
Database replication for commodity
database services

Gustavo Alonso
Department of Computer Science
ETH Zürich
alonso@inf.ethz.ch
http://www.iks.ethz.ch

©Gustavo Alonso. ETH Zürich. 2

Background

©Gustavo Alonso. ETH Zürich. 3

An appeal to databases
! From Adam Bosworth's blog:

http://www.adambosworth.net/archives/000038.html

! What commercial databases should provide (but don‘t):

" Dynamic schema so that as the business model/description of
goods or services changes and evolves, this evolution can be
handled seamlessly in a system running 24 by 7, 365 days a
year

" Dynamic partitioning of data across large dynamic numbers of
machines.

" Modern indexing.
" Indeed, in these days of open source, I wonder if the software

itself, should cost at all? Open Source solutions would
undoubtedly get hacked more quickly to be robust and truly
scalable across nice simple software.

©Gustavo Alonso. ETH Zürich. 4

Background
! ``One size fits all: an idea

whose time has come and
gone´´ (M. Stonebraker)

! Limited growth in commercial
products leading to colletions
of specialized servers (M.
Kersten, INS-R9905 CWI)

! Several open source projects
on extracting data from
commercial engines and
placing it on open source
databases

! User requirements:
" Consistency is good
" Constant need for new

functionality
" Commercial db engines

evolve too slowly
" Data blades, extensions,

additional code impractical
(impact on running server)

" Flexible scalability (cost of
over-provisioning is very
high)

" Open source solutions
(reduced cost, chance to
tailor)

" Scale out + specialization

©Gustavo Alonso. ETH Zürich. 5

Our solution: open source satellite databases

©Gustavo Alonso. ETH Zürich. 6

Databases as commodity service
! Remote applications use the database through a web services

enabled JDBC driver (WS-JDBC)

GANYMED

DB-MASTER A

DB-MASTER B

DB-MASTER C

DB-MASTER D

SATELLITE CLUSTER

WEB SERVICES INTERFACE (WS-JDBC)

INTERNET

©Gustavo Alonso. ETH Zürich. 7

Extensibility: open source satellites

MASTER

SATELLITE

Keyword
searches,

information
retrieval

SATELLITE

Skyline
queries,

specialized
indexes

SATELLITE

Lineage and
provenance

Additional, specialized
functionlity running on
open source engines kept
consistent with the master
database (a commercial
engine).

©Gustavo Alonso. ETH Zürich. 8

Some comments
! The first goal (autonomic cluster of satellite databases) is more

complex and difficult to solve from both the technical as well as
the application (business model) point of view

! The second goal (specialized satellites) is easier to solve and the
argument for this solution is much simpler to make

! If we can achieve the first goal, the second comes almost for free

©Gustavo Alonso. ETH Zürich. 9

Replication as a problem

©Gustavo Alonso. ETH Zürich. 10

How to replicate data?
! Depending on when the updates are propagated:

" Synchronous (eager)
" Asynchronous (lazy)

! Depending on where the updates can take place:
" Primary Copy (master)
" Update Everywhere (group)

Synchronous

Asynchronous

Primary
copy

Update
everywhere

©Gustavo Alonso. ETH Zürich. 11

Theory …

! The name of the game is correctness and consistency
! Synchronous replication is preferred:

" copies are always consistent (1-copy serializability)
" programming model is trivial (replication is transparent)

! Update everywhere is preferred:
" system is symmetric (load balancing)
" avoids single point of failure

! Other options are ugly:
" inconsistencies
" centralized
" formally incorrect

Synchronous

Asynchronous

Primary
copy

Update
everywhere

©Gustavo Alonso. ETH Zürich. 12

… and practice

! The name of the game is throughput and response time
! Asynchronous replication is preferred:

" avoid transactional coordination (throughput)
" avoid 2PC overhead (response time)

! Primary copy is preferred:
" design is simpler (centralized)
" trust the primary copy

! Other options are not feasible:
" overhead
" deadlocks
" do not scale

Synchronous

Asynchronous

Primary
copy

Update
everywhere

©Gustavo Alonso. ETH Zürich. 13

The dangers of replication ...

SYNCHRONOUS
! Coordination overhead

" distributed 2PL is
expensive

" 2PC is expensive
" prefer performance to

correctness
! Transactions last longer (and

therefore have more conflicts)
! Communication overhead

" 5 nodes, 100 tps, 10 w/txn
= 5’000 messages per
second !!

UPDATE EVERYWHERE
! Deadlock/Reconciliation rates

" the probability of conflicts
becomes so high, the
system is unstable and
does not scale

! Useless work
" the same work is done by

all nodes
" administrative costs paid

by all nodes

©Gustavo Alonso. ETH Zürich. 14

Research
! Much work playing with relaxed forms of consistency:

" Demarcation Protocol: asynchronous when values within
certain range, synchronous to change the range

" Coordinated propagation: asynchronous but propagation of
changes has to be done in certain way to ensure some form of
consistency

" ...
! Many solutions are application specific

" Static and dynamic web content
" Wide area data caching
" Wireless networks

! Unfortunately, most of the existing work on replication has never
been implemented
" Realistic workloads?
" Overhead at the master?
" Practical feasibililty (overhead of the mechanism)?

