithm 12 can be any monotone function in Gj;
in practice, it is defined to be the total number of literals and atoms in G;.
Note that when the parameter f3 is set to +oo, the output is the connected
components of G.

Algorithm 12 A Simple MRF Partitioning Algorithm

Input: an MRF G = (V, E) with clause weights w: E — R
Input: partition size bound 3
Output: a partitioning of V s.t. the size of each partition is no larger than
p
1: Initialize hypergraph H = (V, F) with F = ()
2: for all e € E in [w|-descending order do
3: F <« FUeif afterwards no component in H is larger than 3
4: return the collection of per-component atom sets in H

Our implementation of Algorithm 12 only uses RAM to maintain a
union-find structure of the nodes, and performs all other operations in the

151

RDBMS. For example, we use SQL queries to “assign” clauses to atoms

and to compute the partition of clauses from a partition of atoms.

A.1.8 Tradeoff of MRF Partitioning

Clearly, partitioning might be detrimental to search speed if the cut size is
large. Furthermore, given multiple partitioning options, how do we decide
which one is better? As a baseline, we provide the following formula to
(roughly) estimate the benefit (if positive) or detriment (if negative) of a

partitioning:

Wt T!#cut_clauses!’
1=

where N is the estimated number of components with positive lowest
cost, T is the total number of WalkSAT steps in one round of Gauss-Seidel,
and |E| is the total number of clauses. The first term roughly captures the
speed-up as a result of Theorem 5.2, and the second term roughly captures
the slow-down caused by cut clauses.

Empirically however, we find this formula to be rather conservative
compared to experimental results that generally favor much more aggres-

sive partitioning.

A.2 Additional Experiments

A.21 Alternative Search Algorithms

As shown in Section 5.3.3, RDBMS-based implementation of WalkSAT
is several orders of magnitude slower than the in-memory counter part.
This gap is consistent with the I/O performance of disk vs. main memory.
One might imagine some clever caching schemes for WalkSAT, but even
assuming that a flip incurs only one random I/O operation (which is
usually on the order of 10 ms), the flipping rate of RDBMS-based search is

152

LP | IE RC ER

Full optimizer 6| 13 40 106
Fixed join order 71 13 43 111
Fixed join algorithm || 112 | 306 | >36,000 | >16,000

Table A.1: Grounding time in seconds

IE | RC

Tuffy-batch 448 | 133
Tuffy 117 | 77
Tuffy+parallelism || 28 | 42

Table A.2: Comparison of execution time in seconds

still no more than 100 flips/sec. Thus, it is highly unlikely that disk-based
search implementations could catch up to their in-memory counterpart.

A.2.2 Lesion Study of Tuffy Grounding

To understand which part of the RDBMS contributes the most to Turry’s
fast grounding speed, we conduct a lesion study by comparing the ground-
ing time in three settings: 1) full optimizer, where the RDBMS is free to
optimize SQL queries in all ways; 2) fixed join order, where we force the
RDBMS to use the same join order as ALcHeEmY does; 3) fixed join algo-
rithm, where we force the RDBMS to use nested loop join only. The results
are shown in Table A.1. Clearly, being able to use various join algorithms
is the key to Turry’s fast grounding speed.

A.2.3 Data Loading and Parallelism

To validate the importance of batch data loading and parallelism (Sec-
tion 5.2.3), we run three versions of Turry on the IE and RC datasets:
1) Tuffy, which has batch loading but no parallelism; 2) Tuffy-batch,

153

which loads components one by one and does not use parallelism; and
3) Tuffy+parallelism, which has both batch loading and parallelism. We
use the same WalkSAT parameters on each component (up to 10° flips per
component) and run all three settings on the same machine with an 8-core
Xeon CPU. Table A.2 shows the end-to-end running time of each setting.

Clearly, loading the components one by one incurs significant I/O cost
on both datasets. The grounding + partitioning time of IE and RC are 11
seconds and 35 seconds, respectively. Hence, Tuffy+parallelism achieved
roughly 6-time speed up on both datasets.

A.3 Additional Features in Tuffy

In addition to the syntax and semantics described in Section 2.2.3, from our
experience of building KBC applications with Markov logic, we have found
two language extensions to be instrumental to Turry (and ELEMENTARY):

scoping rules and parameterized weights.

Scoping Rules By default, the arguments in an MLN predicate are con-
sidered to be independent to each other; i.e., for a predicate of arity a,
there are |[D|® possible ground tuples where D is the domain. Thus, given
a query predicate AdjacentMentions(mention, mention), a typical MLN
system — e.g., ALcaemy! or Turry [87] — would enumerate and perform
inference on #mentions® ground tuples instead of only the #mention—1
truly adjacent mention pairs. To address this issue, ELEMENTARY allows a

developer to explicitly scope a query predicate with rules of the form

AdjacentMentions(ml, m2) :=

Mentions(ml,pl) AMentions(m2,p2) Apl =p2—1

'http://alchemy.cs.washington.edu/

http://alchemy.cs.washington.edu/

154

where the evidence relation Mentions lists all mentions and their positional
indexes (consecutive integers). ELEMENTARY implements scoping rules by
translating them into SQL statements that are used to limit the content of

the in-database representation of MLN predicates.

