
Enabling	
 Declara-ve	
 Graph	
 Analy-cs	
 over	
 Large,	

Noisy	
 Informa-on	
 Networks	

Amol	
 Deshpande	

	

Department	
 of	
 Computer	
 Science	
 and	
 UMIACS	

University	
 of	
 Maryland	
 at	
 College	
 Park	

Joint work with: Prof. Lise Getoor, Walaa Moustafa,
Udayan Khurana, Jayanta Mondal

l  Everywhere	
 and	
 growing	
 in	
 numbers…	

l  Social	
 networks,	
 social	
 contact	
 graphs	

l  Email	
 networks,	
 financial	
 transac-on	
 networks	

l  Biological	
 networks,	
 disease	
 transmission	
 networks	

l  Cita-on	
 networks,	
 IP	
 traffic	
 data,	
 Web	

l  …	

l  Intense	
 amount	
 of	
 work	
 already	
 on:	

l  …	
 understanding	
 proper-es	
 of	
 these	
 networks	
 	

l  …	
 visualiza-ons	

l  …	
 developing	
 models	
 of	
 evolu-on	

l  …	
 cleaning	
 inherently	
 noisy	
 observa-onal	
 data	

l  …	
 compara-ve	
 analy-cs	

l  and	
 so	
 on…	

Mo-va-on:	
 Informa-on	
 Networks	
 	

A protein-protein interaction
network

Supreme court citation network

l  Lack	
 of	
 established	
 data	
 management	
 tools	

l  Much	
 of	
 the	
 analysis	
 exploratory,	
 domain	
 specific,	
 and	
 hard	
 to	
 abstract	

l  Some	
 of	
 the	
 key	
 data	
 management	
 challenges	

l  Inherent	
 noise	
 and	
 uncertainty	
 in	
 the	
 raw	
 observa-on	
 data	

à  Support	
 for	
 graph	
 cleaning	
 must	
 be	
 -ghtly	
 integrated	
 into	
 the	
 system	

•  Graph	
 cleaning	
 techniques	
 oNen	
 domain	
 specific	

à  Uncertainty-­‐aware	
 query	
 evalua-on	
 algorithms	
 needed	
 that	
 can	
 handle	
 new	

types	
 of	
 iden>ty	
 uncertain-es	

l  Very	
 large	
 volumes	
 of	
 heterogeneous	
 data	

à  Distributed/parallel	
 storage	
 and	
 query	
 processing	
 needed	

•  Graph	
 par--oning	
 notoriously	
 hard	
 to	
 do	
 effec-vely	

l  Highly	
 dynamic	
 and	
 rapidly	
 changing	
 data	
 as	
 well	
 as	
 workloads	

à  Need	
 to	
 support	
 real-­‐-me	
 processing	
 through	
 aggressive	
 replica-on	
 and	
 pre-­‐
computa-on	

Mo-va-on:	
 Informa-on	
 Networks	
 	

l  Lack	
 of	
 established	
 data	
 management	
 tools	

l  Much	
 of	
 the	
 analysis	
 exploratory,	
 domain	
 specific,	
 and	
 hard	
 to	
 abstract	

l  Some	
 of	
 the	
 key	
 data	
 management	
 challenges	

l  Managing	
 historical	
 informa-on	

à  Need	
 to	
 support	
 complex	
 temporal	
 analysis	

à  Must	
 manage	
 large	
 volumes	
 of	
 historical	
 traces	
 and	
 support	
 efficient	
 retrieval	

of	
 past	
 network	
 snapshots	

à  Need	
 to	
 support	
 different	
 frameworks	
 for	
 inferring	
 the	
 trace	
 itself	
 from	

snapshots	

l  Lack	
 of	
 established	
 query	
 languages	

à  Develop	
 new	
 languages	
 !!	

à  …	
 or	
 preferably	
 reuse	
 an	
 old	
 one	
 	

Mo-va-on:	
 Informa-on	
 Networks	
 	

l  Goal:	
 build	
 a	
 data	
 management	
 system	
 and	
 frameworks	
 that	
 can	
 manage	
 large	

dynamically-­‐changing	
 graphs	
 and	
 support	
 a	
 variety	
 of	
 analy-cs	
 over	
 them	

l  Focus	
 on	
 the	
 abstrac-ons	
 and	
 the	
 system,	
 less	
 on	
 specific	
 analysis	
 techniques	

l  Work	
 so	
 far:	

l  Declara-ve	
 graph	
 cleaning	

l  Proposed	
 and	
 built	
 a	
 declara-ve	
 framework	
 for	
 specifying	
 complex	
 network	

analysis	
 and	
 cleaning	
 tasks	
 [GDM’11]	

l  Real-­‐-me	
 con-nuous	
 query	
 processing	

l  Aggressive	
 replica-on	
 to	
 manage	
 very	
 large	
 dynamic	
 graphs	
 efficiently	
 in	
 a	

distributed	
 manner,	
 and	
 to	
 execute	
 con-nuous	
 queries	
 over	
 them	
 [SIGMOD’12]	
 	

l  Historical	
 graph	
 management	

l  Efficient	
 single-­‐point	
 or	
 mul--­‐point	
 snapshot	
 retrieval	
 over	
 very	
 large	
 historical	

graph	
 traces	
 [under	
 submission]	

l  Ego-­‐centric	
 pa^ern	
 census	
 [ICDE’12]	

What	
 we	
 are	
 doing 	
 	

System	
 Architecture	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica>on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

A disk-based or
cloud-based
key-value store

Standard API
used to write graph
algorithms/libraries

Many graphs maintained
in an overlaid, memory-efficient
manner

l Overview	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Distributed	
 Management	
 of	
 Dynamic	
 Graphs	

l Conclusions	

Outline 	
 	

Mo-va-on	

l  The	
 observed	
 informa>on	
 networks	
 are	
 oNen	
 noisy	
 and	

incomplete	

l  Missing	
 a^ributes,	
 missing	
 links	

l  Ambiguous	
 references	
 to	
 the	
 same	
 en-ty	

l  Need	
 to	
 extract	
 the	
 underlying	
 true	
 informa>on	
 network	
 through:	

l  A^ribute	
 Predic-on:	
 to	
 predict	
 values	
 of	
 missing	
 aIributes	

l  Link	
 Predic-on:	
 to	
 infer	
 missing	
 links	

l  En-ty	
 Resolu-on:	
 to	
 decide	
 if	
 two	
 references	
 refer	
 to	
 the	
 same	
 en>ty	

l  Typically	
 itera-ve	
 and	
 interleaved	
 applica-on	
 of	
 the	
 techniques	

l  These	
 predic-on	
 tasks	
 can	
 use:	

l  Local	
 node	
 informa-on	

l  Rela>onal	
 informa-on	
 in	
 the	
 neighborhood	
 of	
 the	
 node	

A^ribute	
 Predic-on	

Automatic Rule
Refinement for

Information Extraction

Join Optimization of
Information Extraction
Output: Quality Matters!