©Gustavo Alonso. ETH Zürich. 15

GANYMED: efficient conventional replication

©Gustavo Alonso. ETH Zürich. 16

Consistency vs. Peformance
! We want both:

" Consistency is good for the
application

" Performance is good for
the system

! Then:
" Let the application see a

consistent state ...
" ... although the system is

asynchronous and primary
copy

! This is done through:
" A middleware layer that

offers a consistent view
" Using snapshot isolation as

correctnes criteria

REPLICATION MIDDLEWARE

I see a
consistent

state

Asynchronous
Primary copy

©Gustavo Alonso. ETH Zürich. 17

Two sides of the same coin
SNAPSHOT ISOLATION

! To the clients, the middleware
offers snapshot isolation:
" Queries get their own

consistent snapshot
(version) of the database

" Update transactions work
with the latest data

" Queries and updates do not
conflict (operate of
different data)

" First committer wins for
conflicting updates

! PostgreSQL, Oracle, MS SQL
Server

ASYNCH – PRIMARY COPY
! Primary copy: master site

where all updates are
performed

! Slaves: copies where only
reads are peformed

! A client gets a snapshot by
running its queries on a copy

! Middleware makes sure that a
client sees its own updates and
only newer snapshots

! Updates go to primary copy
and conflicts are resolved
there (not by the middleware)

! Updates to master site are
propagated lazily to the slaves

©Gustavo Alonso. ETH Zürich. 18

Ganymed: Putting it together
• Based on standard
JDBC drivers

• Only scheduling, no
concurrency control, no
query processing ...

• Simple messaging, no
group communication

• Very much stateless
(easy to make fault
tolerant)

• Acts as traffic controller
and bookkeeper

•Route queries to a copy
where a consistent
snapshot is available

• Keep track of what
updates have been done
where (propagation is not
uniform)

©Gustavo Alonso. ETH Zürich. 19

Where are we different?
! Consistency:

" Clients see a consistent database
" Clients see only one database not a master and some replicas
" This is extremely important in practice

! Simplicity:
" This is not a parallel database (each transaction or query runs

on a single database)
" In doubt, send it to the master
" General approach (update extraction is through triggers or sql

propagation, not through the log –can be done and is more
efficient but we do not want to go down that path yet)

! Middleware approach through standard JDBC driver
" Applications do not have to change
" The middleware layer gives extensibility, something most

database replication systems lack
! Applicable to commercial engines and open source (cross

replication)
©Gustavo Alonso. ETH Zürich. 20

GANYMED: Homogeneous master and satellites

©Gustavo Alonso. ETH Zürich. 21

Experiments
! TPC-W ordering, shopping and browsing traces
! PostgreSQL, Oracle, DB2
! 100 clients running the traces

" Clients send both updates and reads
" Clients block if master is slow applying the writes

! Measured
" Throughput
" Response time
" … for:

• Database alone (base line)

• Database with Ganymed but no satellites (overhead)

• Database with Ganymed and satellites (1-6) (gain if any)
! More details in: Christian Plattner, Gustavo Alonso: Ganymed: Scalable

Replication for Transactional Web Applications. Proc. of the 5th
ACM/IFIP/USENIX International Middleware Conference, Toronto, Canada,
October 18-22, 2004. (www.iks.inf.ethz.ch/publications)

©Gustavo Alonso. ETH Zürich. 22

Linear scalability (PostgreSql)

©Gustavo Alonso. ETH Zürich. 23

Improvements in response time (!!!)

©Gustavo Alonso. ETH Zürich. 24

Fault tolerance (slave failure)

©Gustavo Alonso. ETH Zürich. 25

Fault tolerance (master failure)

©Gustavo Alonso. ETH Zürich. 26

GANYMED: Heterogeneous master and
satellite databases

©Gustavo Alonso. ETH Zürich. 27

Satellite databases
! A satellite database is an open source replica of a commercial

engine

! Basic idea remains the same
" Commercial engine is the main copy
" Satellites contain snapshots
" Ganymed provides consistent snapshots to the clients

! On a first approximation, satellites are full copies used for
executing queries

! Using only generic solutions, not system specific tools

! The challenges with commercial engines are:
" Update extraction without introducing too much overhead
" SQL dialects and query optimizations

©Gustavo Alonso. ETH Zürich. 28

Oracle master – PostgreSQL satellites

©Gustavo Alonso. ETH Zürich. 29

Oracle master – PostgreSQL satellites

©Gustavo Alonso. ETH Zürich. 30

Updates through SQL (Oracle-Postgres)

©Gustavo Alonso. ETH Zürich. 31

Updates through SQL (Oracle-Postgres)

©Gustavo Alonso. ETH Zürich. 32

DB2 master – PostreSQL satellites

©Gustavo Alonso. ETH Zürich. 33

DB2 master – PostreSQL satellites

©Gustavo Alonso. ETH Zürich. 34

GANYMED: Discussion

©Gustavo Alonso. ETH Zürich. 35

Critical issues
! By combining a commercial master with open source satellites we

obtain a very powerful system
! More work needs to be done (in progress)

" Update extraction from the master
• Trigger based = attach triggers to tables to report updates

(low overhead at slaves, high overhead at master)

• Generic = propagate update SQL statements to copies (high
overhead at slaves, no overhead at master, limitations with
hidden updates)

" Update propagation = tuple based vs SQL based
" SQL is not standard (particularly optimized SQL)
" Understanding workloads (how much write load is really

present in a database workload)
" Replicate only parts of the database (table fragments, tables,

materialized views, indexes, specialized indexes on copies ...)

