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Motivation: Information Networks

Social networks, social contact graphs Linkedm
Email networks, financial transaction networks

® Everywhere and growing in numbers...

Biological networks, disease transmission networks

Citation networks, IP traffic data, Web

® Intense amount of work already on: A protein-protein interaction

network

... understanding properties of these networks

.. Visualizations
.. developing models of evolution

.. cleaning inherently noisy observational data

.. comparative analytics

Supreme court citation network

and so on...



Motivation: Information Networks

® Lack of established data management tools

Much of the analysis exploratory, domain specific, and hard to abstract

® Some of the key data management challenges

Inherent noise and uncertainty in the raw observation data
- Support for graph cleaning must be tightly integrated into the system
Graph cleaning techniques often domain specific

- Uncertainty-aware query evaluation algorithms needed that can handle new
types of identity uncertainties

Very large volumes of heterogeneous data
> Distributed/parallel storage and query processing needed
Graph partitioning notoriously hard to do effectively

Highly dynamic and rapidly changing data as well as workloads

- Need to support real-time processing through aggressive replication and pre-
computation



Motivation: Information Networks

® Lack of established data management tools

Much of the analysis exploratory, domain specific, and hard to abstract

Gt=1300 Gi=2599

® Some of the key data management challenges

Managing historical information

- Need to support complex temporal analysis

> Must manage large volumes of historical traces and support efficient retrieval
of past network snapshots

- Need to support different frameworks for inferring the trace itself from
snapshots

Lack of established query languages
- Develop new languages !!

> ... or preferably reuse an old one



What we are doing

® Goal: build a data management system and frameworks that can manage large
dynamically-changing graphs and support a variety of analytics over them

Focus on the abstractions and the system, less on specific analysis techniques

® Work so far:

Declarative graph cleaning

e Proposed and built a declarative framework for specifying complex network
analysis and cleaning tasks [GDM’11]

Real-time continuous query processing

e Aggressive replication to manage very large dynamic graphs efficiently in a
distributed manner, and to execute continuous queries over them [SIGMOD’12]

Historical graph management

e Efficient single-point or multi-point snapshot retrieval over very large historical
graph traces [under submission]

Ego-centric pattern census [ICDE’12]



System Architecture

Standard API
used to write graph
algorithms/libraries
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® Overview

® Declarative Graph Cleaning
® Historical Graph Data Management
® Distributed Management of Dynamic Graphs

® Conclusions



® The observed information networks are often noisy and

incomplete
Missing attributes, missing links
Ambiguous references to the same entity

® Need to extract the underlying true information network through:
Attribute Prediction: to predict values of missing attributes
Link Prediction: to infer missing links
Entity Resolution: to decide if two references refer to the same entity

e Typically iterative and interleaved application of the techniques

® These prediction tasks can use:

Local node information
Relational information in the neighborhood of the node



Attribute Prediction

Task: Predict topic of the paper p8| [wc| -
Legend
A Statistical Model for Language Model Based
Multilingual Entity - Arabic Word
Detection and Tracking Segmentation.

Automatic Rule
Refinement for Why Not?
Information Extraction

—

Join Optimization of An Annotation Tracing Lineage Beyond
Information Extraction Management System for Relational Operators

Output: Quality Matters! Relational Databases




Attribute Prediction

Task: Predict topic of the paper p8| [wc| -
Legend
A Statistical Model for Language Model Based
Multilingual Entity - Arabic Word
Detection and Tracking Segmentation.

Automatic Rule
Refinement for Why Not?
Information Extraction

-—

o

Join Optimization of An Annotation Tracing Lineage Beyond
Information Extraction Management System for Relational Operators
Output: Quality Matters! Relational Databases

l
May generate a probability

distribution here instead



Collective (relational) Inference
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® Many collective techniques have been developed over the years

However, no support from data management systems to do this effectively

Hard for a network analyst to easily construct and compare new techniques

e Especially for joint inference, i.e., interleaved and pipelined application

No re-usability, and much repetition of work



® Motivation: To support declarative network inference

® Desiderata:

Declarative specification of the prediction features
e Local features
e Relational features

(Almost-)declarative specification of tasks
e Attribute prediction, Link prediction, Entity resolution