A Statistical Model for
Multilingual Entity

Detection and Tracking

Why Not?

Tracing Lineage Beyond
Relational Operators

An Annotation
Management System for
Relational Databases

Language Model Based
Arabic Word
Segmentation.

DB NL ?

Legend

Task: Predict topic of the paper

A^ribute	
 Predic-on	

Automatic Rule
Refinement for

Information Extraction

Join Optimization of
Information Extraction
Output: Quality Matters!

A Statistical Model for
Multilingual Entity

Detection and Tracking

Why Not?

Tracing Lineage Beyond
Relational Operators

An Annotation
Management System for
Relational Databases

Language Model Based
Arabic Word
Segmentation.

DB NL ?

Legend

Task: Predict topic of the paper

May generate a probability
distribution here instead

Collec-ve	
 (rela-onal)	
 Inference	

l  Many	
 collec-ve	
 techniques	
 have	
 been	
 developed	
 over	
 the	
 years	

l  However,	
 no	
 support	
 from	
 data	
 management	
 systems	
 to	
 do	
 this	
 effec-vely	

l  Hard	
 for	
 a	
 network	
 analyst	
 to	
 easily	
 construct	
 and	
 compare	
 new	
 techniques	

l  Especially	
 for	
 joint	
 inference,	
 i.e.,	
 interleaved	
 and	
 pipelined	
 applica-on	

l  No	
 re-­‐usability,	
 and	
 much	
 repe--on	
 of	
 work	

Divesh
Srivastava

Vladislav
Shkapenyuk Nick

Koudas

Avishek
Saha

Graham
Cormode Flip Korn

Lukasz
Golab

Theodore
Johnson

William
Roberts

Petre
Stoica

Jian
Li

Prabhu
Babu

Amol
Deshpande

Samir
Khuller

Barna
Saha

Jian
Li

Link prediction Entity resolution

Our	
 Goal	

l  Mo-va-on:	
 To	
 support	
 declara-ve	
 network	
 inference	

l  Desiderata:	

l  Declara-ve	
 specifica-on	
 of	
 the	
 predic-on	
 features	
 	

l  Local	
 features	

l  Rela-onal	
 features	

l  (Almost-­‐)declara-ve	
 specifica-on	
 of	
 tasks	

l  A^ribute	
 predic-on,	
 Link	
 predic-on,	
 En-ty	
 resolu-on	

l  Support	
 for	
 arbitrary	
 interleaving	
 or	
 pipelining	

l  Support	
 for	
 complex	
 predic-on	
 func-ons	

Handle all that efficiently

Proposed	
 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Proposed	
 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

For attribute prediction,
the domain is a subset of
the graph nodes.

For link prediction and
entity resolution, the
domain is a subset of
pairs of nodes.

Local: word frequency,
income, etc.
Relational: degree,
clustering coeff., no. of
neighbors with each
attribute value, common
neighbors between pairs
of nodes, etc.

Proposed	
 Framework	

Specify the Domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Attribute prediction: the
missing attribute

Link prediction: add link
or not?

Entity resolution: merge
two nodes or not?

After predictions are made,
the graph changes:
Attribute prediction
changes local attributes.
Link prediction changes the
graph links.
Entity resolution changes
both local attributes and
graph links.

Some	
 Details	

l  Use	
 Datalog	
 to	
 express:	

l  Domains	

l  Local	
 and	
 rela-onal	
 features	

l  Extend	
 Datalog	
 with	
 opera-onal	
 seman-cs	
 (vs.	
 fix-­‐point	

seman-cs)	
 to	
 express:	

l  Predic-ons	
 (in	
 the	
 form	
 of	
 updates)	

l  Itera-on	

Specifying	
 Features	

Degree:
Degree(X, COUNT<Y>) :-Edge(X, Y)

Number of Neighbors with attribute ‘A’
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z)
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1))

Jaccard Coefficient
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z)
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,
 IntersectionCount(X, Y, D3)
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D

Specifying	
 Domains	

l  Domains	
 used	
 to	
 restrict	
 the	
 space	
 of	
 computa-on	
 for	

the	
 predic-on	
 elements	

l  Space	
 for	
 this	
 feature	
 is	
 |V|2	

	
 Similarity(X,	
 Y,	
 S)	
 :−Node(X,	
 A^=V1),	
 Node(Y,	
 A^=V1),	
 S=f(V1,	
 V2)	

	
 	

l  Using	
 this	
 domain	
 the	
 space	
 becomes	
 |E|:	

	
 DOMAIN	
 D(X,Y)	
 :-­‐	
 Edge(X,	
 Y)	

l  Other	
 DOMAIN	
 predicates:	

l  Equality	
 on	
 a^ribute	
 values	

l  Locality	
 sensi-ve	
 hashing	

l  String	
 similarity	
 joins	

l  Traverse	
 edges	

Predic-on	
 and	
 Confidence	
 Func-ons	

l  The	
 predic-on	
 and	
 confidence	
 func-ons	
 are	
 user	

defined	
 func-ons	

l  Can	
 be	
 based	
 on	
 logis>c	
 regression,	
 Bayes	
 classifier,	
 or	

any	
 other	
 classifica-on	
 algorithm	

l  The	
 confidence	
 is	
 the	
 class	
 membership	
 value	
 	

l  In	
 logis-c	
 regression,	
 the	
 confidence	
 can	
 be	
 the	
 value	
 of	
 the	

logis-c	
 func-on	

l  In	
 Bayes	
 classifier,	
 the	
 confidence	
 can	
 be	
 the	
 posterior	

probability	
 value	

Update	
 Opera-on	

•  Ac-on	
 to	
 be	
 taken	
 itself	
 specified	
 declara-vely	

•  Enables	
 specifying,	
 e.g.,	
 different	
 ways	
 to	
 merge	
 in	
 case	
 of	
 en-ty	

resolu-on	

	

