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l  Everywhere	  and	  growing	  in	  numbers…	  
l  Social	  networks,	  social	  contact	  graphs	  

l  Email	  networks,	  financial	  transac-on	  networks	  

l  Biological	  networks,	  disease	  transmission	  networks	  

l  Cita-on	  networks,	  IP	  traffic	  data,	  Web	  

l  …	  

l  Intense	  amount	  of	  work	  already	  on:	  
l  …	  understanding	  proper-es	  of	  these	  networks	  	  

l  …	  visualiza-ons	  

l  …	  developing	  models	  of	  evolu-on	  

l  …	  cleaning	  inherently	  noisy	  observa-onal	  data	  

l  …	  compara-ve	  analy-cs	  

l  and	  so	  on…	  

Mo-va-on:	  Informa-on	  Networks	  	  
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l  Lack	  of	  established	  data	  management	  tools	  
l  Much	  of	  the	  analysis	  exploratory,	  domain	  specific,	  and	  hard	  to	  abstract	  

l  Some	  of	  the	  key	  data	  management	  challenges	  
l  Inherent	  noise	  and	  uncertainty	  in	  the	  raw	  observa-on	  data	  

à  Support	  for	  graph	  cleaning	  must	  be	  -ghtly	  integrated	  into	  the	  system	  

•  Graph	  cleaning	  techniques	  oNen	  domain	  specific	  

à  Uncertainty-‐aware	  query	  evalua-on	  algorithms	  needed	  that	  can	  handle	  new	  
types	  of	  iden>ty	  uncertain-es	  

l  Very	  large	  volumes	  of	  heterogeneous	  data	  
à  Distributed/parallel	  storage	  and	  query	  processing	  needed	  

•  Graph	  par--oning	  notoriously	  hard	  to	  do	  effec-vely	  

l  Highly	  dynamic	  and	  rapidly	  changing	  data	  as	  well	  as	  workloads	  
à  Need	  to	  support	  real-‐-me	  processing	  through	  aggressive	  replica-on	  and	  pre-‐
computa-on	  

Mo-va-on:	  Informa-on	  Networks	  	  



l  Lack	  of	  established	  data	  management	  tools	  
l  Much	  of	  the	  analysis	  exploratory,	  domain	  specific,	  and	  hard	  to	  abstract	  

l  Some	  of	  the	  key	  data	  management	  challenges	  
l  Managing	  historical	  informa-on	  

à  Need	  to	  support	  complex	  temporal	  analysis	  

à  Must	  manage	  large	  volumes	  of	  historical	  traces	  and	  support	  efficient	  retrieval	  
of	  past	  network	  snapshots	  

à  Need	  to	  support	  different	  frameworks	  for	  inferring	  the	  trace	  itself	  from	  
snapshots	  

l  Lack	  of	  established	  query	  languages	  
à  Develop	  new	  languages	  !!	  

à  …	  or	  preferably	  reuse	  an	  old	  one	  	  

Mo-va-on:	  Informa-on	  Networks	  	  



l  Goal:	  build	  a	  data	  management	  system	  and	  frameworks	  that	  can	  manage	  large	  
dynamically-‐changing	  graphs	  and	  support	  a	  variety	  of	  analy-cs	  over	  them	  
l  Focus	  on	  the	  abstrac-ons	  and	  the	  system,	  less	  on	  specific	  analysis	  techniques	  

l  Work	  so	  far:	  

l  Declara-ve	  graph	  cleaning	  
l  Proposed	  and	  built	  a	  declara-ve	  framework	  for	  specifying	  complex	  network	  
analysis	  and	  cleaning	  tasks	  [GDM’11]	  

l  Real-‐-me	  con-nuous	  query	  processing	  
l  Aggressive	  replica-on	  to	  manage	  very	  large	  dynamic	  graphs	  efficiently	  in	  a	  
distributed	  manner,	  and	  to	  execute	  con-nuous	  queries	  over	  them	  [SIGMOD’12]	  	  

l  Historical	  graph	  management	  
l  Efficient	  single-‐point	  or	  mul--‐point	  snapshot	  retrieval	  over	  very	  large	  historical	  
graph	  traces	  [under	  submission]	  

l  Ego-‐centric	  pa^ern	  census	  [ICDE’12]	  