©Gustavo Alonso. ETH Zürich. 36

SQL is not SQL

SELECT * FROM (
SELECT i_id, i_title, a_fname, a_lname,
SUM(ol_qty) AS orderkey

FROM item, author, order_line
WHERE i_id = ol_i_id AND i_a_id = a_id
AND ol_o_id > (SELECT MAX(o_id)-3333 FROM orders)
AND i_subject = 'CHILDREN'

GROUP BY i_id, i_title, a_fname, a_lname
ORDER BY orderkey DESC
) WHERE ROWNUM <= 50

Amongst the 3333 most recent orders, the query
performs a TOP-50 search to list a category's most

popular books based on the quantity sold

Virtual column specific to Oracle.
In PostgreSQL = LIMIT 50

Use of MAX leads to sequential scan in Postgres,
change to:
SELECT o_id-3333 FROM orders

ORDER BY o_id DESC LIMIT 1

Current version does very
basic optimizations on the
slave side. Further work
on optimizations at the
middleware layer will
boost performance even
more

Optimizations can be very
specific to the local data

©Gustavo Alonso. ETH Zürich. 37

GANYMED: The easy part
(but the most profitable?)

©Gustavo Alonso. ETH Zürich. 38

Understanding workloads

1 : 3.1175.66 %24.34 %Ordering

1 : 8.2989.23 %10.77 %Shopping

1 : 30.1696.79 %3.21 %Browsing

RatioRead-onlyUpdatesTPC-W

7.70 : 112.837.70 : 36.28Ordering

6.38 : 409.116.38 : 49.35Shopping

7.50 : 1511.327:50 : 50.11Browsing

Ratio (total)
updates :
read only

Ratio (avg)
updates :
read only

COST

6.23 : 10.206.23 : 3.28

6.28 : 54.636.28 : 6.59

6.29 : 313.366.92 : 10.39

Ratio (total)
updates :
read only

Ratio (avg)
updates :
read only

NON-OPTIMIZED SQL OPTIMIZED SQLPOSTGRES

©Gustavo Alonso. ETH Zürich. 39

A new twist to Moore´s Law
! What is the cost of optimization?

" SQL rewriting = several days two/three (expert) people
(improvement ratio between 5 and 10)

" Ganymed = a few PCs with open source software
(improvement factor between 2 and 5 for optimized SQL, for
non-optimized SQL multiply by 10-100)

! Keep in mind:
" Copies do not need to be used, they can be kept dormant until

increasing load demands more capacity
" Several database instances can share a machine (database

scavenging)
" We do not need to replicate everything (less overhead for

extraction)

©Gustavo Alonso. ETH Zürich. 40

Specialized satellite
! We used a satellite to

implement a keyword search
over TPC-W

! Extra table (keyword, book-id,
weight) and an index over the
table

! Keywords obtained from
i_desc field in item table

! Weight correlated to the last
3333 orders in order_line
table (dynamic)

! Tested with DB2, 100 TPC-W
shopping clients, and three
satellites (two for queries,
one for keword search)

©Gustavo Alonso. ETH Zürich. 41

Specialized satellites
! Significant gains in performance

! Ganymed becomes much simpler:
" Routing of queries to specialized engines is easier because the

queries are distinct (data is not at the master)
" No optimization, SQL dialect problems

! Many interesting, useful applications
" Each satellite a different data schema over the same data
" Testing new data organizations
" Specialized indexes, tables
" No more index recommendations, just build all (in satellites)
" Derived data (aggregated, materialized, summarized,

histograms, etc.) consistent with master
" ...

©Gustavo Alonso. ETH Zürich. 42

Conclusions

©Gustavo Alonso. ETH Zürich. 43

Conclusions
! Ganymed synthesizes a lot of previous work in DB replication

" Postgres-R (McGill) (now Gborg in postgreSQL)
" Middle-R (Madrid Technical Uni.)
" Middleware based approaches (U. of Toronto)
" C-JDBC (INRIA Grenoble, Object Web)
" ...

! Contributions
" There is nothing comparable in open source solutions
" Database independent
" Very small footprint
" Easily extensible in many context

• Can be turned into a lazy replication engine

• Can be used for data caching across WANs

• Almost unlimited scalability for dynamic content \ web data
! Very powerful platform to explore innovative approaches

" Databases as a commodity service
" Database scavenging
" Optimizations to commercial engines through open source slaves

©Gustavo Alonso. ETH Zürich. 44

The people behind the project

Christian Plattner
(Ganymed)

Daniel Jönsson
(WS JDBC)