DEFINE	
 Merge(X,	
 Y)	

{	

	
 INSERT	
 Edge(X,	
 Z)	
 :-­‐	
 Edge(Y,	
 Z)	

	
 DELETE	
 Edge(Y,	
 Z)	

	
 UPDATE	
 Node(X,	
 A=ANew)	
 :-­‐	
 Node(X,A=AX),	
 Node(Y,A=AY),	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ANew=(AX+AY)/2	

	
 UPDATE	
 Node(X,	
 B=BNew)	
 :-­‐	
 Node(X,B=BX),	
 Node(X,B=BX),	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 BNew=max(BX,BY)	

	
 DELETE	
 Node(Y)	

}	

Merge(X,	
 Y)	
 :-­‐	
 Features	
 (X,	
 Y,	
 F1,…,Fn),	
 predict-­‐ER(F1,…,Fn)	
 =	
 true,	
 	

	
 	
 	
 	
 	
 	
 	
 confidence-­‐ER(F1,…,Fn)	
 >	
 0.95	

Pipelining	

DOMAIN ER(X,Y) :- ….
{
 ER1(X,Y,F1) :- …
 ER2(X,Y,F1) :- …
 Features-ER(X,Y,F1,F2) :- …
}

DOMAIN LP(X,Y) :- ….
{
 LP1(X,Y,F1) :- …
 LP2(X,Y,F1) :- …
 Features-LP(X,Y,F1,F2) :- …
}

ITERATE(*)
{
 INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2)
 IN TOP 10%
}
ITERATE(*)
{
 MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
 IN TOP 10%
}

Interleaving	

DOMAIN ER(X,Y) :- ….
{
 ER1(X,Y,F1) :- …
 ER2(X,Y,F1) :- …
 Features-ER(X,Y,F1,F2) :- …
}

DOMAIN LP(X,Y) :- ….
{
 LP1(X,Y,F1) :- …
 LP2(X,Y,F1) :- …
 Features-LP(X,Y,F1,F2) :- …
}

ITERATE(*)
{
 INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2
 IN TOP 10%

 MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
 IN TOP 10%
}

Real-­‐world	
 Experiment	

l  Real-­‐world	
 PubMed	
 graph	

l  Set	
 of	
 publica-ons	
 from	
 the	
 medical	
 domain,	
 their	
 abstracts,	
 and	
 cita-ons	

l  50,634	
 publica-ons,	
 115,323	
 cita-on	
 edges	

l  Task:	
 A^ribute	
 predic-on	

l  Predict	
 if	
 the	
 paper	
 is	
 categorized	
 as	
 Cogni-on,	
 Learning,	
 Percep-on	
 or	
 Thinking	

l  Choose	
 top	
 10%	
 predic-ons	
 aNer	
 each	
 itera-on,	
 for	
 10	
 itera-ons	

l  Incremental:	
 28	
 minutes.	
 Recompute:	
 42	
 minutes	

	
 DOMAIN	
 Uncommi^ed(X):-­‐Node(X,Commi^ed=‘no’)	

{	

	
 	
 	
 ThinkingNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Thinking’)	

	
 	
 	
 Percep-onNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Percep-on’)	

	
 	
 	
 Cogni-onNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Cogni-on’)	

	
 	
 	
 LearningNeighbors(X,Count<Y>):-­‐	
 Edge(X,Y),	
 Node(Y,Label=‘Learning’)	

	
 	
 	
 Features-­‐AP(X,A,B,C,D,Abstract):-­‐	
 ThinkingNeighbors(X,A),	
 Percep-onNeighbors(X,B),	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Cogni-onNeighbors(X,C),	
 LearningNeighbors(X,D),Node(X,Abstract,	
 ,)	

}	

ITERATE(10)	
 	

{	

	
 	
 	
 UPDATE	
 Node(X,_,P,‘yes’):-­‐	
 Features-­‐AP(X,A,B,C,D,Text),	
 P	
 =	
 predict-­‐AP(X,A,B,C,D,Text),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 confidence-­‐AP(X,A,B,C,D,Text)	
 IN	
 TOP	
 10%	

}	

l  Using	
 a	
 simple	
 RDBMS	
 built	
 on	
 top	
 of	
 Java	
 Berkeley	
 DB	

l  Predicates	
 in	
 the	
 program	
 correspond	
 to	
 materialized	
 tables	

l  Datalog	
 rules	
 converted	
 into	
 SQL	

l  Incremental	
 maintenance:	

l  Every	
 set	
 of	
 changes	
 done	
 by	
 AP,	
 LP,	
 or	
 ER	
 logged	
 into	
 two	
 change	
 tables	

