Enabling Declarative Graph Analytics over Large, Noisy Information Networks

Amol Deshpande

Department of Computer Science and UMIACS University of Maryland at College Park

> Joint work with: Prof. Lise Getoor, Walaa Moustafa, Udayan Khurana, Jayanta Mondal

Motivation: Information Networks

- Everywhere and growing in numbers...
 - Social networks, social contact graphs
 - Email networks, financial transaction networks
 - Biological networks, disease transmission networks
 - Citation networks, IP traffic data, Web
 - ..
- Intense amount of work already on:
 - ... understanding properties of these networks
 - ... visualizations
 - ... developing models of evolution
 - ... cleaning inherently noisy observational data
 - ... comparative analytics
 - and so on...

A protein-protein interaction network

Supreme court citation network

Motivation: Information Networks

- Lack of established data management tools
 - Much of the analysis exploratory, domain specific, and hard to abstract
- Some of the key data management challenges
 - Inherent noise and uncertainty in the raw observation data
 - → Support for *graph cleaning* must be tightly integrated into the system
 - Graph cleaning techniques often domain specific
 - → Uncertainty-aware query evaluation algorithms needed that can handle new types of *identity* uncertainties
 - Very large volumes of heterogeneous data
 - → Distributed/parallel storage and query processing needed
 - Graph partitioning notoriously hard to do effectively
 - Highly dynamic and rapidly changing data as well as workloads
 - Need to support real-time processing through aggressive replication and precomputation

Motivation: Information Networks

- Lack of established data management tools
 - Much of the analysis exploratory, domain specific, and hard to abstract
- Some of the key data management challenges
 - Managing historical information
 - → Need to support complex temporal analysis
 - Must manage large volumes of historical traces and support efficient retrieval of past network snapshots
 - → Need to support different frameworks for *inferring* the trace itself from snapshots
 - Lack of established query languages
 - → Develop new languages !!
 - $\rightarrow\,...$ or preferably reuse an old one

What we are doing

- Goal: build a data management system and frameworks that can manage large dynamically-changing graphs and support a variety of analytics over them
 - Focus on the abstractions and the system, less on specific analysis techniques
- Work so far:
 - Declarative graph cleaning
 - Proposed and built a declarative framework for specifying complex network analysis and cleaning tasks [GDM'11]
 - Real-time continuous query processing
 - Aggressive replication to manage very large dynamic graphs efficiently in a distributed manner, and to execute continuous queries over them [SIGMOD'12]
 - Historical graph management
 - Efficient single-point or multi-point snapshot retrieval over very large historical graph traces [under submission]
 - Ego-centric pattern census [ICDE'12]

Outline

Overview

- Declarative Graph Cleaning
- Historical Graph Data Management
- Distributed Management of Dynamic Graphs
- Conclusions

Motivation

- The *observed information networks* are often noisy and incomplete
 - Missing attributes, missing links
 - Ambiguous references to the same entity
- Need to extract the underlying *true information network* through:
 - Attribute Prediction: to predict values of missing attributes
 - Link Prediction: to infer missing links
 - Entity Resolution: to decide if two references refer to the same entity
- Typically iterative and interleaved application of the techniques
- These prediction tasks can use:
 - Local node information
 - *Relational* information in the neighborhood of the node

Join Optimization of Information Extraction Output: Quality Matters! An Annotation Management System for <u>Relational Databases</u>

Tracing Lineage Beyond **Relational Operators**

Attribute Prediction

May generate a probability distribution here instead

Collective (relational) Inference

- Many collective techniques have been developed over the years
 - However, no support from data management systems to do this effectively
 - Hard for a network analyst to easily construct and compare new techniques
 - Especially for *joint* inference, i.e., interleaved and pipelined application
 - No re-usability, and much repetition of work

