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l  Everywhere	
  and	
  growing	
  in	
  numbers…	
  
l  Social	
  networks,	
  social	
  contact	
  graphs	
  

l  Email	
  networks,	
  financial	
  transac-on	
  networks	
  

l  Biological	
  networks,	
  disease	
  transmission	
  networks	
  

l  Cita-on	
  networks,	
  IP	
  traffic	
  data,	
  Web	
  

l  …	
  

l  Intense	
  amount	
  of	
  work	
  already	
  on:	
  
l  …	
  understanding	
  proper-es	
  of	
  these	
  networks	
  	
  

l  …	
  visualiza-ons	
  

l  …	
  developing	
  models	
  of	
  evolu-on	
  

l  …	
  cleaning	
  inherently	
  noisy	
  observa-onal	
  data	
  

l  …	
  compara-ve	
  analy-cs	
  

l  and	
  so	
  on…	
  

Mo-va-on:	
  Informa-on	
  Networks	
  	
  

A protein-protein interaction 
network 

Supreme court citation network 



l  Lack	
  of	
  established	
  data	
  management	
  tools	
  
l  Much	
  of	
  the	
  analysis	
  exploratory,	
  domain	
  specific,	
  and	
  hard	
  to	
  abstract	
  

l  Some	
  of	
  the	
  key	
  data	
  management	
  challenges	
  
l  Inherent	
  noise	
  and	
  uncertainty	
  in	
  the	
  raw	
  observa-on	
  data	
  

à  Support	
  for	
  graph	
  cleaning	
  must	
  be	
  -ghtly	
  integrated	
  into	
  the	
  system	
  

•  Graph	
  cleaning	
  techniques	
  oNen	
  domain	
  specific	
  

à  Uncertainty-­‐aware	
  query	
  evalua-on	
  algorithms	
  needed	
  that	
  can	
  handle	
  new	
  
types	
  of	
  iden>ty	
  uncertain-es	
  

l  Very	
  large	
  volumes	
  of	
  heterogeneous	
  data	
  
à  Distributed/parallel	
  storage	
  and	
  query	
  processing	
  needed	
  

•  Graph	
  par--oning	
  notoriously	
  hard	
  to	
  do	
  effec-vely	
  

l  Highly	
  dynamic	
  and	
  rapidly	
  changing	
  data	
  as	
  well	
  as	
  workloads	
  
à  Need	
  to	
  support	
  real-­‐-me	
  processing	
  through	
  aggressive	
  replica-on	
  and	
  pre-­‐
computa-on	
  

Mo-va-on:	
  Informa-on	
  Networks	
  	
  



l  Lack	
  of	
  established	
  data	
  management	
  tools	
  
l  Much	
  of	
  the	
  analysis	
  exploratory,	
  domain	
  specific,	
  and	
  hard	
  to	
  abstract	
  

l  Some	
  of	
  the	
  key	
  data	
  management	
  challenges	
  
l  Managing	
  historical	
  informa-on	
  

à  Need	
  to	
  support	
  complex	
  temporal	
  analysis	
  

à  Must	
  manage	
  large	
  volumes	
  of	
  historical	
  traces	
  and	
  support	
  efficient	
  retrieval	
  
of	
  past	
  network	
  snapshots	
  

à  Need	
  to	
  support	
  different	
  frameworks	
  for	
  inferring	
  the	
  trace	
  itself	
  from	
  
snapshots	
  

l  Lack	
  of	
  established	
  query	
  languages	
  
à  Develop	
  new	
  languages	
  !!	
  

à  …	
  or	
  preferably	
  reuse	
  an	
  old	
  one	
  	
  

Mo-va-on:	
  Informa-on	
  Networks	
  	
  



l  Goal:	
  build	
  a	
  data	
  management	
  system	
  and	
  frameworks	
  that	
  can	
  manage	
  large	
  
dynamically-­‐changing	
  graphs	
  and	
  support	
  a	
  variety	
  of	
  analy-cs	
  over	
  them	
  
l  Focus	
  on	
  the	
  abstrac-ons	
  and	
  the	
  system,	
  less	
  on	
  specific	
  analysis	
  techniques	
  

l  Work	
  so	
  far:	
  

l  Declara-ve	
  graph	
  cleaning	
  
l  Proposed	
  and	
  built	
  a	
  declara-ve	
  framework	
  for	
  specifying	
  complex	
  network	
  
analysis	
  and	
  cleaning	
  tasks	
  [GDM’11]	
  

l  Real-­‐-me	
  con-nuous	
  query	
  processing	
  
l  Aggressive	
  replica-on	
  to	
  manage	
  very	
  large	
  dynamic	
  graphs	
  efficiently	
  in	
  a	
  
distributed	
  manner,	
  and	
  to	
  execute	
  con-nuous	
  queries	
  over	
  them	
  [SIGMOD’12]	
  	