What	  we	  are	  doing 	  	  



System	  Architecture	  

Con-nuous	  
Query	  

Processor	  

One-‐-me	  
Query	  

Processor	  

Blueprints	  API	   Historical	  
Query	  

Processor	  

Replica-on	  
Manager	   Co

m
m
un

ic
a-

on
s	  M

od
ul
e	  

GraphPool	  
Current	  graph;	  
Views;	  
Historical	  
snapshots	  

DeltaGraph	  
Persistent,	  Historical	  	  

Graph	  Storage	  

Replica>on	  	  
Maintenance	  

Forwarded	  
Queries	  

Graph	  
Updates	  

A disk-based or 
cloud-based  
key-value store 

Standard API  
used to write graph  
algorithms/libraries 

Many graphs maintained  
in an overlaid, memory-efficient 
manner 



l Overview	  

l Declara-ve	  Graph	  Cleaning	  

l Historical	  Graph	  Data	  Management	  

l Distributed	  Management	  of	  Dynamic	  Graphs	  

l Conclusions	  

Outline 	  	  



Mo-va-on	  
l  The	  observed	  informa>on	  networks	  are	  oNen	  noisy	  and	  

incomplete	  
l  Missing	  a^ributes,	  missing	  links	  
l  Ambiguous	  references	  to	  the	  same	  en-ty	  

l  Need	  to	  extract	  the	  underlying	  true	  informa>on	  network	  through:	  
l  A^ribute	  Predic-on:	  to	  predict	  values	  of	  missing	  aIributes	  
l  Link	  Predic-on:	  to	  infer	  missing	  links	  
l  En-ty	  Resolu-on:	  to	  decide	  if	  two	  references	  refer	  to	  the	  same	  en>ty	  

l  Typically	  itera-ve	  and	  interleaved	  applica-on	  of	  the	  techniques	  

l  These	  predic-on	  tasks	  can	  use:	  
l  Local	  node	  informa-on	  
l  Rela>onal	  informa-on	  in	  the	  neighborhood	  of	  the	  node	  
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Collec-ve	  (rela-onal)	  Inference	  

l  Many	  collec-ve	  techniques	  have	  been	  developed	  over	  the	  years	  
l  However,	  no	  support	  from	  data	  management	  systems	  to	  do	  this	  effec-vely	  
l  Hard	  for	  a	  network	  analyst	  to	  easily	  construct	  and	  compare	  new	  techniques	  

l  Especially	  for	  joint	  inference,	  i.e.,	  interleaved	  and	  pipelined	  applica-on	  
l  No	  re-‐usability,	  and	  much	  repe--on	  of	  work	  
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Our	  Goal	  
l  Mo-va-on:	  To	  support	  declara-ve	  network	  inference	  

l  Desiderata:	  
l  Declara-ve	  specifica-on	  of	  the	  predic-on	  features	  	  

l  Local	  features	  
l  Rela-onal	  features	  

l  (Almost-‐)declara-ve	  specifica-on	  of	  tasks	  
l  A^ribute	  predic-on,	  Link	  predic-on,	  En-ty	  resolu-on	  

l  Support	  for	  arbitrary	  interleaving	  or	  pipelining	  
l  Support	  for	  complex	  predic-on	  func-ons	  

Handle all that efficiently 
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Proposed	  Framework	  

Specify the domain 
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Apply 

For attribute prediction, 
the domain is a subset of 
the graph nodes. 
 
For link prediction and 
entity resolution, the 
domain is a subset of 
pairs of nodes. 
 

Local: word frequency, 
income, etc. 
Relational: degree, 
clustering coeff., no. of 
neighbors with each 
attribute value, common 
neighbors between pairs 
of nodes, etc.  



Proposed	  Framework	  

Specify the Domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 

Attribute prediction: the 
missing attribute 
 
Link prediction: add link 
or not? 
 
Entity resolution: merge 
two nodes or not? 

After predictions are made, 
the graph changes: 
Attribute prediction 
changes local attributes. 
Link prediction changes the 
graph links. 
Entity resolution changes 
both local attributes and 
graph links. 



Some	  Details	  
l  Use	  Datalog	  to	  express:	  

l  Domains	  
l  Local	  and	  rela-onal	  features	  

l  Extend	  Datalog	  with	  opera-onal	  seman-cs	  (vs.	  fix-‐point	  
seman-cs)	  to	  express:	  
l  Predic-ons	  (in	  the	  form	  of	  updates)	  
l  Itera-on	  



Specifying	  Features	  

Degree: 
Degree(X, COUNT<Y>) :-Edge(X, Y) 
 
Number of Neighbors with attribute ‘A’ 
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’) 
 
Clustering Coefficient 
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z) 
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1)) 

Jaccard Coefficient 
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z) 
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,   
                                      IntersectionCount(X, Y, D3)  
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D 
 



Specifying	  Domains	  
l  Domains	  used	  to	  restrict	  the	  space	  of	  computa-on	  for	  
the	  predic-on	  elements	  

l  Space	  for	  this	  feature	  is	  |V|2	  
	  Similarity(X,	  Y,	  S)	  :−Node(X,	  A^=V1),	  Node(Y,	  A^=V1),	  S=f(V1,	  V2)	  

	  	  

l  Using	  this	  domain	  the	  space	  becomes	  |E|:	  
	  DOMAIN	  D(X,Y)	  :-‐	  Edge(X,	  Y)	  

l  Other	  DOMAIN	  predicates:	  
l  Equality	  on	  a^ribute	  values	  
l  Locality	  sensi-ve	  hashing	  
l  String	  similarity	  joins	  
l  Traverse	  edges	  