Our Goal

- Motivation: To support declarative network inference
- Desiderata:
 - Declarative specification of the prediction features
 - Local features
 - Relational features
 - (Almost-)declarative specification of tasks
 - Attribute prediction, Link prediction, Entity resolution
 - Support for arbitrary interleaving or pipelining
 - Support for complex prediction functions

Handle all that efficiently

Proposed Framework

Proposed Framework

Proposed Framework

Some Details

- Use Datalog to express:
 - Domains
 - Local and relational features
- Extend Datalog with operational semantics (vs. fix-point semantics) to express:
 - Predictions (in the form of updates)
 - Iteration

Specifying Features

Degree: Degree(X, COUNT<Y>) :-Edge(X, Y)

Number of Neighbors with attribute 'A' NumNeighbors(X, COUNT<Y>) :- Edge(X, Y), Node(Y, Att='A')

Clustering Coefficient NeighborCluster(X, COUNT<Y,Z>) :- Edge(X,Y), Edge(X,Z), Edge(Y,Z) ClusteringCoeff(X, C) :- NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1))

Jaccard Coefficient IntersectionCount(X, Y, COUNT<Z>) :- Edge(X, Z), Edge(Y, Z) UnionCount(X, Y, D) :- Degree(X,D1), Degree(Y,D2), D=D1+D2-D3, IntersectionCount(X, Y, D3) Jaccard(X, Y, J) :- IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D

Specifying Domains

- Domains used to restrict the space of computation for the prediction elements
- Space for this feature is |V|² Similarity(X, Y, S) :-Node(X, Att=V1), Node(Y, Att=V1), S=f(V1, V2)
- Using this domain the space becomes |E|: DOMAIN D(X,Y) :- Edge(X, Y)
- Other DOMAIN predicates:
 - Equality on attribute values
 - Locality sensitive hashing
 - String similarity joins
 - Traverse edges

Prediction and Confidence Functions

- The prediction and confidence functions are user defined functions
- Can be based on *logistic regression*, Bayes classifier, or any other classification algorithm
- The confidence is the class membership value
 - In logistic regression, the confidence can be the value of the logistic function
 - In Bayes classifier, the confidence can be the posterior probability value

Update Operation

- Action to be taken itself specified declaratively
- Enables specifying, e.g., different ways to merge in case of entity resolution

Pipelining

```
DOMAIN ER(X,Y) :- ....
                                                  DOMAIN LP(X,Y) :- ....
{
                                                  ł
   ER1(X,Y,F1) :- ...
                                                     LP1(X,Y,F1) :- ...
                                                     LP2(X,Y,F1) :- ...
   ER2(X,Y,F1) :- ...
   Features-ER(X,Y,F1,F2) :- ...
                                                     Features-LP(X,Y,F1,F2) :- ...
}
                                                  }
ITERATE(*)
   INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2)
   IN TOP 10%
}
ITERATE(*)
   MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
   IN TOP 10%
}
```

Interleaving

```
DOMAIN ER(X,Y) :- .... 

{
    ER1(X,Y,F1) :- ....
    ER2(X,Y,F1) :- ....
    Features-ER(X,Y,F1,F2) :- ....
}
DOMAIN LP(X,Y) :- ....
{
    LP1(X,Y,F1) :- ....
    LP2(X,Y,F1) :- ....
    Features-LP(X,Y,F1,F2) :- ....
}
```

ITERATE(*)

```
INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2) IN TOP 10%
```

```
MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
IN TOP 10%
```

}

ł

Real-world Experiment

- Real-world PubMed graph
 - Set of publications from the medical domain, their abstracts, and citations
- 50,634 publications, 115,323 citation edges
- Task: Attribute prediction
 - Predict if the paper is categorized as Cognition, Learning, Perception or Thinking
- Choose top 10% predictions after each iteration, for 10 iterations
- Incremental: 28 minutes. Recompute: 42 minutes