Support for arbitrary interleaving or pipelining
Support for complex prediction functions

L Handle all that efficiently J




Proposed Framework

—_— [Specify the domain ](—

[ Compute features ]

v

[Make Predictions, and Compute ]

Confidence in the Predictions

v

Choose Which Predictions to
Apply




Proposed Framework

For attribute prediction,
the domain is a subset of

the graph nodes.
—_— Specify the domain I(—
[ PecRy For link prediction and
‘1’ entity resolution, the
domain is a subset of
[ Compute features ] pairs of nodes.
Make Predictions, and Compute Local: word frequency,
Confidence in the Predictions income, etc.
‘L Relational: degree,
clustering coeff., no. of
Choose Which Predictions to neighbors with each
Apply attribute value, common
neighbors between pairs
| of nodes, efc.




Proposed Framework

Attribute prediction: the
missing attribute

—_ [Specify the Domain ]<_ Link prediction: add link

or not?
‘1' Entity resolution: merge
[ Compute features ] two nodes or not?

v

[Make Predictions, and Compute ]

Confidence in the Predictions After predictions are made,

¢ the graph changes:
Attribute prediction

Choose Which Predictions to changes local attributes.
Apply Link prediction changes the

graph links.
| Entity resolution changes

both local attributes and
graph links.




Some Details

® Use Datalog to express:
Domains

Local and relational features
® Extend Datalog with operational semantics (vs. fix-point
semantics) to express:

Predictions (in the form of updates)
lteration



Specifying Features

Degree:
Degree(X, COUNT<Y>) :-Edge(X, Y)

Number of Neighbors with attribute ‘A’
NumNeighbors(X, COUNT<Y>) :- Edge(X, Y), Node(Y, Att="A)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) :— Edge(X,Y), Edge(X,Z), Edge(Y,Z)
ClusteringCoeff(X, C) :— NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1))

Jaccard Coefficient

IntersectionCount(X, Y, COUNT<Z>) :- Edge(X, Z), Edge(Y, Z)

UnionCount(X, Y, D) :— Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,
IntersectionCount(X, Y, D3)

Jaccard(X, Y, J) :— IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D




Specifying Domains

® Domains used to restrict the space of computation for
the prediction elements

® Space for this feature is |V|?
Similarity(X, Y, S) :-Node(X, Att=V1), Node(Y, Att=V1), S=f(V1, V2)

® Using this domain the space becomes |E|:
DOMAIN D(X,Y) :- Edge(X, Y)

® Other DOMAIN predicates:
Equality on attribute values
Locality sensitive hashing
String similarity joins
Traverse edges



Prediction and Confidence Functions

® The prediction and confidence functions are user
defined functions

® Can be based on logistic regression, Bayes classifier, or
any other classification algorithm

® The confidence is the class membership value
In logistic regression, the confidence can be the value of the

logistic function
In Bayes classifier, the confidence can be the posterior

probability value



Update Operation

- Action to be taken itself specified declaratively
Enables specifying, e.g., different ways to merge in case of entity

resolution

DEFINE Merge(X, Y)
{
INSERT Edge(X, Z) :- Edge(Y, 2)
DELETE Edgel(Y, 2)
UPDATE Node(X, A=ANew) :- Node(X,A=AX), Node(Y,A=AY),
ANew=(AX+AY)/2
UPDATE Node(X, B=BNew) :- Node(X,B=BX), Node(X,B=BX),
BNew=max(BX,BY)
DELETE Node(Y)
}
Merge(X, Y) :- Features (X, Y, F1,...,Fn), predict-ER(F1,...,Fn) = true,
confidence-ER(F1,...,Fn) > 0.95



Pipelining

DOMAIN ER(X,Y) :- .... DOMAIN LP(X,Y) :-....

{ {
ER1(X,Y,F1) :- ... LP1(X,Y,F1) :- ...
ER2(X,Y,F1) :- ... LP2(X,Y,F1) :- ...
Features-ER(X,Y,F1,F2) :- ... Features-LP(X,Y,F1,F2) :- ...

} }

ITERATE(*)

{
INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2)
IN TOP 10%

Y

ITERATE(*)

{

MERGE(X)Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
IN TOP 10%



Interleaving

DOMAIN ER(X,Y) :-.... DOMAIN LP(X,Y) :-....