Predic-on	  and	  Confidence	  Func-ons	  
l  The	  predic-on	  and	  confidence	  func-ons	  are	  user	  
defined	  func-ons	  

l  Can	  be	  based	  on	  logis>c	  regression,	  Bayes	  classifier,	  or	  
any	  other	  classifica-on	  algorithm	  

l  The	  confidence	  is	  the	  class	  membership	  value	  	  
l  In	  logis-c	  regression,	  the	  confidence	  can	  be	  the	  value	  of	  the	  
logis-c	  func-on	  

l  In	  Bayes	  classifier,	  the	  confidence	  can	  be	  the	  posterior	  
probability	  value	  



Update	  Opera-on	  
•  Ac-on	  to	  be	  taken	  itself	  specified	  declara-vely	  
•  Enables	  specifying,	  e.g.,	  different	  ways	  to	  merge	  in	  case	  of	  en-ty	  

resolu-on	  
	  

DEFINE	  Merge(X,	  Y)	  
{	  

	  INSERT	  Edge(X,	  Z)	  :-‐	  Edge(Y,	  Z)	  
	  DELETE	  Edge(Y,	  Z)	  
	  UPDATE	  Node(X,	  A=ANew)	  :-‐	  Node(X,A=AX),	  Node(Y,A=AY),	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ANew=(AX+AY)/2	  
	  UPDATE	  Node(X,	  B=BNew)	  :-‐	  Node(X,B=BX),	  Node(X,B=BX),	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BNew=max(BX,BY)	  
	  DELETE	  Node(Y)	  

}	  
Merge(X,	  Y)	  :-‐	  Features	  (X,	  Y,	  F1,…,Fn),	  predict-‐ER(F1,…,Fn)	  =	  true,	  	  

	   	   	   	   	   	   	  confidence-‐ER(F1,…,Fn)	  >	  0.95	  



Pipelining	  

DOMAIN ER(X,Y) :- …. 
{ 
     ER1(X,Y,F1) :- … 
     ER2(X,Y,F1) :- … 
     Features-ER(X,Y,F1,F2) :- … 
} 

DOMAIN LP(X,Y) :- …. 
{ 
     LP1(X,Y,F1) :- … 
     LP2(X,Y,F1) :- … 
     Features-LP(X,Y,F1,F2) :- … 
} 
 

ITERATE(*) 
{ 
     INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2) 
     IN TOP 10% 
} 
ITERATE(*) 
{ 
     MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2) 
     IN TOP 10% 
} 



Interleaving	  

DOMAIN ER(X,Y) :- …. 
{ 
     ER1(X,Y,F1) :- … 
     ER2(X,Y,F1) :- … 
     Features-ER(X,Y,F1,F2) :- … 
} 

DOMAIN LP(X,Y) :- …. 
{ 
     LP1(X,Y,F1) :- … 
     LP2(X,Y,F1) :- … 
     Features-LP(X,Y,F1,F2) :- … 
} 
 

ITERATE(*) 
{ 
     INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2 
     IN TOP 10% 
      
     MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2) 
     IN TOP 10% 
} 
 
 
 



Real-‐world	  Experiment	  
l  Real-‐world	  PubMed	  graph	  

l  Set	  of	  publica-ons	  from	  the	  medical	  domain,	  their	  abstracts,	  and	  cita-ons	  
l  50,634	  publica-ons,	  115,323	  cita-on	  edges	  
l  Task:	  A^ribute	  predic-on	  

l  Predict	  if	  the	  paper	  is	  categorized	  as	  Cogni-on,	  Learning,	  Percep-on	  or	  Thinking	  
l  Choose	  top	  10%	  predic-ons	  aNer	  each	  itera-on,	  for	  10	  itera-ons	  
l  Incremental:	  28	  minutes.	  Recompute:	  42	  minutes	  
	   DOMAIN	  Uncommi^ed(X):-‐Node(X,Commi^ed=‘no’)	  

{	  
	  	  	  ThinkingNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Thinking’)	  
	  	  	  Percep-onNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Percep-on’)	  
	  	  	  Cogni-onNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Cogni-on’)	  
	  	  	  LearningNeighbors(X,Count<Y>):-‐	  Edge(X,Y),	  Node(Y,Label=‘Learning’)	  
	  	  	  Features-‐AP(X,A,B,C,D,Abstract):-‐	  ThinkingNeighbors(X,A),	  Percep-onNeighbors(X,B),	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Cogni-onNeighbors(X,C),	  LearningNeighbors(X,D),Node(X,Abstract,	  _,_)	  
}	  
ITERATE(10)	  	  
{	  
	  	  	  UPDATE	  Node(X,_,P,‘yes’):-‐	  Features-‐AP(X,A,B,C,D,Text),	  P	  =	  predict-‐AP(X,A,B,C,D,Text),	  