ΔNodes	
 and	
 ΔEdges	

l  Aggregate	
 maintenance	
 is	
 performed	
 by	
 aggrega-ng	
 the	
 change	
 table	
 then	

refreshing	
 the	
 old	
 table	

l  Proved	
 hard	
 to	
 scale	

l  Incremental	
 evalua-on	
 much	
 faster	
 than	
 recompute,	
 but	
 SQL-­‐based	

evalua-on	
 was	
 inherently	
 a	
 bo^leneck	

l  Hard	
 to	
 do	
 complex	
 features	
 like	
 centrality	
 measures	

l  In	
 the	
 process	
 of	
 changing	
 the	
 backend	

Prototype	
 Implementa-on	

Related	
 Work	

l  Dedupalog	
 [Arasu	
 et	
 al.,	
 ICDE	
 2009]:	
 Datalog-­‐based	
 en-ty	
 resolu-on	

l  User	
 defines	
 hard	
 and	
 soN	
 rules	
 for	
 deduplica-on	

l  System	
 sa-sfies	
 hard	
 rules	
 and	
 minimizes	
 viola-ons	
 to	
 soN	
 rules	
 when	

deduplica-ng	
 references	

l  Swoosh	
 [Benjelloun	
 et	
 al.,	
 VLDBJ	
 2008]:	

l  Generic	
 En-ty	
 resolu-on	

l  Match	
 func-on	
 for	
 pairs	
 of	
 nodes	
 (based	
 on	
 a	
 set	
 of	
 features)	

l  Merge	
 func-on	
 determines	
 which	
 pairs	
 should	
 be	
 merged	

l  Dyna:	
 Extending	
 Datalog	
 for	
 Modern	
 AI	
 [Eisner	
 and	
 Filardo,	
 2011]	

l  High-­‐level	
 programming	
 language	
 for	
 specifying	
 NLP	
 tasks	

l  Many	
 similari-es	
 to	
 Datalog	

l Overview	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Distributed	
 Management	
 of	
 Dynamic	
 Graphs	

l Conclusions	

Outline 	
 	

l  Increasing	
 interest	
 in	
 temporal	
 analysis	
 of	
 informa-on	
 networks	
 to:	

l  Understand	
 evolu-onary	
 trends	
 (e.g.,	
 how	
 communi-es	
 evolve)	
 	

l  Perform	
 compara-ve	
 analysis	
 and	
 iden-fy	
 major	
 changes	

l  Develop	
 models	
 of	
 evolu-on	
 or	
 informa-on	
 diffusion	

l  Visualiza-ons	
 over	
 -me	

l  For	
 be^er	
 predic-ons	
 in	
 the	
 future	

l  Focused	
 explora-on	
 and	
 querying	

l  “Who	
 had	
 the	
 highest	
 PageRank	
 in	
 a	
 cita>on	
 network	
 in	
 1960?”	

l  “Iden>fy	
 nodes	
 most	
 similar	
 to	
 X	
 as	
 of	
 one	
 year	
 ago”	

l  “Iden>fy	
 the	
 days	
 when	
 the	
 network	
 diameter	
 (over	
 some	
 transient	
 edges	

like	
 messages)	
 is	
 smallest”	

l  “Find	
 a	
 temporal	
 subgraph	
 paIern	
 in	
 a	
 graph”	

Historical	
 Graph	
 Data	
 Management	

ti tj tk

l  Focus	
 of	
 the	
 work	
 so	
 far:	
 snapshot	
 retrieval	
 queries	

l  Given	
 one	
 >mepoint	
 or	
 a	
 set	
 of	
 >mepoints	
 in	
 the	
 past,	
 retrieve	
 the	

corresponding	
 snapshots	
 of	
 the	
 network	
 in	
 memory	

l  Queries	
 may	
 specify	
 only	
 a	
 subset	
 of	
 the	
 columns	
 to	
 be	
 fetched	

l  Some	
 more	
 complex	
 types	
 of	
 queries	
 can	
 be	
 specified	

l  Given	
 the	
 ad	
 hoc	
 nature	
 of	
 much	
 of	
 the	
 analysis,	
 one	
 of	
 the	
 most	

important	
 query	
 types	

l  Key	
 challenges:	

l  Needs	
 to	
 be	
 very	
 fast	
 to	
 support	
 interac-ve	
 analysis	

l  Should	
 support	
 analyzing	
 100’s	
 or	
 more	
 snapshots	
 simultaneously	

l  Support	
 for	
 distributed	
 retrieval	
 and	
 distributed	
 analysis	
 (e.g.,	
 using	
 Pregel)	

Snapshot	
 Retrieval	
 Queries	

l  Temporal	
 rela-onal	
 databases	

l  Vast	
 body	
 of	
 work	
 on	
 models,	
 query	
 languages,	
 and	
 systems	

l  Dis-nc-on	
 between	
 transac>on-­‐>me	
 and	
 valid-­‐>me	
 temporal	
 databases	

l  Snapshot	
 retrieval	
 queries	
 also	
 called	
 valid	
 >meslice	
 queries	

l  Op-ons	
 for	
 execu-ng	
 snapshot	
 queries	

l  External	
 Interval	
 Trees	
 [Arge	
 and	
 Vi^er,	
 1996]	

l  Op-mal	
 storage,	
 op-mal	
 (logarithmic)	
 updates	
 for	
 managing	
 interval	
 data	

l  Retrieval	
 in	
 the	
 size	
 of	
 the	
 retrieved	
 graph	

l  External	
 Segment	
 Trees	
 [Blakenagal	
 and	
 Gu-ng,	
 1994]	

l  Op-mal	
 retrieval,	
 but	
 higher	
 storage	
 requirements	

l  Snapshot	
 index	
 [Slazberg	
 and	
 Tsotras,	
 1999]	

l  Op-mal	
 for	
 transac>on-­‐>me	
 databases	

l  Copy	
 +	
 Log	

l  Maintain	
 some	
 snapshots	
 explicitly,	
 and	
 keep	
 chains	
 of	
 events	
 between	
 them	
 	

	

Prior	
 Work	

l  No	
 flexibility	
 or	
 tunability	

l  Would	
 like	
 to	
 control	
 the	
 distribu-on	
 of	
 snapshot	
 retrieval	
 -mes,	
 at	
 run	
 -me	

l  No	
 support	
 for	
 mul--­‐point	
 queries	

l  Not	
 easy	
 to	
 support	
 parallel	
 retrieval/processing	

l  No	
 support	
 for	
 retrieving	
 por-ons	
 of	
 the	
 network	

l  Would	
 like	
 to	
 support	
 different	
 storage	
 backends	

l  Most	
 prior	
 techniques	
 primarily	
 op-mized	
 for	
 disks	

Prior	
 Work:	
 Limita-ons	

System	
 Architecture	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica>on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

System	
 Architecture	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica>on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

Currently supports a programmatic API to
access the historical graphs

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan 2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Table 1: Options for node attribute retrieval. Similar options

exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview

Figure 2 shows a high level overview of our system and its key
components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth

in the number of neighbors since joining the network).
Next, we briefly discuss snapshot queries and the key compo-

nents of the system.