Parameterized Weights As we will see, an MLN can express classical
statistical models such as logistic regression and conditional random
fields [70]. Such classical statistical models usually have simple struc-
ture but many parameters. To compactly represent these models in MLN,
we introduce parameterized weights, i.e., weights that are functions of one or
more variables in an MLN rule. For example, a logistic regression model
on the TokenLabel relation may have a parameter for each word-label pair;

we can represent such a model using the following MLN rule

wgt(w, 1) :
Tokens(tok) /A HasWord(tok, w) => TokenLabel(tok, 1)

where wgt(w, 1) is a parameterized weight that depends on the word
variable w and the label variable 1. Besides compactness, a key advantage
of parameterized weights is that one can write a program that depends
on the input data without actually providing the data. Another benefit is
that of efficiency: a rule with parameterized weights may correspond to
hundreds of thousands of MLN rules; because there can be non-negligible
overhead in processing an MLN rule (e.g., initializing in-memory or in-
database data structures), without this compact representation, we have
found that the overhead of processing an MLN program can be prohibitive.
ELEMENTARY implements parameterized weights by storing functions like
wgt(w, 1) as look-up tables in a database that can be joined with predicate
tables.

155

B FELIX

In this section, we formally describe the dual decomposition framework
used in FeLix to coordinate the tasks. We start by formalizing MLN in-
ference as an optimization problem. Then we show how to apply dual
decomposition on these optimization problems.

Notation Used Table B.1 defines some common notation that is used in
the following sections.

Notation Definition
ab,..., o0 pB,... Singular (random) variables
ab,...,«pB,... Vectorial (random) variables
[THRRY Dot product between vectors
[l Length of a vector or size of a set
Wi ith element of a vector
&, & A value of a variable

Table B.1: Notation used in this section

B.0.1 Problem Formulation

Suppose an MLN program I' consists of a set of ground MLN rules R =
{r1, ..., Tm} with weights (wy,..., wy,). Let X = {xy,...,,x} be the set of
Boolean random variables corresponding to the ground atoms occurring in
I'. Each MLN rule r; introduces a function ¢; over the set of random vari-
ables 1; C X mentioned in r;i: ¢;(7;) = 1if r; is violated and 0 otherwise.
Let w be a vector of weights. Define vector ¢ (X) = ($p1(71), ..., Pm(7tm)).
Given a possible world x € 2%, the cost is

cost(x) =w- ¢p(x)

156

Suppose FeLix decides to decompose T into t tasks Oq, ..., O¢. Each
task O; contains a set of rules R; C R. The set {R;} forms a partition of
R. Let the set of random variables for each task be X; = U, ez, 7. Let
n; = |Xi|. Thus, each task O; essentially solves the MLN program defined
by random variables X; and rules R;. Given w, define w' to be the weight
vector whose entries equal w if the corresponding rule appears in R; and
0 otherwise. Because R; forms a partition of R, we know Y_. w* = w. For
each task Oj, define an n-dim vector p;(X), whose j*"* entry equals x; if
x; € X; and 0 otherwise. Define n-dim vector u(X) whose j'" entry equals
x;. Similarly, let ¢ (X;) be the projection of ¢ (X) onto the rules in task O;.

B.0.2 MAP Inference

MAP inference in MLNSs is to find an assignment x to X that minimizes
the cost:

i . . B.1
xg&%nw P (x) (B.1)

Each task O; performs MAP inference on X;:

min w- d(xy). (B.2)

x:€{0,1}m
Our goal is to reduce the problem represented by Eqn. B.1 into sub-
problems represented by Eqn. B.2. Eqn. B.1 can be rewritten as

min E wh d(xq).
xe{0,1}™ -
1<i<t

Clearly, the difficulty lies in that, for i # j, X; and X; may overlap.

Therefore, we introduce a copy of variables for each O;: XF. Eqn. B.1 now
becomes:

157

xEe{0,11M x

min ZWi - (xf)

(B.3)
st Vi xt =x.
The Lagrangian of this problem is:
L(x/xlcl"/xtclvll ’ Vt)
i (B.4)

Thus, we can relax Eqn. B.1 into

v x;€{0,1}™

max {Z { min w'. d)(xic) + vy ui(xic)} —maxZVi . Hi(X)}
The term maxy) _; Vi - 4;(x) = oo unless for each variable x;,

Z \/i,)' =0.

OixjeXy

Converting this into constraints, we get

max { min wi~¢(xf)+vi-ui(xf)}
v T x;€{0,1}™

s.t. \V/Xj Z Vij = 0

Oi:Xj eXi
We can apply sub-gradient methods on v. The dual decomposition

procedure in FeLix works as follows:

1. Initialize V§0), ey V,EO).

2. At step k (starting from 0):

158

a) For each task Oj, solve the MLN program consisting of: 1)
original rules in this task, which are characterized by wt; 2) ad-
ditional priors on each variables in X;, which are characterized
by vi®,

b) Get the MAP inference results xAiC.