  

l  Historical	
  graph	
  management	
  
l  Efficient	
  single-­‐point	
  or	
  mul--­‐point	
  snapshot	
  retrieval	
  over	
  very	
  large	
  historical	
  
graph	
  traces	
  [under	
  submission]	
  

l  Ego-­‐centric	
  pa^ern	
  census	
  [ICDE’12]	
  

What	
  we	
  are	
  doing 	
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GraphPool	
  
Current	
  graph;	
  
Views;	
  
Historical	
  
snapshots	
  

DeltaGraph	
  
Persistent,	
  Historical	
  	
  

Graph	
  Storage	
  

Replica>on	
  	
  
Maintenance	
  

Forwarded	
  
Queries	
  

Graph	
  
Updates	
  

A disk-based or 
cloud-based  
key-value store 

Standard API  
used to write graph  
algorithms/libraries 

Many graphs maintained  
in an overlaid, memory-efficient 
manner 



l Overview	
  

l Declara-ve	
  Graph	
  Cleaning	
  

l Historical	
  Graph	
  Data	
  Management	
  

l Distributed	
  Management	
  of	
  Dynamic	
  Graphs	
  

l Conclusions	
  

Outline 	
  	
  



Mo-va-on	
  
l  The	
  observed	
  informa>on	
  networks	
  are	
  oNen	
  noisy	
  and	
  

incomplete	
  
l  Missing	
  a^ributes,	
  missing	
  links	
  
l  Ambiguous	
  references	
  to	
  the	
  same	
  en-ty	
  

l  Need	
  to	
  extract	
  the	
  underlying	
  true	
  informa>on	
  network	
  through:	
  
l  A^ribute	
  Predic-on:	
  to	
  predict	
  values	
  of	
  missing	
  aIributes	
  
l  Link	
  Predic-on:	
  to	
  infer	
  missing	
  links	
  
l  En-ty	
  Resolu-on:	
  to	
  decide	
  if	
  two	
  references	
  refer	
  to	
  the	
  same	
  en>ty	
  

l  Typically	
  itera-ve	
  and	
  interleaved	
  applica-on	
  of	
  the	
  techniques	
  

l  These	
  predic-on	
  tasks	
  can	
  use:	
  
l  Local	
  node	
  informa-on	
  
l  Rela>onal	
  informa-on	
  in	
  the	
  neighborhood	
  of	
  the	
  node	
  



A^ribute	
  Predic-on	
  

Automatic Rule 
Refinement for 

Information Extraction 

Join Optimization of 
Information Extraction 
Output: Quality Matters! 

A Statistical Model for 
Multilingual Entity 

Detection and Tracking 

Why Not? 

Tracing Lineage Beyond 
Relational Operators 

An Annotation 
Management System for 
Relational Databases 

Language Model Based 
Arabic Word 
Segmentation. 

DB NL ? 

Legend 

Task: Predict topic of the paper 



A^ribute	
  Predic-on	
  

Automatic Rule 
Refinement for 

Information Extraction 

Join Optimization of 
Information Extraction 
Output: Quality Matters! 

A Statistical Model for 
Multilingual Entity 

Detection and Tracking 

Why Not? 

Tracing Lineage Beyond 
Relational Operators 

An Annotation 
Management System for 
Relational Databases 

Language Model Based 
Arabic Word 
Segmentation. 

DB NL ? 

Legend 

Task: Predict topic of the paper 

May generate a probability 
distribution here instead 



Collec-ve	
  (rela-onal)	
  Inference	
  

l  Many	
  collec-ve	
  techniques	
  have	
  been	
  developed	
  over	
  the	
  years	
  
l  However,	
  no	
  support	
  from	
  data	
  management	
  systems	
  to	
  do	
  this	
  effec-vely	
  
l  Hard	
  for	
  a	
  network	
  analyst	
  to	
  easily	
  construct	
  and	
  compare	
  new	
  techniques	
  

l  Especially	
  for	
  joint	
  inference,	
  i.e.,	
  interleaved	
  and	
  pipelined	
  applica-on	
  
l  No	
  re-­‐usability,	
  and	
  much	
  repe--on	
  of	
  work	
  

Divesh 
Srivastava 

Vladislav 
Shkapenyuk Nick 

Koudas 

Avishek 
Saha 

Graham 
Cormode Flip Korn 

Lukasz 
Golab 

Theodore 
Johnson 

William 
Roberts 

Petre 
Stoica 

Jian 
Li 

Prabhu 
Babu 

Amol 
Deshpande 

Samir 
Khuller 

Barna 
Saha 

Jian 
Li 

Link prediction Entity resolution 



Our	
  Goal	
  
l  Mo-va-on:	
  To	
  support	
  declara-ve	
  network	
  inference	
  

l  Desiderata:	
  
l  Declara-ve	
  specifica-on	
  of	
  the	
  predic-on	
  features	
  	
  

l  Local	
  features	
  
l  Rela-onal	
  features	
  

l  (Almost-­‐)declara-ve	
  specifica-on	
  of	
  tasks	
  
l  A^ribute	
  predic-on,	
  Link	
  predic-on,	
  En-ty	
  resolu-on	
  

l  Support	
  for	
  arbitrary	
  interleaving	
  or	
  pipelining	
  
l  Support	
  for	
  complex	
  predic-on	
  func-ons	
  

Handle all that efficiently 
 



Proposed	
  Framework	
  

Specify the domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 



Proposed	
  Framework	
  

Specify the domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 

For attribute prediction, 
the domain is a subset of 
the graph nodes. 
 