3.2.1 Snapshot Queries

We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-

sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ∧
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components

There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| ≈
|Gc ∪G1 ∪G2 · · · ∪Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki

l  Hierarchical	
 index	
 structure	
 with	
 (logical)	
 snapshots	
 at	
 the	
 leaves	

l  Only	
 the	
 edge	
 deltas	
 stored	
 explicitly	

l  Key	
 parameter:	
 differen>al	
 func>on	
 (f,	
 f1,	
 f2)	

l  Can	
 have	
 mul-ple	
 hierarchies	
 within	
 the	
 same	
 structure	

DeltaGraph	

S7=
f(S5,S6)

S5 =
f(S1,S2)

S6=
f(S3,S4)

S1 S2
S3 S4

S8=∅

∆(S1,S5) ∆(S2,S5)

∆(S5,S7) ∆(S6,S7)

∆(S7,S8)

∆(S4,S6)

E1 E2 E3

L L L

∆(S3,S6)

Super-Root

Root

Δ(Si,Sj) = Sj - Si

S7=
f1(S5,S6)

S5 =
f1(S1,S2)

S6=
f1(S3,S4)

S1
S2 S3 S4

S8=∅

E1 E2 E3

L L L

S11=
f2(S9,S10)

S9 =
f2(S1,S2)

S10=
f2(S3,S4)

Super-Root

Root1 Root2

l  Deltas	
 stored	
 in	
 a	
 key-­‐value	
 store	

l  Currently	
 using	
 disk-­‐based	
 Kyoto	
 Cabinet	

l  Each	
 edge	
 delta	
 split	
 into	
 mul-ple	
 smaller	
 deltas	

l  Ver-cally	
 by	
 columns:	
 To	
 retrieve	
 only	
 some	
 a^ributes	

l  Horizontally	
 by	
 nodes:	
 To	
 facilitate	
 distributed	
 processing,	
 and	
 to	
 speed	
 up	

construc-on	

l  The	
 skeleton	
 maintained	
 in	
 memory	

l  Expected	
 to	
 be	
 small	
 –	
 the	
 deltas	
 are	
 usually	
 large	
 to	
 take	
 advantage	
 of	

compression	
 and	
 to	
 reduce	
 the	
 number	
 of	
 I/Os	

l  Memory	
 materializa-on	

l  Basic	
 idea:	
 Explicitly	
 materialize	
 a	
 snapshot	
 in	
 memory	

l  “Current	
 graph”	
 treated	
 as	
 materialized	
 (assuming	
 an	
 online	
 system)	

l  In	
 the	
 DeltaGraph,	
 add	
 an	
 edge	
 with	
 cost	
 0	
 from	
 the	
 root	

l  Enables	
 much	
 flexibility	
 in	
 reducing	
 the	
 snapshot	
 retrieval	
 costs	

DeltaGraph	
 Storage	

Snapshot	
 Queries	

l  Single	
 point:	
 Lowest	
 weight	
 Path	
 from	
 Root	

l  Edge	
 is	
 associated	
 with	
 several	
 different	
 weights	
 for	
 different	
 a^ributes	

l  Mul--­‐point:	
 Lowest	
 weight	
 Steiner	
 Tree	
 from	
 Root	

l  Use	
 the	
 standard	
 2-­‐approxima-on	
 for	
 this	
 purpose	

l  Similar	
 techniques	
 for	
 other	
 types	
 of	
 more	
 complex	
 queries	

involving	
 >me-­‐expressions	

S7

S5 S6

S1 S2 S3 S4
c(E1)

c(∆(S1,S5))

c(E2)

S8

St1

c(S1,t1) c(S2,t1)

c(E3)

c(∆(S5,S7))

c(∆(S7,S8))

S7

S5 S6

S1 S2 S3 S4

S8

St1 St2 St3

Name Description

Intersection f(a,b,c...) = a∩b∩c…

Union f(a,b,c...) = a∪b∪c...

Skewed f (a, b) = a + r.(b − a), 0 ≤ r ≤ 1

Right Skewed f (a, b) = a ∩ b + r.(b − a ∩ b), 0 ≤ r ≤ 1

Left Skewed f (a, b) = a ∩ b + r.(a − a ∩ b), 0 ≤ r ≤ 1

Mixed f(a,b,c...) = a + r1.(δab + δbc ...) − r2.(ρab +ρbc...),0≤r2 ≤r1
≤ 1

Balanced f(a,b,c...) = a + 0.5(δab + δbc ...) −0.5(ρab +ρbc ...)

Empty f(a,b,c...) = ∅

Differen-al	
 Func-ons	

l  Choice	
 of	
 differen-al	
 func-on	
 greatly	
 influences	
 the	
 proper-es	

l  Many	
 func-ons	
 of	
 interest	

Analysis	

l  Model	
 of	
 graph	
 dynamics	

l  G|E|:	
 Graph	
 aNer	
 |E|	
 events	

l  Assume	
 a	
 constant	
 rate	
 of	
 inserts	
 and	
 deletes	

l  Not	
 equivalent	
 to	
 assuming	
 constant	
 rate	
 of	
 change/-me	

l  Summary	
 of	
 results	

l  Balanced	
 func-on	
 balances	
 the	
 retrieval	
 -mes	
 at	
 the	
 expense	
 of	
 higher	

storage	
 requirements	

l  Space	
 requirements	

l  Interval	
 trees:	
 O(|E|)	

l  Segment	
 trees:	
 O(|E|	
 log|E|)	

l  DeltaGraph:	
 Somewhere	
 between	
 O(|E|)	
 and	
 O(|E|	
 log	
 N)	

l  Depending	
 on	
 the	
 differen-al	
 func-on,	
 arity,	
 and	
 graph	
 dynamics	