	   	   	  	  	  	  	  	  	  	  confidence-‐AP(X,A,B,C,D,Text)	  IN	  TOP	  10%	  
}	  



l  Using	  a	  simple	  RDBMS	  built	  on	  top	  of	  Java	  Berkeley	  DB	  
l  Predicates	  in	  the	  program	  correspond	  to	  materialized	  tables	  
l  Datalog	  rules	  converted	  into	  SQL	  

l  Incremental	  maintenance:	  
l  Every	  set	  of	  changes	  done	  by	  AP,	  LP,	  or	  ER	  logged	  into	  two	  change	  tables	  

ΔNodes	  and	  ΔEdges	  
l  Aggregate	  maintenance	  is	  performed	  by	  aggrega-ng	  the	  change	  table	  then	  

refreshing	  the	  old	  table	  

l  Proved	  hard	  to	  scale	  
l  Incremental	  evalua-on	  much	  faster	  than	  recompute,	  but	  SQL-‐based	  

evalua-on	  was	  inherently	  a	  bo^leneck	  
l  Hard	  to	  do	  complex	  features	  like	  centrality	  measures	  
l  In	  the	  process	  of	  changing	  the	  backend	  

Prototype	  Implementa-on	  



Related	  Work	  
l  Dedupalog	  [Arasu	  et	  al.,	  ICDE	  2009]:	  Datalog-‐based	  en-ty	  resolu-on	  

l  User	  defines	  hard	  and	  soN	  rules	  for	  deduplica-on	  
l  System	  sa-sfies	  hard	  rules	  and	  minimizes	  viola-ons	  to	  soN	  rules	  when	  

deduplica-ng	  references	  

l  Swoosh	  [Benjelloun	  et	  al.,	  VLDBJ	  2008]:	  
l  Generic	  En-ty	  resolu-on	  

l  Match	  func-on	  for	  pairs	  of	  nodes	  (based	  on	  a	  set	  of	  features)	  
l  Merge	  func-on	  determines	  which	  pairs	  should	  be	  merged	  

l  Dyna:	  Extending	  Datalog	  for	  Modern	  AI	  [Eisner	  and	  Filardo,	  2011]	  
l  High-‐level	  programming	  language	  for	  specifying	  NLP	  tasks	  
l  Many	  similari-es	  to	  Datalog	  



l Overview	  

l Declara-ve	  Graph	  Cleaning	  

l Historical	  Graph	  Data	  Management	  

l Distributed	  Management	  of	  Dynamic	  Graphs	  

l Conclusions	  

Outline 	  	  



l  Increasing	  interest	  in	  temporal	  analysis	  of	  informa-on	  networks	  to:	  
l  Understand	  evolu-onary	  trends	  (e.g.,	  how	  communi-es	  evolve)	  	  

l  Perform	  compara-ve	  analysis	  and	  iden-fy	  major	  changes	  

l  Develop	  models	  of	  evolu-on	  or	  informa-on	  diffusion	  

l  Visualiza-ons	  over	  -me	  
l  For	  be^er	  predic-ons	  in	  the	  future	  

l  Focused	  explora-on	  and	  querying	  
l  “Who	  had	  the	  highest	  PageRank	  in	  a	  cita>on	  network	  in	  1960?”	  

l  “Iden>fy	  nodes	  most	  similar	  to	  X	  as	  of	  one	  year	  ago”	  
l  “Iden>fy	  the	  days	  when	  the	  network	  diameter	  (over	  some	  transient	  edges	  

like	  messages)	  is	  smallest”	  
l  “Find	  a	  temporal	  subgraph	  paIern	  in	  a	  graph”	  

Historical	  Graph	  Data	  Management	  

ti tj tk



l  Focus	  of	  the	  work	  so	  far:	  snapshot	  retrieval	  queries	  
l  Given	  one	  >mepoint	  or	  a	  set	  of	  >mepoints	  in	  the	  past,	  retrieve	  the	  

corresponding	  snapshots	  of	  the	  network	  in	  memory	  

l  Queries	  may	  specify	  only	  a	  subset	  of	  the	  columns	  to	  be	  fetched	  

l  Some	  more	  complex	  types	  of	  queries	  can	  be	  specified	  

l  Given	  the	  ad	  hoc	  nature	  of	  much	  of	  the	  analysis,	  one	  of	  the	  most	  
important	  query	  types	  

l  Key	  challenges:	  
l  Needs	  to	  be	  very	  fast	  to	  support	  interac-ve	  analysis	  

l  Should	  support	  analyzing	  100’s	  or	  more	  snapshots	  simultaneously	  

l  Support	  for	  distributed	  retrieval	  and	  distributed	  analysis	  (e.g.,	  using	  Pregel)	  