Prototype Implementation

- Using a simple RDBMS built on top of Java Berkeley DB
 - Predicates in the program correspond to materialized tables
 - Datalog rules converted into SQL
- Incremental maintenance:
 - Every set of changes done by AP, LP, or ER logged into two change tables
 ΔNodes and ΔEdges
 - Aggregate maintenance is performed by aggregating the change table then refreshing the old table
- Proved hard to scale
 - Incremental evaluation much faster than recompute, but SQL-based evaluation was inherently a bottleneck
 - Hard to do complex features like *centrality measures*
 - In the process of changing the backend

Related Work

- Dedupalog [Arasu et al., ICDE 2009]: Datalog-based entity resolution
 - User defines hard and soft rules for deduplication
 - System satisfies hard rules and minimizes violations to soft rules when deduplicating references
- Swoosh [Benjelloun et al., VLDBJ 2008]:
 - Generic Entity resolution
 - Match function for pairs of nodes (based on a set of features)
 - Merge function determines which pairs should be merged
- Dyna: Extending Datalog for Modern AI [Eisner and Filardo, 2011]
 - High-level programming language for specifying NLP tasks
 - Many similarities to Datalog

Outline

Overview

- Declarative Graph Cleaning
- Historical Graph Data Management
- Distributed Management of Dynamic Graphs
- Conclusions

Historical Graph Data Management

- Increasing interest in temporal analysis of information networks to:
 - Understand evolutionary trends (e.g., how communities evolve)
 - Perform comparative analysis and identify major changes
 - Develop models of evolution or information diffusion
 - Visualizations over time
 - For better predictions in the future

- Focused exploration and querying
 - *"Who had the highest PageRank in a citation network in 1960?"*
 - "Identify nodes most similar to X as of one year ago"
 - "Identify the days when the network diameter (over some transient edges like messages) is smallest"
 - "Find a temporal subgraph pattern in a graph"

Snapshot Retrieval Queries

- Focus of the work so far: snapshot retrieval queries
 - Given one *timepoint* or a set of *timepoints* in the past, retrieve the corresponding *snapshots* of the network in memory
 - Queries may specify only a subset of the columns to be fetched
 - Some more complex types of queries can be specified
- Given the ad hoc nature of much of the analysis, one of the most important query types
- Key challenges:
 - Needs to be very fast to support interactive analysis
 - Should support analyzing 100's or more snapshots simultaneously
 - Support for distributed retrieval and distributed analysis (e.g., using Pregel)

Prior Work

- Temporal relational databases
 - Vast body of work on models, query languages, and systems
 - Distinction between *transaction-time* and *valid-time* temporal databases
 - Snapshot retrieval queries also called <u>valid timeslice</u> queries
- Options for executing snapshot queries
 - External Interval Trees [Arge and Vitter, 1996]
 - Optimal storage, optimal (logarithmic) updates for managing interval data
 - Retrieval in the size of the retrieved graph
 - External Segment Trees [Blakenagal and Guting, 1994]
 - Optimal retrieval, but higher storage requirements
 - Snapshot index [Slazberg and Tsotras, 1999]
 - Optimal for *transaction-time* databases
 - Copy + Log
 - Maintain some snapshots explicitly, and keep chains of events between them

Prior Work: Limitations

- No flexibility or tunability
 - Would like to control the distribution of snapshot retrieval times, at run time
- No support for multi-point queries
- Not easy to support parallel retrieval/processing
- No support for retrieving portions of the network
- Would like to support different storage backends
 - Most prior techniques primarily optimized for disks

