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One Slide Summary

Machine Reading is a DARPA program to capture
knowledge expressed in free-form text

Similar challenges in enterprise applications

We use Markov Logic, a language that allows rules
that are likely - but not certain - to be correct

Markov Logic yields high quality, but current
implementations are confined to small scales

Tuffy scales up Markov Logic by orders of
magnitude using an RDBMS
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Outline

“* Markov Logic
= Data model
= Query language
» |Inference = grounding then search

¢ Tuffy the System

= Scaling up grounding with RDBMS
= Scaling up search with partitioning
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Markov Logic*

% Syntax: a set of weighted logical rules

3 wrote(s,t) A advisedBy(s,p) = wrote(p,t)
// students’ papers tend to be co-authored by advisors

= Weights: cost for rule violation

% Semantics: a distribution over possible worlds
» Each possible world /incurs total cost cost(/)
= Pr[/] < exp(—cost(/)) exponential models
= Thus most likely world has lowest cost

* [Richardson & Domingos 2006]



Markov Logic by Example

Rules
3 wrote(s,t) A advisedBy(s,p) > wrote(p,t)

// students’ papers tend to be co-authored by advisors

5 advisedBy(s,p) A advisedBy(s,q) = p=q

// students tend to have at most one advisor

« advisedBy(s,p) > professor(p)

// advisors must be professors 7
Evidence Query

wrote(Tom, Paper1)

wrote(Tom, Paper2)

wrote(Jerry, Paper1)
professor(John)

advisedBy(?, ?)

// who advises whom
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How to Perform Inference

¢ Step 1: Grounding

w www

= |nstantiate the rules

wrote(s, t) A advisedBy(s, p) —> wrote(p, t)

@ Grounding

wrote(Tom, P1) A advisedBy(Tom, Jerry) - wrote (Jerry, P1)
wrote(Tom, P1) A advisedBy(Tom, Chuck) - wrote (Chuck, P1)
wrote(Chuck, P1) A advisedBy(Chuck, Jerry) - wrote (Jerry, P1)
wrote(Chuck, P2) A adVISedBy(Chuck Jerry) - wrote (Jerry, P2)



How to Perform Inference

¢ Step 1: Grounding

w www

= |nstantiated rules > Markov Random Field (MRF)
A graphical structure of correlations

wrote(Tom, P1) A advisedBy(Tom, Jerry) - wrote (Jerry, P1)

wrote(Tom, P1) A advisedBy(Tom, Chuck) -> wrote (Chuck, P1)

wrote(Chuck, P1) A _advisedBy(Chuck, Jerry) - wrote (Jerry, P1)
(

(
wrote(Chuck, P2) A advisedBy(Chuck, Jerry) - wrote (Jerry, P2)

‘ )
@ Nodes: Truth values of tuples

o—0-©
\‘ Edges: Instantiated rules
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How to Perform Inference

¢ Step 2: Search
= Problem: Find most likely state of the MRF (NP-hard)
= Algorithm: WalkSAT*, random walk with heuristics
= Remember lowest-cost world ever seen

O
X s
‘/‘—‘ Tom Jerry
\‘ Search Tom Chuck
@ False

@ True * [Kautz et al. 2006]
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Outline

¢ Tuffy the System

= Scaling up grounding with RDBMS
= Scaling up search with partitioning
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Challenge 1: Scaling Grounding

“* Previous approaches

= Store all data in RAM [Singla and Domingos 2006]
= Top-down evaluation [Shavlik and Natarajan 2009]

RAM size quickly becomes bottleneck

Even when runnable,
grounding takes long time



Grounding in Alchemy*

¢ Prolog-style top-down grounding with C++ loops
= Hand-coded pruning, reordering strategies

3 wrote(s, t) A advisedBy(s, p) = wrote(p, t)

For each person s:
For each paper t:
If 'wrote(s, t) then continue
For each person p:
If wrote(p, t) then continue
Emit grounding using <s, t, p>

Grounding sometimes accounts for over 90% of Alchemy’s run time

[*] reference system from UWash
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Grounding in Tuffy

Encode grounding as SQL queries

Executed and optimized by RDBMS
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Grounding Performance

Tuffy achieves orders of magnitude speed-up

Relational Entity
Classification Resolution
Alchemy 68 min 420 min
Tutty 1 min 3 min

[Java + PostgreSQL]

Evidence tuples
Query tuples

Rules

Yes, join algorithms & optimizer are the key!
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Challenge 2: Scaling Search
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Challenge 2: Scaling Search

¢ First attempt: pure RDBMS, search also in SQL
= No-go: millions of random accesses

¢ Obvious fix: hybrid architecture

Alchemy Tuffy-DB Tuffy

Grounding || ram RDBMS o—0—0

RAM

Search RAM

Problem: stuck if |MRF | > |RAM|!
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Partition to Scale up Search

“* Observation
= MRF sometimes have multiple components

¢ Solution
= Partition graph into components
= Process in turn
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+*Pro

Effect of Partitioning
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= Motivated by scalability
= Willing to sacrifice quality

What'’s the effect on quality?
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Partitioning Hurts Quality?

3000 |, Tuffy-no-part
L SO .
» 2000 -
(72
8 . ‘ _~ Tuffy = Alchemy took over 1 hr.
Quality similar to
0 Tuffy-no-part
0 100 200 300

time (sec)
Relational Classification

Goal: lower the cost quickly

Partitioning can actually improve quality!

21



Partitioning (Actually) Improves Quality

Reason: Tuffy Tuffy-no-part
N
- ™~ =
o‘—o-\-: o—0—0 .,..\_:

WalkSAT

cost1 cost2 cost1 + cost2

iteration
1 5 20 25

min 5 20 25
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Partitioning (Actually) Improves Quality

Reason: Tuffy Tuffy-no-part
- - ™ //\
o‘—o-\-: o—0—0 ::.;:
WalkSAT
i i cost1 cost2 cost1 + cost2
1teration
1 5 20 25
2 20 10 30

min 5 10 25
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Partitioning (Actually) Improves Quality

Reason: Tuffy Tuffy-no-part
- - ™ f/\

.'—.’\-: o000 ::.;:

WalkSAT
i i cost1 cost2 cost1 + cost2

1teration

1 5 20 25

2 20 10 30

3 20 5 25

min 5 5 25

cost[Tuffy]

cost[Tuffy-no-part]




Partitioning (Actually) Improves Quality

Theorem (roughly):

Under certain technical conditions, component-wise
partitioning reduces expected time to hit an optimal
state by (2 * #components) steps.

100 components - 100 years of gap!
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Further Partitioning

Partition one component further into pieces

Graph Scalability Quality
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In the paper: cost-based trade-off model
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Conclusion

“*Markov Logic is a powerful framework for
statistical inference

= But existing implementations do not scale

“» Tuffy scales up Markov Logic inference

= RDBMS query processing is perfect fit for grounding
= Partitioning improves search scalability and quality

“*Try it out!

http://www.cs.wisc.edu/hazy/tuffy
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