{ {
ER1(X,Y,F1) :- ... LP1(X,Y,F1) :- ...
ER2(X,Y,F1) :- ... LP2(X,Y,F1) :- ...
Features-ER(X,Y,F1,F2) :- ... Features-LP(X,Y,F1,F2) :- ...

} }

ITERATE(*)

{

INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2
IN TOP 10%

MERGE(X)Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
IN TOP 10%



Real-world Experiment

® Real-world PubMed graph
Set of publications from the medical domain, their abstracts, and citations

® 50,634 publications, 115,323 citation edges

® Task: Attribute prediction
Predict if the paper is categorized as Cognition, Learning, Perception or Thinking

® Choose top 10% predictions after each iteration, for 10 iterations
® Incremental: 28 minutes. Recompute: 42 minutes

DOMAIN Uncommitted(X):-Node(X,Committed='no’)

{
ThinkingNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label="Thinking’)
PerceptionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Perception’)
CognitionNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label="Cognition’)
LearningNeighbors(X,Count<Y>):- Edge(X,Y), Node(Y,Label=‘Learning’)
Features-AP(X,A,B,C,D,Abstract):- ThinkingNeighbors(X,A), PerceptionNeighbors(X,B),

CognitionNeighbors(X,C), LearningNeighbors(X,D),Node(X,Abstract, , )

}

ITERATE(10)

{
UPDATE Node(X,_,P,‘yes’):- Features-AP(X,A,B,C,D,Text), P = predict-AP(X,A,B,C,D,Text),

confidence-AP(X,A,B,C,D,Text) IN TOP 10%



Prototype Implementation

® Using a simple RDBMS built on top of Java Berkeley DB
Predicates in the program correspond to materialized tables
Datalog rules converted into SQL

® Incremental maintenance:
Every set of changes done by AP, LP, or ER logged into two change tables
ANodes and AEdges
Aggregate maintenance is performed by aggregating the change table then
refreshing the old table

® Proved hard to scale
Incremental evaluation much faster than recompute, but SQL-based
evaluation was inherently a bottleneck
Hard to do complex features like centrality measures
In the process of changing the backend



Related Work

® Dedupalog [Arasu et al., ICDE 2009]: Datalog-based entity resolution
User defines hard and soft rules for deduplication
System satisfies hard rules and minimizes violations to soft rules when

deduplicating references

® Swoosh [Benjelloun et al., VLDBJ 2008]:
Generic Entity resolution
e Match function for pairs of nodes (based on a set of features)

e Merge function determines which pairs should be merged

® Dyna: Extending Datalog for Modern Al [Eisner and Filardo, 2011]
High-level programming language for specifying NLP tasks
Many similarities to Datalog



® Overview

® Declarative Graph Cleaning
® Historical Graph Data Management
® Distributed Management of Dynamic Graphs

® Conclusions



Historical Graph Data Management

® Increasing interest in temporal analysis of information networks to:
Understand evolutionary trends (e.g., how communities evolve)
Perform comparative analysis and identify major changes
Develop models of evolution or information diffusion

Visualizations over time

= A
P

® Focused exploration and querying

For better predictions in the future

|
T >
t

“Who had the highest PageRank in a citation network in 1960?”
“Identify nodes most similar to X as of one year ago”

“Identify the days when the network diameter (over some transient edges
like messages) is smallest”

“Find a temporal subgraph pattern in a graph”



Snapshot Retrieval Queries

® Focus of the work so far: snapshot retrieval queries

Given one timepoint or a set of timepoints in the past, retrieve the
corresponding snapshots of the network in memory

Queries may specify only a subset of the columns to be fetched

Some more complex types of queries can be specified

® Given the ad hoc nature of much of the analysis, one of the most
important query types

e Key challenges:
Needs to be very fast to support interactive analysis
Should support analyzing 100’s or more snapshots simultaneously

Support for distributed retrieval and distributed analysis (e.g., using Pregel)



Prior Work

® Temporal relational databases

Vast body of work on models, query languages, and systems
Distinction between transaction-time and valid-time temporal databases

Snapshot retrieval queries also called valid timeslice queries

® Options for executing snapshot queries

External Interval Trees [Arge and Vitter, 1996]
e Optimal storage, optimal (logarithmic) updates for managing interval data
e Retrieval in the size of the retrieved graph

