Tuffy

Scaling up Statistical Inference
in Markov Logic using an RDBMS

Feng Niu, Chris Re, AnHai Doan, and Jude Shavlik

University of Wisconsin-Madison

One Slide Summary

Machine Reading is a DARPA program to capture
knowledge expressed in free-form text

Similar challenges in enterprise applications

We use Markov Logic, a language that allows rules
that are likely - but not certain - to be correct

Markov Logic yields high quality, but current
implementations are confined to small scales

Tuffy scales up Markov Logic by orders of
magnitude using an RDBMS

2

Outline

“* Markov Logic
= Data model
= Query language
» |Inference = grounding then search

¢ Tuffy the System

= Scaling up grounding with RDBMS
= Scaling up search with partitioning

A Familiar Data Model

k Markov Logic program
Datalog?

Datalog + Weights
= Markov Logic

= 3 -

Relations to

Relations with -]
be predicted

known facts J

Markov Logic*

% Syntax: a set of weighted logical rules

3 wrote(s,t) A advisedBy(s,p) = wrote(p,t)
// students’ papers tend to be co-authored by advisors

= Weights: cost for rule violation

% Semantics: a distribution over possible worlds
» Each possible world /incurs total cost cost(/)
= Pr[/] < exp(—cost(/)) exponential models
= Thus most likely world has lowest cost

* [Richardson & Domingos 2006]

Markov Logic by Example

Rules
3 wrote(s,t) A advisedBy(s,p) > wrote(p,t)

// students’ papers tend to be co-authored by advisors

5 advisedBy(s,p) A advisedBy(s,q) = p=q

// students tend to have at most one advisor

« advisedBy(s,p) > professor(p)

// advisors must be professors 7
Evidence Query

wrote(Tom, Paper1)

wrote(Tom, Paper2)

wrote(Jerry, Paper1)
professor(John)

advisedBy(?, ?)

// who advises whom

Inference

RulesJ h

TN

~_ A
N > Inference Qluery

Relati
Evidence)
Relations
~_
MAP regular tuples

Marginal tuple probabilities

Rules J h

Y
e

Evidence)

Relations
~_

Inference

Grounding

v

Search

|

TN
S

Query

Relations
¥/

2. Find tuples that are true
(in most likely world)

1. Find tuples that are relevant
(to the query)

How to Perform Inference

¢ Step 1: Grounding

w www

= |nstantiate the rules

wrote(s, t) A advisedBy(s, p) —> wrote(p, t)

@ Grounding

wrote(Tom, P1) A advisedBy(Tom, Jerry) - wrote (Jerry, P1)
wrote(Tom, P1) A advisedBy(Tom, Chuck) - wrote (Chuck, P1)
wrote(Chuck, P1) A advisedBy(Chuck, Jerry) - wrote (Jerry, P1)
wrote(Chuck, P2) A adVISedBy(Chuck Jerry) - wrote (Jerry, P2)

How to Perform Inference

¢ Step 1: Grounding

w www

= |nstantiated rules > Markov Random Field (MRF)
A graphical structure of correlations

wrote(Tom, P1) A advisedBy(Tom, Jerry) - wrote (Jerry, P1)

wrote(Tom, P1) A advisedBy(Tom, Chuck) -> wrote (Chuck, P1)

wrote(Chuck, P1) A _advisedBy(Chuck, Jerry) - wrote (Jerry, P1)
(

(
wrote(Chuck, P2) A advisedBy(Chuck, Jerry) - wrote (Jerry, P2)

‘)
@ Nodes: Truth values of tuples

o—0-©
\‘ Edges: Instantiated rules

10

How to Perform Inference

¢ Step 2: Search
= Problem: Find most likely state of the MRF (NP-hard)
= Algorithm: WalkSAT*, random walk with heuristics
= Remember lowest-cost world ever seen

O
X s
‘/‘—‘ Tom Jerry
\‘ Search Tom Chuck
@ False

@ True * [Kautz et al. 2006]