System Architecture

Analysts, Applications, Visualization Tools

DeltaGraph

Persistent, Historical Graph Storage

System Architecture

Analucha	Appliedione	
Amanysts,	Applications	Currently supports a programmatic API to
		access the historical graphs
		/* Loading the index */
		GraphManager gm = new GraphManager(); gm.loadDeltaGraphIndex();
Continuous	Blueprints API	 /* Retrieve the historical graph structure along with node names as of
Query		Jan 2, 1985 */
Processor		Historaph n1 = gm.GetHistoraph(1/2/1985, +hode:name);
	GraphPool	/* Traversing the graph*/ List <histnode> nodes = h1.getNodes();</histnode>
	Current graph;	List $<$ HistNode $>$ neighborList = nodes.get(0).getNeighbors(); HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
One-time	Views:	
Query	Historical	 2, 1987 */ 1: tOfDates a dd(\$\$1/2/108(2)\$);
Processor	snapshots	listOfDates.add($\frac{1}{2}$, 1980); listOfDates.add($\frac{1}{2}$, 1987"); List <histgraph>h1 = gm_getHistGraphs(listOfDates_");</histgraph>

DeltaGraph

Persistent, Historical Graph Storage

DeltaGraph

- Hierarchical index structure with (logical) snapshots at the leaves
- Only the *edge deltas* stored explicitly
- Key parameter: *differential function (f, f1, f2)*
- Can have multiple hierarchies within the same structure

DeltaGraph Storage

- Deltas stored in a key-value store
 - Currently using disk-based *Kyoto Cabinet*
- Each edge delta split into multiple smaller deltas
 - Vertically by columns: To retrieve only some attributes
 - Horizontally by nodes: To facilitate distributed processing, and to speed up construction
- The *skeleton* maintained in memory
 - Expected to be small the deltas are usually large to take advantage of compression and to reduce the number of I/Os
- Memory materialization
 - Basic idea: Explicitly materialize a snapshot in memory
 - "Current graph" treated as materialized (assuming an online system)
 - In the DeltaGraph, add an edge with cost 0 from the root
 - Enables much flexibility in reducing the snapshot retrieval costs

Snapshot Queries

- Single point: Lowest weight Path from Root
 - Edge is associated with several different weights for different attributes
- Multi-point: Lowest weight Steiner Tree from Root
 - Use the standard 2-approximation for this purpose
- Similar techniques for other types of more complex queries involving *time-expressions*

Differential Functions

- Choice of differential function greatly influences the properties
- Many functions of interest

Name	Description
Intersection	f(a,b,c) = a∩b∩c
Union	f(a,b,c) = a∪b∪c
Skewed	f (a, b) = a + r.(b − a), 0 ≤ r ≤ 1
Right Skewed	f (a, b) = a ∩ b + r.(b − a ∩ b), 0 ≤ r ≤ 1
Left Skewed	f (a, b) = a ∩ b + r.(a − a ∩ b), 0 ≤ r ≤ 1
Mixed	$f(a,b,c) = a + r_1.(\delta_{ab} + \delta_{bc}) - r_2.(\rho_{ab} + \rho_{bc}),0≤r_2 ≤ r_1$ ≤ 1
Balanced	$f(a,b,c) = a + 0.5(\delta_{ab} + \delta_{bc}) - 0.5(\rho_{ab} + \rho_{bc})$
Empty	f(a,b,c) = ∅

Analysis

- Model of graph dynamics
 - *G*_{*|E|}: Graph after |E| events*</sub>
 - Assume a constant rate of inserts and deletes
 - Not equivalent to assuming constant rate of change/time
- Summary of results
 - Balanced function balances the retrieval times at the expense of higher storage requirements
 - Space requirements
 - Interval trees: O(|E|)
 - Segment trees: O(|E| log|E|)
 - DeltaGraph: Somewhere between O(|E|) and O(|E| log N)
 - Depending on the differential function, arity, and graph dynamics
 - N = Number of leaves

Some More Details

DeltaGraph Construction

- Bottom-up: Similar to the construction of a bulkloaded B+-tree
- Construction parameters:
 - Evetlist size: L, Arity: k
 - Differential Function: f()
 - Partitioning of the nodes
- Construction algorithm memory intensive
 - Need to do in a partitioned fashion to handle large graphs
 - Details in the paper
- Choosing what to materialize
 - Current approach is to materialize one or two of the top levels
 - Investigating approaches based on *facility location*