l  N	
 =	
 Number	
 of	
 leaves	

Some	
 More	
 Details	

l  DeltaGraph	
 Construc-on	

l  Bo^om-­‐up:	
 Similar	
 to	
 the	
 construc-on	
 of	
 a	
 bulkloaded	
 B+-­‐tree	

l  Construc-on	
 parameters:	
 	

l  Evetlist	
 size:	
 L,	
 Arity:	
 k	

l  Differen-al	
 Func-on:	
 f()	

l  Par--oning	
 of	
 the	
 nodes	

l  Construc-on	
 algorithm	
 memory	
 intensive	

l  Need	
 to	
 do	
 in	
 a	
 par--oned	
 fashion	
 to	
 handle	
 large	
 graphs	

l  Details	
 in	
 the	
 paper	

l  Choosing	
 what	
 to	
 materialize	

l  Current	
 approach	
 is	
 to	
 materialize	
 one	
 or	
 two	
 of	
 the	
 top	
 levels	

l  Inves-ga-ng	
 approaches	
 based	
 on	
 facility	
 loca>on	
 	

GraphPool	

l  Goal:	
 Store	
 many	
 graphs	
 in	
 memory	
 in	
 an	
 overlaid	
 fashion	

l  To	
 minimize	
 memory	
 consump-on	

l  To	
 reduce	
 retrieval	
 cost	
 by	
 using	
 bitmaps	
 to	
 encode	
 differences	

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}

Empirical	
 Results	

l  DeltaGraph	
 vs	
 In-­‐Memory	
 Interval	
 Tree	

	

1998 1999 2000
Query Timepoint

0

500

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(a) Performance: Dataset 2a

Interval Tree
DG
DG (Total Mat)

0

100

200

300

Sp
ac

e
(M

B
)

(b) Memory: Dataset 2a

Interval Tree
DG
DG (Total Mat)

Dataset 2a: 500,000 nodes+edges, 500,000 events

Empirical	
 Results	

l  Effect	
 of	
 Materializa-on	

0

200

400

600

Ti
m

e
(m

s)

(a) Average Query Time

None
Root
Root’s children
Root’s grandchildren

0

20

40

60

80

Sp
ac

e
(M

B)

(b) Memory Consumption

None

Root

Root’s children

Root’s grandchildren

Empirical	
 Results	

l  Differen-al	
 Func-ons,	
 A^ributes	

1980 1985 1990
Query Timepoint

0

200

400

600

800

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(a) Int vs Bal (Dataset 1a)

Balanced
Intersection (root materialized)
Balanced (root materialized)

1990 1991 1992 1993
Query Timepoint

0

50

100

150

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(b) Different mixed functions (Dataset 2c)

r1=0.1, r2=0.1
r1=0.5, r2=0.5
r1=0.9, r2=0.9

1990 1991 1992
Query Timepoint

0

200

400

600

800

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(c) Retrieval with and without attributes (Dataset 2c)

Structure+Attributes
Structure Only

l Overview	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Distributed	
 Management	
 of	
 Dynamic	
 Graphs	

l Conclusions	

Outline 	
 	

System	
 Architecture	

Con-nuous	

Query	

Processor	

One-­‐-me	

Query	

Processor	

Blueprints	
 API	
 Historical	

Query	

Processor	

Replica-on	

Manager	
 Co

m
m
un

ic
a-

on
s	
 M

od
ul
e	

GraphPool	

Current	
 graph;	

Views;	

Historical	

snapshots	

DeltaGraph	

Persistent,	
 Historical	
 	

Graph	
 Storage	

Replica>on	
 	

Maintenance	

Forwarded	

Queries	

Graph	

Updates	

l  Graph	
 par--oning	
 hard	
 to	
 do	
 effec-vely	

l  Random	
 par--oning	
 typically	
 results	
 in	
 large	
 edge	
 cuts	
 	

à Distributed	
 traversals	
 to	
 answer	
 queries	
 leading	
 to	
 high	
 latencies	

l  Sophis-cated	
 par--oning	
 techniques	
 oNen	
 do	
 not	
 work	
 either	

l  Clean,	
 disjoint	
 par--onings	
 oNen	
 do	
 not	
 exist	

l  Hard	
 to	
 scale	
 (although	
 some	
 recent	
 work)	

l  Not	
 appropriate	
 for	
 highly	
 dynamic	
 environments	

l  We	
 employ	
 an	
 aggressive	
 replica-on	
 approach	
 to	
 reduce	
 latencies	

l  How	
 to	
 choose	
 what	
 to	
 replicate?	
 –	
 A	
 new	
 “fairness”	
 criterion	

l  Eager	
 or	
 Lazy	
 replica-on?	
 –	
 Fine-­‐grained	
 access	
 pa^ern	
 monitoring	

Mo-va-on	

Prior	
 Work	

l  Pujol	
 et	
 al.	
 [SIGCOMM’11]	

l  Local	
 seman-cs:	
 For	
 every	
 node,	
 every	
 neighbor	
 is	
 replicated	

locally	
 (if	
 not	
 already	
 present)	

l  High	
 replica-on	
 overhead	

l  Similar	
 approach	
 proposed	
 by	
 Huang	
 et	
 al.	
 [VLDB’11]	

l  Adap-ve	
 replica-on	
 [Wolfson	
 et	
 al.,	
 TODS’97]	

l  Monitor	
 access	
 frequencies	

l  Focused	
 on	
 tree	
 communica-on	
 networks	

l  Feed	
 delivery	
 [Silberstein	
 et	
 al.,	
 SIGMOD’10]	

l  Similar	
 problem	
 in	
 a	
 publish-­‐subscribe	
 se�ng	

l  No	
 reciprocal	
 rela-onship	
 between	
 publishers	
 and	
 subscribers	

Our	
 Approach	

l  Key	
 idea	
 1	
 	

l  Use	
 a	
 “fairness”	
 criterion	
 to	
 decide	
 what	
 to	
 replicate	

l  For	
 every	
 node,	
 at	
 least	
 t	
 frac-on	
 of	
 nodes	
 should	
 be	
 present	
 locally	

l  Can	
 make	
 some	
 progress	
 for	
 all	
 queries	

l  Guaranteeing	
 fairness	
 NP-­‐Hard	

	