External Segment Trees [Blakenagal and Guting, 1994]
e Optimal retrieval, but higher storage requirements

Snapshot index [Slazberg and Tsotras, 1999]
e Optimal for transaction-time databases

Copy + Log

e Maintain some snapshots explicitly, and keep chains of events between them



Prior Work: Limitations

No flexibility or tunability

Would like to control the distribution of snapshot retrieval times, at run time
No support for multi-point queries
Not easy to support parallel retrieval/processing
No support for retrieving portions of the network

Would like to support different storage backends

Most prior techniques primarily optimized for disks



System Architecture
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System Architecture

Analysts, Applications

Continuous

Query
Processor

One-time
Query
Processor

Blueprints API

Currently supports a programmatic API to

access the historical graphs

/* Loading the index */
GraphManager gm = new GraphManager(.. .);
gm.loadDeltaGraphlndex(...);

/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);

/* Traversing the graph*/

G rap h POOI List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
Current gra ph - HistEdge ed = hl.getEdgeObj(nodes.get(0), neighborList.get(0));
Vi ews, /* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
: ; 2, 1987 */
Historical listOfDates.add(““1/2/1986”);
snapshots listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “);
DeltaGraph

Persistent, Historical
Graph Storage




DeltaGraph

Hierarchical index structure with (logical) snapshots at the leaves
Only the edge deltas stored explicitly

Key parameter: differential function (f, f1, f2)

Can have multiple hierarchies within the same structure

Super-Root ( Sg=2 Super-Root
A(S7,Sg)
Root @ Root, @ Root, &
A(SS,M,%)

(&S () DOPDEDID
A(S1,Sg) A(S5.Sg) A(S3,Sg) A(S4,Sg)




DeltaGraph Storage

® Deltas stored in a key-value store
Currently using disk-based Kyoto Cabinet

® Each edge delta split into multiple smaller deltas
Vertically by columns: To retrieve only some attributes
Horizontally by nodes: To facilitate distributed processing, and to speed up
construction

® The skeleton maintained in memory
Expected to be small — the deltas are usually large to take advantage of
compression and to reduce the number of I/Os

® Memory materialization

Basic idea: Explicitly materialize a snapshot in memory
e “Current graph” treated as materialized (assuming an online system)

In the DeltaGraph, add an edge with cost O from the root
Enables much flexibility in reducing the snapshot retrieval costs



Snapshot Queries

® Single point: Lowest weight Path from Root
Edge is associated with several different weights for different attributes

® Multi-point: Lowest weight Steiner Tree from Root
Use the standard 2-approximation for this purpose

e Similar techniques for other types of more complex queries
involving time-expressions




Differential Functions

® Choice of differential function greatly influences the properties
® Many functions of interest

Intersection f(a,b,c...) =aNbMc...

Union f(a,b,c...)=aUbUc...

Skewed f(a,b)=a+r(b-a),0=<r=<1

Right Skewed f(a,b)=aNb+r(b-anb),0<sr<1

Left Skewed f(a,b)=anNb+r(a-aNnNb),0<r=<1

Mixed f(a1,b,c...) =a+r,.(0,, + O ---) — Mo(Pap TPpe---),0=r, <,
<

Balanced f(a,b,c...)=a + 0.5(5,, + O, -..) =0.5(p,, *Ppc ---)

Empty f(a,b,c...) =2



Analysis

® Model of graph dynamics
G- Graph after [E[ events
Assume a constant rate of inserts and deletes
e Not equivalent to assuming constant rate of change/time

® Summary of results

Balanced function balances the retrieval times at the expense of higher
storage requirements
Space requirements

e Interval trees: O(|E|)
e Segment trees: O(|E| log|E]|)
e DeltaGraph: Somewhere between O(|E|) and O(|E| log N)

e Depending on the differential function, arity, and graph dynamics
e N = Number of leaves



Some More Details

® DeltaGraph Construction
Bottom-up: Similar to the construction of a bulkloaded B+-tree
Construction parameters:
o Evetlist size: L, Arity: k
e Differential Function: f()
e Partitioning of the nodes
Construction algorithm memory intensive
e Need to do in a partitioned fashion to handle large graphs
e Details in the paper