11

Outline

¢ Tuffy the System

= Scaling up grounding with RDBMS
= Scaling up search with partitioning

12

Challenge 1: Scaling Grounding

“* Previous approaches

= Store all data in RAM [Singla and Domingos 2006]
= Top-down evaluation [Shavlik and Natarajan 2009]

RAM size quickly becomes bottleneck

Even when runnable,
grounding takes long time

Grounding in Alchemy*

¢ Prolog-style top-down grounding with C++ loops
= Hand-coded pruning, reordering strategies

3 wrote(s, t) A advisedBy(s, p) = wrote(p, t)

For each person s:
For each paper t:
If 'wrote(s, t) then continue
For each person p:
If wrote(p, t) then continue
Emit grounding using <s, t, p>

Grounding sometimes accounts for over 90% of Alchemy’s run time

[*] reference system from UWash
14

Grounding in Tuffy

Encode grounding as SQL queries

Executed and optimized by RDBMS

15

Grounding Performance

Tuffy achieves orders of magnitude speed-up

Relational Entity
Classification Resolution
Alchemy 68 min 420 min
Tutty 1 min 3 min

[Java + PostgreSQL]

Evidence tuples
Query tuples

Rules

Yes, join algorithms & optimizer are the key!

16

Challenge 2: Scaling Search

Q)
O
er\—: Search>

‘y
Ll

17

Challenge 2: Scaling Search

¢ First attempt: pure RDBMS, search also in SQL
= No-go: millions of random accesses

¢ Obvious fix: hybrid architecture

Alchemy Tuffy-DB Tuffy

Grounding || ram RDBMS o—0—0

RAM

Search RAM

Problem: stuck if |MRF | > |RAM|!

18

Partition to Scale up Search

“* Observation
= MRF sometimes have multiple components

¢ Solution
= Partition graph into components
= Process in turn

19

+*Pro

Effect of Partitioning

o0

oﬂ/ °

=

0;—0{:/

il

Scalabi lity

“»Con (?)

= Motivated by scalability
= Willing to sacrifice quality

What'’s the effect on quality?

20

or',c:

-

o—0—0

-

oﬂ >

-

Parallelism

Partitioning Hurts Quality?

3000 |, Tuffy-no-part
L SO .
» 2000 -
(72
8 . ‘ _~ Tuffy = Alchemy took over 1 hr.
Quality similar to
0 Tuffy-no-part
0 100 200 300

time (sec)
Relational Classification

Goal: lower the cost quickly

Partitioning can actually improve quality!

21

Partitioning (Actually) Improves Quality

Reason: Tuffy Tuffy-no-part
N
- ™~ =
o‘—o-\-: o—0—0 .,.._:

WalkSAT

cost1 cost2 cost1 + cost2

iteration
1 5 20 25

min 5 20 25

22

Partitioning (Actually) Improves Quality

Reason: Tuffy Tuffy-no-part
- - ™ //\
o‘—o-\-: o—0—0 ::.;:
WalkSAT
i i cost1 cost2 cost1 + cost2
1teration
1 5 20 25
2 20 10 30

min 5 10 25

23

Partitioning (Actually) Improves Quality

Reason: Tuffy Tuffy-no-part
- - ™ f/\

.'—.’\-: o000 ::.;:

WalkSAT
i i cost1 cost2 cost1 + cost2

1teration

1 5 20 25

2 20 10 30

3 20 5 25

min 5 5 25

cost[Tuffy]

cost[Tuffy-no-part]

Partitioning (Actually) Improves Quality

Theorem (roughly):

Under certain technical conditions, component-wise
partitioning reduces expected time to hit an optimal
state by (2 * #components) steps.

100 components - 100 years of gap!

25

Further Partitioning

Partition one component further into pieces

Graph Scalability Quality

y
o—\-o
o o
U

Sparse) @

Dense

In the paper: cost-based trade-off model

26

Conclusion

“*Markov Logic is a powerful framework for
statistical inference

= But existing implementations do not scale

“» Tuffy scales up Markov Logic inference

= RDBMS query processing is perfect fit for grounding
= Partitioning improves search scalability and quality

“*Try it out!

http://www.cs.wisc.edu/hazy/tuffy

27