Local Semantics

Fair with t = 2/3

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

Our	
 Approach	

l  Key	
 idea	
 2	
 	

l  Exploit	
 pa^erns	
 in	
 the	
 read/write	
 access	
 frequencies	

l  Use	
 pull	
 replica-on	
 in	
 the	
 first	
 12	
 hours,	
 push	
 in	
 the	
 next	
 12	

l  Significant	
 benefits	
 from	
 adap-vely	
 changing	
 the	
 replica-on	

decision	

l  Such	
 pa^erns	
 observed	
 in	
 human-­‐centric	
 networks	
 like	
 social	

networks	

	

We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair 〈Cij , Pj〉, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair 〈Cij , Pk〉
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different

! "

#$%&'()*+%,-./0(1*-2(3(/0 #$%&'(*,&4-./0(1*-2(3(/5
!*+%,-(&%(671*(8*&9:'&*+%;3(

<=>?=>?/?/@
A,&4-(&%(671*(8*&9:'&*+%;3

(</?/?B?=>@

C= C/

Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence

Our	
 Approach	

l  Key	
 idea	
 3	
 	

l  Make	
 replica-on	
 decisions	
 for	
 all	
 nodes	
 in	
 a	
 pair	
 of	
 par--ons	
 together	

l  Prior	
 work	
 had	
 suggested	
 doing	
 this	
 for	
 each	
 (writer,	
 reader)	
 pair	
 separately	

l  Works	
 in	
 the	
 publish-­‐subscribe	
 domain,	
 but	
 not	
 here	

l  Can	
 be	
 reduced	
 to	
 maximum	
 density	
 sub-­‐hypergraph	
 problem	

!"

!#

!$

!%

&"

&#

&$

&%

'(!")*+*# ,(&")*+*$

'(!#)*+*-

'(!$)*+*.

'(!%)*+*#

,(&#)*+*#

,(&$)*+*#

,(&%)*+*$

!"#

!"

!#

!$

!%

&"

&#

&$

&%

!""#$%&'($)$*+$,$-.

!"

!#

!$

!%

&"

&#

&$

&%

!"""#$%&'($)$/+$,$-.

01'2

0133

0133

01'2

01'2

0133

0133

0133

!"

!% !$

!#

&"

&% &$

&#

!"4#

Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway

Pairwise decisions Optimal

Some	
 more	
 details	

l  Hash	
 par--oning	

l  The	
 basic	
 par--oning	
 is	
 done	
 using	
 standard	
 hash-­‐based	
 techniques	

l  Be^er	
 load	
 balancing,	
 and	
 much	
 simpler	
 rou-ng	
 logic	

l  Clustering	

l  Infeasible	
 to	
 make	
 replica-on	
 decisions	
 on	
 a	
 per	
 node	
 basis	

l  Instead	
 cluster	
 nodes	
 based	
 on	
 the	
 read/write	
 frequencies	

l  Significantly	
 reduces	
 the	
 metadata	
 needed	
 to	
 implement	
 replica-on	

decisions	

l  Decentralized	
 algorithms 	
 	

l  Decisions	
 made/re-­‐evaluated	
 independently	
 at	
 each	
 par--on	

l  Implementa-on	

l  Use	
 CouchDB	
 key-­‐value	
 store	
 for	
 storing	
 the	
 data	

l  Leverage	
 upon	
 the	
 replica-on	
 support	
 built-­‐in	

Empirical	
 Results	

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1/2 hr 1 hr 2 hr 4 hr 6 hr 8 hr 12 hr

A
ve

ra
ge

 N
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Network activity across partitions

All Pull Hybrid All Push

Figure 5: Making fine-grained decisions can result in almost
33% savings over coarse-grained decisions
as logged by our replication middleware. As we discussed earlier,
once a data item is replicated to a partition, it is cached and will not
be transferred again. Because of this, the amount of data transfer
across the servers is independent of the replication decisions that
are made (we can easily modify the cost functions in our algorithms
to account for this if desired). Hence for most of the results, we re-
port the total number of push and pull messages (i.e., we assume
H = L = 1).

For a push decision, we use continuous replication of CouchDB
and there is a message involved every time the corresponding graph
node is updated. However, the way we count the number of pull
messages is slightly different, and reflects the constraints imposed
by CouchDB and our setup. In fact, this results in a significant
underestimation in the number of pull messages as some of our
experiments also illustrate.

The way a pull works in our system is that, the replication man-
ager asks CouchDB to sync the appropriate replication table (see
Section 3.1). However since the replication tables correspond to
clusters, all updates to that cluster are pulled from the cluster’s
home partition. To amortize the cost of this, we enforce a minimum
gap between two pulls corresponding to the same cluster by using
a timeout. In other words, if a cluster has been recently pulled, we
do not pull it again until the timeout expires. In our experimental
evaluation, the timeout is set to 800ms, so the data can be at most
800ms stale (which is reasonable in a social network application).
We further discuss the rationale in Section 5.4.7.

5.4 Results

5.4.1 Impact of Histogram Granularity
We start with a set of experiments to verify our hypothesis that

by making decisions in a fine-grained manner can result in signifi-
cant savings. Figure 5 shows the results for this experiment. Here
we varied the histogram granularity from 1/2 hour to 12 hours, and
counted the total number of messages that were needed. The all-
pull and all-push approaches are unaffected by this, however, we
can see that by making decisions at the finest granularity, i.e., every
1/2 hour, resulted in almost 33% savings over coarse-grained de-
cisions. This validates our hypothesis that we can exploit the user
activity patterns to reduce the network communication costs.

We also note that overall our default workload is read-heavy, and
hence all-push solution is usually better than all-pull solution (al-
though it results in higher memory consumption). As we move
toward coarse-grained histograms, we observed that most of the
replication decisions became push. But our algorithm is able to ex-

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Server1 Server2 Server3 Server4 Server5 Server6

A
ve

ra
ge

 N
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Network activity and load across partitions

All Pull Hybrid All Push

Figure 6: Hash partitioning results in almost uniform load
across the partitions
ploit the diversity in the access patterns when making decisions at
finer granularities to achieve significant savings.