® Choosing what to materialize
Current approach is to materialize one or two of the top levels
Investigating approaches based on facility location



GraphPool

® Goal: Store many graphs in memory in an overlaid fashion
To minimize memory consumption
To reduce retrieval cost by using bitmaps to encode differences




Empirical Results

® DeltaGraph vs In-Memory Interval Tree

@« I Interval Tree
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(a) Performance: Dataset 2a (b) Memory: Dataset 2a

Dataset 2a: 500,000 nodes+edges, 500,000 events



Empirical Results

e Effect of Materialization

N
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Empirical Results

e Differential Functions, Attributes
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(a) Int vs Bal (Dataset 1a) (b) Different mixed functions (Dataset 2¢) (¢) Retrieval with and without attributes (Dataset 2¢)
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Motivation

® Graph partitioning hard to do effectively

Random partitioning typically results in large edge cuts

> Distributed traversals to answer queries leading to high latencies
Sophisticated partitioning techniques often do not work either

e Clean, disjoint partitionings often do not exist

e Hard to scale (although some recent work)

e Not appropriate for highly dynamic environments

e We employ an aggressive replication approach to reduce latencies
How to choose what to replicate? — A new “fairness” criterion

Eager or Lazy replication? — Fine-grained access pattern monitoring



® Pujol et al. [SIGCOMM’11]

Local semantics: For every node, every neighbor is replicated
locally (if not already present)

High replication overhead

Similar approach proposed by Huang et al. [VLDB’11]

® Adaptive replication [Wolfson et al., TODS'97]

Monitor access frequencies
Focused on tree communication networks

® Feed delivery [Silberstein et al., SIGMOD’10]

Similar problem in a publish-subscribe setting
No reciprocal relationship between publishers and subscribers



Our Approach

® Keyideal

Use a “fairness” criterion to decide what to replicate
e For every node, at least t fraction of nodes should be present locally

Can make some progress for all queries
Guaranteeing fairness NP-Hard

Local Semantics

=~
T

Fair with t = 2/3




Our Approach

® Keyidea 2

Exploit patterns in the read/write access frequencies

Total writes(24 hrs) : 24 Total reads(24 hrs) : 23
Writes at 6-hr granularity: Reads at 6-hr granularity:
{10,10,2,2} {2,2,9,10}

C PL 1 P2 @
w : o>

|
Use pull replication in the first 12 hours, push in the next 12

Significant benefits from adaptively changing the replication

decision
Such patterns observed in human-centric networks like social

networks



Our Approach

® Keyidea 3

Make replication decisions for all nodes in a pair of partitions together

e Prior work had suggested doing this for each (writer, reader) pair separately
e Works in the publish-subscribe domain, but not here

Can be reduced to maximum density sub-hypergraph problem

Pairwise decisions Optimal

No point in pushing w4 — r4 will have to pull from the partition anyway



Some more details

® Hash partitioning
The basic partitioning is done using standard hash-based techniques

Better load balancing, and much simpler routing logic

® Clustering
Infeasible to make replication decisions on a per node basis
Instead cluster nodes based on the read/write frequencies
Significantly reduces the metadata needed to implement replication
decisions

® Decentralized algorithms
Decisions made/re-evaluated independently at each partition

® Implementation

Use CouchDB key-value store for storing the data
Leverage upon the replication support built-in



Empirical Results

% Network activity across partitions
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Fine-grained, adaptive decisions can result in substantial savings
in number of messages



Average number of network messages (per site)

Empirical Results

Impact of fairness-factor on the average \n number of messages Impact of fairness-factor on latency
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Fairness factor can be used to effectively trade-off latencies and replication cost
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Conclusions and Ongoing Work

® Graph data management becoming increasingly important
® Many challenges in dealing with the scale, the noise, and the
variety of analytical tasks
® Presented:
A declarative framework for cleaning noisy graphs
A system for managing historical data and snapshot retrieval
Techniques for managing and querying highly dynamic graphs

® Ongoing work on improving and extending this preliminary work
Developing temporal query languages for graph querying
Replication and pre-computation for continuous queries
Efficiently supporting distributed graph analytics



Thank you !!