Snapshot	  Retrieval	  Queries	  



l  Temporal	  rela-onal	  databases	  
l  Vast	  body	  of	  work	  on	  models,	  query	  languages,	  and	  systems	  

l  Dis-nc-on	  between	  transac>on-‐>me	  and	  valid-‐>me	  temporal	  databases	  

l  Snapshot	  retrieval	  queries	  also	  called	  valid	  >meslice	  queries	  

l  Op-ons	  for	  execu-ng	  snapshot	  queries	  
l  External	  Interval	  Trees	  [Arge	  and	  Vi^er,	  1996]	  

l  Op-mal	  storage,	  op-mal	  (logarithmic)	  updates	  for	  managing	  interval	  data	  

l  Retrieval	  in	  the	  size	  of	  the	  retrieved	  graph	  

l  External	  Segment	  Trees	  [Blakenagal	  and	  Gu-ng,	  1994]	  
l  Op-mal	  retrieval,	  but	  higher	  storage	  requirements	  

l  Snapshot	  index	  [Slazberg	  and	  Tsotras,	  1999]	  
l  Op-mal	  for	  transac>on-‐>me	  databases	  

l  Copy	  +	  Log	  
l  Maintain	  some	  snapshots	  explicitly,	  and	  keep	  chains	  of	  events	  between	  them	  	  

	  

Prior	  Work	  



l  No	  flexibility	  or	  tunability	  
l  Would	  like	  to	  control	  the	  distribu-on	  of	  snapshot	  retrieval	  -mes,	  at	  run	  -me	  

l  No	  support	  for	  mul--‐point	  queries	  

l  Not	  easy	  to	  support	  parallel	  retrieval/processing	  

l  No	  support	  for	  retrieving	  por-ons	  of	  the	  network	  

l  Would	  like	  to	  support	  different	  storage	  backends	  

l  Most	  prior	  techniques	  primarily	  op-mized	  for	  disks	  

Prior	  Work:	  Limita-ons	  
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Currently supports a programmatic API to 
access the historical graphs 
 

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan 2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Table 1: Options for node attribute retrieval. Similar options

exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview

Figure 2 shows a high level overview of our system and its key
components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth

in the number of neighbors since joining the network).
Next, we briefly discuss snapshot queries and the key compo-

nents of the system.

3.2.1 Snapshot Queries

We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-

sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ∧
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components

There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| ≈
|Gc ∪G1 ∪G2 · · · ∪Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki



l  Hierarchical	  index	  structure	  with	  (logical)	  snapshots	  at	  the	  leaves	  
l  Only	  the	  edge	  deltas	  stored	  explicitly	  
l  Key	  parameter:	  differen>al	  func>on	  (f,	  f1,	  f2)	  
l  Can	  have	  mul-ple	  hierarchies	  within	  the	  same	  structure	  
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l  Deltas	  stored	  in	  a	  key-‐value	  store	  
l  Currently	  using	  disk-‐based	  Kyoto	  Cabinet	  

l  Each	  edge	  delta	  split	  into	  mul-ple	  smaller	  deltas	  
l  Ver-cally	  by	  columns:	  To	  retrieve	  only	  some	  a^ributes	  
l  Horizontally	  by	  nodes:	  To	  facilitate	  distributed	  processing,	  and	  to	  speed	  up	  

construc-on	  
l  The	  skeleton	  maintained	  in	  memory	  

l  Expected	  to	  be	  small	  –	  the	  deltas	  are	  usually	  large	  to	  take	  advantage	  of	  
compression	  and	  to	  reduce	  the	  number	  of	  I/Os	  

l  Memory	  materializa-on	  
l  Basic	  idea:	  Explicitly	  materialize	  a	  snapshot	  in	  memory	  

l  “Current	  graph”	  treated	  as	  materialized	  (assuming	  an	  online	  system)	  
l  In	  the	  DeltaGraph,	  add	  an	  edge	  with	  cost	  0	  from	  the	  root	  
l  Enables	  much	  flexibility	  in	  reducing	  the	  snapshot	  retrieval	  costs	  

DeltaGraph	  Storage	  



Snapshot	  Queries	  
l  Single	  point:	  Lowest	  weight	  Path	  from	  Root	  

l  Edge	  is	  associated	  with	  several	  different	  weights	  for	  different	  a^ributes	  
l  Mul--‐point:	  Lowest	  weight	  Steiner	  Tree	  from	  Root	  

l  Use	  the	  standard	  2-‐approxima-on	  for	  this	  purpose	  
l  Similar	  techniques	  for	  other	  types	  of	  more	  complex	  queries	  

involving	  >me-‐expressions	  
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Name Description 

Intersection f(a,b,c...) = a∩b∩c… 

Union f(a,b,c...) = a∪b∪c... 