5.4.2 Bandwidth Consumption and Network Load
Figure 6 shows the total network communication across the servers.

For each server, we aggregated the network communication result-
ing from writes happening to the corresponding partition, and the
reads directed to the partition. As we can see, all the approaches
resulted in fairly balanced load across the partitions, with hybrid
achieving almost 20% savings over all-push in all cases. This can
be attributed to the hash partitioning scheme that we use, which
guarantees that the overall read and write distributions across the
partitions are largely uniform.

5.4.3 Varying the Number of Clusters
Next we study the effect of k, the number of clusters in each

partition. We varied the number of clusters from 4 to 9, and we
show the results in Figure 7. Along with the network communica-
tion costs (plotted on the left y-axis), we also plot the size of the
cluster mapping table, the metadata that is needed to decide which
of a node’s neighbors are replicated (on the right y-axis). As we
can see, as the number of clusters increases the size of the cluster
mapping table increases as expected. What is somewhat counter-
intuitive is that the total communication cost also increases beyond
6. We expect that with large numbers of clusters, we can make
more fine-grained decisions which should aid in reducing the total
network communication cost.

The reason for this is somewhat subtle, and has to do with the
way pulls are handled in our system. Recall that a single pull ac-
tually syncs an entire cluster, i.e., it propagates all updates for a
single cluster from the home partition to the partition making the
pull. Thus increasing the cluster sizes results in an decrease in the
number of pulls that are required. We expect that if we were count-
ing the number of pulls explicitly, that would result in the behavior
as expected (however, in a read-heavy workload, that would imply
that the all-push solution would always be better by a margin).

5.4.4 Varying Write-Read Ratio
We examine how the replication techniques perform for work-

loads that have different mixes of reads and writes. We simply
varied the read/write ratio of the workload and calculated the av-
erage cost in terms of total number of communications, incurred
by the three approaches. For hybrid, we also plot the costs when
the fairness threshold τ is set to 0.5. Figure 9 shows the results of

Fine-grained, adaptive decisions can result in substantial savings
in number of messages

Empirical	
 Results	

Fairness factor can be used to effectively trade-off latencies and replication cost

 0

 200000

 400000

 600000

 800000

 1e+06

4 5 6 7 8 9
 0

 5

 10

 15

 20

 25

 30

 35

A
ve

ra
ge

 u
m

be
r o

f n
et

w
or

k
 m

es
sa

ge
s (

pe
r s

ite
)

Si
ze

 o
f t

he
 C

al
us

te
r M

ap
pi

ng
/p

er
 si

te
 (i

n
M

B)Network activity across partitions

Avg All Pull
Avg Hybrid

Avg All Push
Hybrid

Figure 7: Varying the number of clusters

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 620000

 640000

 660000

 0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Fairness ratio

Impact of fairness-factor on the average \n number of messages

All Push
Hybrid

Hybrid Fair

Figure 8: Impact of fairness factor on network communication

this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.05 0.1 0.15 0.2 0.25A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Write:Read ratio

Impact of write/read ratio on network activity

All Pull
Hybrid

All Push
Hybrid 0.5 fairness

Figure 9: Increasing the write:read ratio results in favoring
pulls over pushes

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1
A

ve
ra

ge
 R

ea
d

La
te

nc
y

(m
s)

Fairness factor

Impact of fairness-factor on latency

All Push
Hybrid
All Pull

Hybrid Fair

Figure 10: Impact of the fairness factor on read query latencies

proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.

 0

 200000

 400000

 600000

 800000

 1e+06

4 5 6 7 8 9
 0

 5

 10

 15

 20

 25

 30

 35

A
ve

ra
ge

 u
m

be
r o

f n
et

w
or

k
 m

es
sa

ge
s (

pe
r s

ite
)

Si
ze

 o
f t

he
 C

al
us

te
r M

ap
pi

ng
/p

er
 si

te
 (i

n
M

B)Network activity across partitions

Avg All Pull
Avg Hybrid

Avg All Push
Hybrid

Figure 7: Varying the number of clusters

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 620000

 640000

 660000

 0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Fairness ratio

Impact of fairness-factor on the average \n number of messages

All Push
Hybrid

Hybrid Fair

Figure 8: Impact of fairness factor on network communication

this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.05 0.1 0.15 0.2 0.25A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Write:Read ratio

Impact of write/read ratio on network activity

All Pull
Hybrid

All Push
Hybrid 0.5 fairness

Figure 9: Increasing the write:read ratio results in favoring
pulls over pushes

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
ea

d
La

te
nc

y
(m

s)

Fairness factor

Impact of fairness-factor on latency

All Push
Hybrid
All Pull

Hybrid Fair

Figure 10: Impact of the fairness factor on read query latencies

proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.

l Overview	

l Declara-ve	
 Graph	
 Cleaning	

l Historical	
 Graph	
 Data	
 Management	

l Distributed	
 Management	
 of	
 Dynamic	
 Graphs	

l Conclusions	

Outline 	
 	

Conclusions	
 and	
 Ongoing	
 Work	

l  Graph	
 data	
 management	
 becoming	
 increasingly	
 important	

l  Many	
 challenges	
 in	
 dealing	
 with	
 the	
 scale,	
 the	
 noise,	
 and	
 the	

variety	
 of	
 analy-cal	
 tasks	

l  Presented:	
 	

l  A	
 declara-ve	
 framework	
 for	
 cleaning	
 noisy	
 graphs	

l  A	
 system	
 for	
 managing	
 historical	
 data	
 and	
 snapshot	
 retrieval	

l  Techniques	
 for	
 managing	
 and	
 querying	
 highly	
 dynamic	
 graphs	

l  Ongoing	
 work	
 on	
 improving	
 and	
 extending	
 this	
 preliminary	
 work	

l  Developing	
 temporal	
 query	
 languages	
 for	
 graph	
 querying	

l  Replica-on	
 and	
 pre-­‐computa-on	
 for	
 con-nuous	
 queries	

l  Efficiently	
 suppor-ng	
 distributed	
 graph	
 analy-cs	

Thank	
 you	
 !!	