GraphPool

- Goal: Store many graphs in memory in an overlaid fashion
 - To minimize memory consumption
 - To reduce retrieval cost by using bitmaps to encode differences

DeltaGraph vs In-Memory Interval Tree

Dataset 2a: 500,000 nodes+edges, 500,000 events

Effect of Materialization

Differential Functions, Attributes

Outline

Overview

- Declarative Graph Cleaning
- Historical Graph Data Management
- Distributed Management of Dynamic Graphs
- Conclusions

System Architecture

Analysts, Applications, Visualization Tools

<u>DeltaGraph</u> Persistent, Historical Graph Storage

Motivation

- Graph partitioning hard to do effectively
 - Random partitioning typically results in large edge cuts
 - → Distributed traversals to answer queries leading to high latencies
 - Sophisticated partitioning techniques often do not work either
 - Clean, disjoint partitionings often do not exist
 - Hard to scale (although some recent work)
 - Not appropriate for highly dynamic environments
- We employ an aggressive replication approach to reduce latencies
 - How to choose what to replicate? A new "fairness" criterion
 - Eager or Lazy replication? Fine-grained access pattern monitoring

Prior Work

- Pujol et al. [SIGCOMM'11]
 - Local semantics: For every node, every neighbor is replicated locally (if not already present)
 - High replication overhead
 - Similar approach proposed by Huang et al. [VLDB'11]
- Adaptive replication [Wolfson et al., TODS'97]
 - Monitor access frequencies
 - Focused on tree communication networks
- Feed delivery [Silberstein et al., SIGMOD'10]
 - Similar problem in a publish-subscribe setting
 - No reciprocal relationship between publishers and subscribers

Our Approach

- Key idea 1
 - Use a "fairness" criterion to decide what to replicate
 - For every node, at least *t* fraction of nodes should be present locally
 - Can make some progress for all queries
 - Guaranteeing fairness NP-Hard

Our Approach

• Key idea 2

Exploit patterns in the read/write access frequencies

- Use *pull* replication in the first 12 hours, *push* in the next 12
- Significant benefits from adaptively changing the replication decision
- Such patterns observed in human-centric networks like social networks

Our Approach

- Key idea 3
 - Make replication decisions for all nodes in a pair of partitions together
 - Prior work had suggested doing this for each (writer, reader) pair separately
 - Works in the publish-subscribe domain, but not here
 - Can be reduced to *maximum density sub-hypergraph* problem

No point in pushing w4 -r4 will have to pull from the partition anyway

Some more details

• Hash partitioning

- The basic partitioning is done using standard hash-based techniques
- Better load balancing, and much simpler routing logic

• Clustering

- Infeasible to make replication decisions on a per node basis
- Instead cluster nodes based on the read/write frequencies
- Significantly reduces the metadata needed to implement replication decisions

Decentralized algorithms

Decisions made/re-evaluated independently at each partition

Implementation

- Use CouchDB key-value store for storing the data
- Leverage upon the replication support built-in

Fine-grained, adaptive decisions can result in substantial savings in number of messages

Fairness factor can be used to effectively trade-off latencies and replication cost

Outline

Overview

- Declarative Graph Cleaning
- Historical Graph Data Management
- Distributed Management of Dynamic Graphs
- Conclusions

Conclusions and Ongoing Work

- Graph data management becoming increasingly important
- Many challenges in dealing with the scale, the noise, and the variety of analytical tasks
- Presented:
 - A declarative framework for cleaning noisy graphs
 - A system for managing historical data and snapshot retrieval
 - Techniques for managing and querying highly dynamic graphs
- Ongoing work on improving and extending this preliminary work
 - Developing temporal query languages for graph querying
 - Replication and pre-computation for continuous queries
 - Efficiently supporting distributed graph analytics

Thank you !!