Skewed f (a, b) = a + r.(b − a), 0 ≤ r ≤ 1 

Right Skewed f (a, b) = a ∩ b + r.(b − a ∩ b), 0 ≤ r ≤ 1 

Left Skewed f (a, b) = a ∩ b + r.(a − a ∩ b), 0 ≤ r ≤ 1 

Mixed f(a,b,c...) = a + r1.(δab + δbc ...) − r2.(ρab +ρbc...),0≤r2 ≤r1 
≤ 1 

Balanced f(a,b,c...) = a + 0.5(δab + δbc ...) −0.5(ρab +ρbc ...) 

Empty f(a,b,c...) = ∅ 

Differen-al	  Func-ons	  
l  Choice	  of	  differen-al	  func-on	  greatly	  influences	  the	  proper-es	  
l  Many	  func-ons	  of	  interest	  



Analysis	  
l  Model	  of	  graph	  dynamics	  

l  G|E|:	  Graph	  aNer	  |E|	  events	  
l  Assume	  a	  constant	  rate	  of	  inserts	  and	  deletes	  

l  Not	  equivalent	  to	  assuming	  constant	  rate	  of	  change/-me	  

l  Summary	  of	  results	  
l  Balanced	  func-on	  balances	  the	  retrieval	  -mes	  at	  the	  expense	  of	  higher	  

storage	  requirements	  
l  Space	  requirements	  

l  Interval	  trees:	  O(|E|)	  
l  Segment	  trees:	  O(|E|	  log|E|)	  
l  DeltaGraph:	  Somewhere	  between	  O(|E|)	  and	  O(|E|	  log	  N)	  

l  Depending	  on	  the	  differen-al	  func-on,	  arity,	  and	  graph	  dynamics	  
l  N	  =	  Number	  of	  leaves	  



Some	  More	  Details	  
l  DeltaGraph	  Construc-on	  

l  Bo^om-‐up:	  Similar	  to	  the	  construc-on	  of	  a	  bulkloaded	  B+-‐tree	  
l  Construc-on	  parameters:	  	  

l  Evetlist	  size:	  L,	  Arity:	  k	  
l  Differen-al	  Func-on:	  f()	  
l  Par--oning	  of	  the	  nodes	  

l  Construc-on	  algorithm	  memory	  intensive	  
l  Need	  to	  do	  in	  a	  par--oned	  fashion	  to	  handle	  large	  graphs	  
l  Details	  in	  the	  paper	  

l  Choosing	  what	  to	  materialize	  
l  Current	  approach	  is	  to	  materialize	  one	  or	  two	  of	  the	  top	  levels	  
l  Inves-ga-ng	  approaches	  based	  on	  facility	  loca>on	  	  



GraphPool	  
l  Goal:	  Store	  many	  graphs	  in	  memory	  in	  an	  overlaid	  fashion	  

l  To	  minimize	  memory	  consump-on	  
l  To	  reduce	  retrieval	  cost	  by	  using	  bitmaps	  to	  encode	  differences	  

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}



Empirical	  Results	  
l  DeltaGraph	  vs	  In-‐Memory	  Interval	  Tree	  
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Empirical	  Results	  
l  Effect	  of	  Materializa-on	  
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Empirical	  Results	  
l  Differen-al	  Func-ons,	  A^ributes	  
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l Overview	  

l Declara-ve	  Graph	  Cleaning	  

l Historical	  Graph	  Data	  Management	  

l Distributed	  Management	  of	  Dynamic	  Graphs	  

l Conclusions	  

Outline 	  	  



System	  Architecture	  

Con-nuous	  
Query	  

Processor	  

One-‐-me	  
Query	  

Processor	  

Blueprints	  API	   Historical	  
Query	  

Processor	  

Replica-on	  
Manager	   Co

m
m
un

ic
a-

on
s	  M

od
ul
e	  

GraphPool	  
Current	  graph;	  
Views;	  
Historical	  
snapshots	  

DeltaGraph	  
Persistent,	  Historical	  	  

Graph	  Storage	  

Replica>on	  	  
Maintenance	  

Forwarded	  
Queries	  

Graph	  
Updates	  



l  Graph	  par--oning	  hard	  to	  do	  effec-vely	  
l  Random	  par--oning	  typically	  results	  in	  large	  edge	  cuts	  	  

à Distributed	  traversals	  to	  answer	  queries	  leading	  to	  high	  latencies	  
l  Sophis-cated	  par--oning	  techniques	  oNen	  do	  not	  work	  either	  

l  Clean,	  disjoint	  par--onings	  oNen	  do	  not	  exist	  
l  Hard	  to	  scale	  (although	  some	  recent	  work)	  

l  Not	  appropriate	  for	  highly	  dynamic	  environments	  

l  We	  employ	  an	  aggressive	  replica-on	  approach	  to	  reduce	  latencies	  
l  How	  to	  choose	  what	  to	  replicate?	  –	  A	  new	  “fairness”	  criterion	  
l  Eager	  or	  Lazy	  replica-on?	  –	  Fine-‐grained	  access	  pa^ern	  monitoring	  