3. Update v;:
©
(k+1) _ (k) T Zl:XjGXlxl,j
Vij = Vi —A ("i,j (Ux; €X0]])

B.0.3 Marginal Inference

Marginal inference of MLNs aims at computing the marginal distribution

(i.e., the expectation since we are dealing with boolean random variables):

o= Ew[pn(X)). (B.5)

The sub-problem of each task is of the form:

o = Eywo o (Xo)l. (B.6)

Again, the goal is to use solutions for Eqn. B.6 to solve Eqn. B.5.

We first introduce some auxiliary variables. Recall that p(X) corre-
sponds to the set of random variables, and ¢ (X) corresponds to all func-
tions represented by the rules. We create a new vector & by concatenat-
ing uand ¢: £(X) = (u'(X), &' (X)). We create a new weight vector
0 = (0,...,0,w") which is of the same length as &. It is not difficult to see

that the marginal inference problem equivalently becomes:

& = EolE(X)]. (B.7)

Similarly, we define ©¢ for task O as 6o = (0, ..., 0, w(). We also define
a set of 0: ©p, which contains all vectors with entries corresponding to

159

random variables or cliques not appear in task O as zero. The partition
function A(0) is:

A(8) =) exp{—0 - &(X)}
X

The conjugate dual to A is:

A*(&) =sup{0-&—A(O)}
0
A classic result of variational inference [137] shows that

A

§ =argsup{0-&—A*(§)}, (B.8)

EeMm

where M is the marginal polytope. Recall that £ is our goal (see Eqn. B.7).
Similar to MAP inference, we want to decompose Eqn. B.8 into different
tasks by introducing copies of shared variables. We first try to decompose
A*(E). In A*(&), we search 0 on all possible values for 0. If we only search
on a subset of 6, we can get a lower bound:

AO(E) = sup {0-&— A*(E)} < A*(E).

SISCTe)

Therefore,
1
Ak < o *O
AE < Y A,

where m is the number of tasks. We approximate & using this bound:

A

_ o l *O
& =argsup{0-§ - %A (&)},

EeM

which is an upper bound of the original goal. We introduce copies of &:

160

. 1 .
E=arg sup {) 0o-&° _H%A ©E%)}

£%ieME O
s.t. £Q = &,,Ve € Xo URp, VO

The Lagrangian of this problem is:

1
L(E €, E0 Vi, Vi) =) {90 &0~ —A*O(zo)}
m

o
+) Vi (£ —¢),

where v; € ©;, which means only the entries corresponding to random
variables or cliques that appear in task O; are allowed to have non-zero
values. We get the relaxation:

min) sup {Gv«i"i—%f**oi(aow+vi-“~01}

. €O;
Vi€Oi 1 E.oiEM
—minE v;- &
&5

Considering the ming) _; v; - & part. This part is equivalent to a set of

constraints:

D> Vi =0,¥x € X

OiZXGXi
vix =0,Vx & X
Therefore, we are solving:
min sup {mo; - 01— AOVECY) v, - E,Oi}
ViEO; 0O
i &7ieM

s.t., Z vix =0,Vx € X
O;i:xeX;y

Vix = O,\V/X g X

161

Note the factor m in front of 0;; it implies that we multiply the weights
in each subprogram by m as well. Then we can apply sub-gradient method
on vj.

1. Initialize vio), ey vio).

2. At step k (start from 0):

a) For each task Oj, solve the MLN program consists of: 1) original
rules in this task, which is characterized by m@;; 2) additional

priors on each variables in X;, which is characterized by vgk).

b) Get the marginal inference results &;".

k+1)

3. Update vg :

(1) _ 00 _ o E,AC lexjexlafj
Vij T Vij T L T Tgexil

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Abstract
	Introduction
	Problem Space and Challenges
	Technical Contributions
	Outline

	Preliminaries
	Knowledge-base Construction
	Statistical Modeling
	Statistical Inference
	Statistical Learning
	Additional Related Work

	Knowledge-base Construction in Elementary
	Conceptual Model and Architecture
	Examples
	Scaling Feature Extraction
	Effectiveness of Statistical Inference

	Scaling Distant Supervision for KBC
	Motivations
	Distant Supervision Methodology
	Experiments
	Discussion

	Scaling Markov Logic using an RDBMS
	Motivations, Challenges, and Contributions
	Tuffy Systems
	Experiments
	Summary

	Scaling Markov Logic via Task Decomposition
	Motivations, Challenges, and Contributions
	Dual Decomposition for MLNs
	Specialized Tasks
	Experiments
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Tuffy
	Additional Systems Details
	Additional Experiments
	Additional Features in Tuffy

	Felix