Mo-va-on	  



Prior	  Work	  
l  Pujol	  et	  al.	  [SIGCOMM’11]	  

l  Local	  seman-cs:	  For	  every	  node,	  every	  neighbor	  is	  replicated	  
locally	  (if	  not	  already	  present)	  

l  High	  replica-on	  overhead	  
l  Similar	  approach	  proposed	  by	  Huang	  et	  al.	  [VLDB’11]	  

l  Adap-ve	  replica-on	  [Wolfson	  et	  al.,	  TODS’97]	  
l  Monitor	  access	  frequencies	  
l  Focused	  on	  tree	  communica-on	  networks	  

l  Feed	  delivery	  [Silberstein	  et	  al.,	  SIGMOD’10]	  
l  Similar	  problem	  in	  a	  publish-‐subscribe	  se�ng	  
l  No	  reciprocal	  rela-onship	  between	  publishers	  and	  subscribers	  



Our	  Approach	  
l  Key	  idea	  1	  	  

l  Use	  a	  “fairness”	  criterion	  to	  decide	  what	  to	  replicate	  
l  For	  every	  node,	  at	  least	  t	  frac-on	  of	  nodes	  should	  be	  present	  locally	  

l  Can	  make	  some	  progress	  for	  all	  queries	  
l  Guaranteeing	  fairness	  NP-‐Hard	  

	  

Local Semantics 

Fair with t = 2/3 
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Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2
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by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.



Our	  Approach	  
l  Key	  idea	  2	  	  

l  Exploit	  pa^erns	  in	  the	  read/write	  access	  frequencies	  

l  Use	  pull	  replica-on	  in	  the	  first	  12	  hours,	  push	  in	  the	  next	  12	  
l  Significant	  benefits	  from	  adap-vely	  changing	  the	  replica-on	  
decision	  

l  Such	  pa^erns	  observed	  in	  human-‐centric	  networks	  like	  social	  
networks	  

	  

We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair 〈Cij , Pj〉, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair 〈Cij , Pk〉
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different
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Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij ).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence



Our	  Approach	  
l  Key	  idea	  3	  	  

l  Make	  replica-on	  decisions	  for	  all	  nodes	  in	  a	  pair	  of	  par--ons	  together	  
l  Prior	  work	  had	  suggested	  doing	  this	  for	  each	  (writer,	  reader)	  pair	  separately	  
l  Works	  in	  the	  publish-‐subscribe	  domain,	  but	  not	  here	  

l  Can	  be	  reduced	  to	  maximum	  density	  sub-‐hypergraph	  problem	  
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Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway 

Pairwise decisions Optimal 



Some	  more	  details	  
l  Hash	  par--oning	  

l  The	  basic	  par--oning	  is	  done	  using	  standard	  hash-‐based	  techniques	  
l  Be^er	  load	  balancing,	  and	  much	  simpler	  rou-ng	  logic	  

l  Clustering	  
l  Infeasible	  to	  make	  replica-on	  decisions	  on	  a	  per	  node	  basis	  
l  Instead	  cluster	  nodes	  based	  on	  the	  read/write	  frequencies	  
l  Significantly	  reduces	  the	  metadata	  needed	  to	  implement	  replica-on	  

decisions	  
l  Decentralized	  algorithms 	  	  

l  Decisions	  made/re-‐evaluated	  independently	  at	  each	  par--on	  

l  Implementa-on	  
l  Use	  CouchDB	  key-‐value	  store	  for	  storing	  the	  data	  
l  Leverage	  upon	  the	  replica-on	  support	  built-‐in	  
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Figure 5: Making fine-grained decisions can result in almost
33% savings over coarse-grained decisions
as logged by our replication middleware. As we discussed earlier,
once a data item is replicated to a partition, it is cached and will not
be transferred again. Because of this, the amount of data transfer
across the servers is independent of the replication decisions that
are made (we can easily modify the cost functions in our algorithms
to account for this if desired). Hence for most of the results, we re-
port the total number of push and pull messages (i.e., we assume
H = L = 1).

For a push decision, we use continuous replication of CouchDB
and there is a message involved every time the corresponding graph
node is updated. However, the way we count the number of pull
messages is slightly different, and reflects the constraints imposed
by CouchDB and our setup. In fact, this results in a significant
underestimation in the number of pull messages as some of our
experiments also illustrate.

The way a pull works in our system is that, the replication man-
ager asks CouchDB to sync the appropriate replication table (see
Section 3.1). However since the replication tables correspond to
clusters, all updates to that cluster are pulled from the cluster’s
home partition. To amortize the cost of this, we enforce a minimum
gap between two pulls corresponding to the same cluster by using
a timeout. In other words, if a cluster has been recently pulled, we
do not pull it again until the timeout expires. In our experimental
evaluation, the timeout is set to 800ms, so the data can be at most
800ms stale (which is reasonable in a social network application).
We further discuss the rationale in Section 5.4.7.

5.4 Results

5.4.1 Impact of Histogram Granularity
We start with a set of experiments to verify our hypothesis that

by making decisions in a fine-grained manner can result in signifi-
cant savings. Figure 5 shows the results for this experiment. Here
we varied the histogram granularity from 1/2 hour to 12 hours, and
counted the total number of messages that were needed. The all-
pull and all-push approaches are unaffected by this, however, we
can see that by making decisions at the finest granularity, i.e., every
1/2 hour, resulted in almost 33% savings over coarse-grained de-
cisions. This validates our hypothesis that we can exploit the user
activity patterns to reduce the network communication costs.

We also note that overall our default workload is read-heavy, and
hence all-push solution is usually better than all-pull solution (al-
though it results in higher memory consumption). As we move
toward coarse-grained histograms, we observed that most of the
replication decisions became push. But our algorithm is able to ex-
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Figure 6: Hash partitioning results in almost uniform load
across the partitions
ploit the diversity in the access patterns when making decisions at
finer granularities to achieve significant savings.

5.4.2 Bandwidth Consumption and Network Load
Figure 6 shows the total network communication across the servers.

For each server, we aggregated the network communication result-
ing from writes happening to the corresponding partition, and the
reads directed to the partition. As we can see, all the approaches
resulted in fairly balanced load across the partitions, with hybrid
achieving almost 20% savings over all-push in all cases. This can
be attributed to the hash partitioning scheme that we use, which
guarantees that the overall read and write distributions across the
partitions are largely uniform.

5.4.3 Varying the Number of Clusters
Next we study the effect of k, the number of clusters in each

partition. We varied the number of clusters from 4 to 9, and we
show the results in Figure 7. Along with the network communica-
tion costs (plotted on the left y-axis), we also plot the size of the
cluster mapping table, the metadata that is needed to decide which
of a node’s neighbors are replicated (on the right y-axis). As we
can see, as the number of clusters increases the size of the cluster
mapping table increases as expected. What is somewhat counter-
intuitive is that the total communication cost also increases beyond
6. We expect that with large numbers of clusters, we can make
more fine-grained decisions which should aid in reducing the total
network communication cost.

The reason for this is somewhat subtle, and has to do with the
way pulls are handled in our system. Recall that a single pull ac-
tually syncs an entire cluster, i.e., it propagates all updates for a
single cluster from the home partition to the partition making the
pull. Thus increasing the cluster sizes results in an decrease in the
number of pulls that are required. We expect that if we were count-
ing the number of pulls explicitly, that would result in the behavior
as expected (however, in a read-heavy workload, that would imply
that the all-push solution would always be better by a margin).

5.4.4 Varying Write-Read Ratio
We examine how the replication techniques perform for work-

loads that have different mixes of reads and writes. We simply
varied the read/write ratio of the workload and calculated the av-
erage cost in terms of total number of communications, incurred
by the three approaches. For hybrid, we also plot the costs when
the fairness threshold τ is set to 0.5. Figure 9 shows the results of

Fine-grained, adaptive decisions can result in substantial savings  
in number of messages 
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Fairness factor can be used to effectively trade-off latencies and replication cost 
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Figure 7: Varying the number of clusters
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Figure 8: Impact of fairness factor on network communication

this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-
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Figure 9: Increasing the write:read ratio results in favoring
pulls over pushes

 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1
A

ve
ra

ge
 R

ea
d 

La
te

nc
y 

(m
s)

Fairness factor

Impact of fairness-factor on latency

All Push
Hybrid
All Pull

Hybrid Fair

Figure 10: Impact of the fairness factor on read query latencies

proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.
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this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-
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proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.
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Conclusions	  and	  Ongoing	  Work	  
l  Graph	  data	  management	  becoming	  increasingly	  important	  
l  Many	  challenges	  in	  dealing	  with	  the	  scale,	  the	  noise,	  and	  the	  

variety	  of	  analy-cal	  tasks	  
l  Presented:	  	  

l  A	  declara-ve	  framework	  for	  cleaning	  noisy	  graphs	  
l  A	  system	  for	  managing	  historical	  data	  and	  snapshot	  retrieval	  
l  Techniques	  for	  managing	  and	  querying	  highly	  dynamic	  graphs	  

l  Ongoing	  work	  on	  improving	  and	  extending	  this	  preliminary	  work	  
l  Developing	  temporal	  query	  languages	  for	  graph	  querying	  
l  Replica-on	  and	  pre-‐computa-on	  for	  con-nuous	  queries	  
l  Efficiently	  suppor-ng	  distributed	  graph	  analy-cs	  



Thank	  you	  !!	  