For link prediction and 
entity resolution, the 
domain is a subset of 
pairs of nodes. 
 

Local: word frequency, 
income, etc. 
Relational: degree, 
clustering coeff., no. of 
neighbors with each 
attribute value, common 
neighbors between pairs 
of nodes, etc.  



Proposed	
  Framework	
  

Specify the Domain 

Compute features 

Make Predictions, and Compute 
Confidence in the Predictions 

Choose Which Predictions to 
Apply 

Attribute prediction: the 
missing attribute 
 
Link prediction: add link 
or not? 
 
Entity resolution: merge 
two nodes or not? 

After predictions are made, 
the graph changes: 
Attribute prediction 
changes local attributes. 
Link prediction changes the 
graph links. 
Entity resolution changes 
both local attributes and 
graph links. 



Some	
  Details	
  
l  Use	
  Datalog	
  to	
  express:	
  

l  Domains	
  
l  Local	
  and	
  rela-onal	
  features	
  

l  Extend	
  Datalog	
  with	
  opera-onal	
  seman-cs	
  (vs.	
  fix-­‐point	
  
seman-cs)	
  to	
  express:	
  
l  Predic-ons	
  (in	
  the	
  form	
  of	
  updates)	
  
l  Itera-on	
  



Specifying	
  Features	
  

Degree: 
Degree(X, COUNT<Y>) :-Edge(X, Y) 
 
Number of Neighbors with attribute ‘A’ 
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’) 
 
Clustering Coefficient 
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z) 
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1)) 

Jaccard Coefficient 
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z) 
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,   
                                      IntersectionCount(X, Y, D3)  
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D 
 



Specifying	
  Domains	
  
l  Domains	
  used	
  to	
  restrict	
  the	
  space	
  of	
  computa-on	
  for	
  
the	
  predic-on	
  elements	
  

l  Space	
  for	
  this	
  feature	
  is	
  |V|2	
  
	
  Similarity(X,	
  Y,	
  S)	
  :−Node(X,	
  A^=V1),	
  Node(Y,	
  A^=V1),	
  S=f(V1,	
  V2)	
  

	
  	
  

l  Using	
  this	
  domain	
  the	
  space	
  becomes	
  |E|:	
  
	
  DOMAIN	
  D(X,Y)	
  :-­‐	
  Edge(X,	
  Y)	
  

l  Other	
  DOMAIN	
  predicates:	
  
l  Equality	
  on	
  a^ribute	
  values	
  
l  Locality	
  sensi-ve	
  hashing	
  
l  String	
  similarity	
  joins	
  
l  Traverse	
  edges	
  



Predic-on	
  and	
  Confidence	
  Func-ons	
  
l  The	
  predic-on	
  and	
  confidence	
  func-ons	
  are	
  user	
  
defined	
  func-ons	
  

l  Can	
  be	
  based	
  on	
  logis>c	
  regression,	
  Bayes	
  classifier,	
  or	
  
any	
  other	
  classifica-on	
  algorithm	
  

l  The	
  confidence	
  is	
  the	
  class	
  membership	
  value	
  	
  
l  In	
  logis-c	
  regression,	
  the	
  confidence	
  can	
  be	
  the	
  value	
  of	
  the	
  
logis-c	
  func-on	
  

l  In	
  Bayes	
  classifier,	
  the	
  confidence	
  can	
  be	
  the	
  posterior	
  
probability	
  value	
  



Update	
  Opera-on	
  
•  Ac-on	
  to	
  be	
  taken	
  itself	
  specified	
  declara-vely	
  
•  Enables	
  specifying,	
  e.g.,	
  different	
  ways	
  to	
  merge	
  in	
  case	
  of	
  en-ty	
  

resolu-on	
  
	
  

DEFINE	
  Merge(X,	
  Y)	
  
{	
  

	
  INSERT	
  Edge(X,	
  Z)	
  :-­‐	
  Edge(Y,	
  Z)	
  
	
  DELETE	
  Edge(Y,	
  Z)	
  
	
  UPDATE	
  Node(X,	
  A=ANew)	
  :-­‐	
  Node(X,A=AX),	
  Node(Y,A=AY),	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ANew=(AX+AY)/2	
  
	
  UPDATE	
  Node(X,	
  B=BNew)	
  :-­‐	
  Node(X,B=BX),	
  Node(X,B=BX),	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  BNew=max(BX,BY)	
  
	
  DELETE	
  Node(Y)	
  

}	
  
Merge(X,	
  Y)	
  :-­‐	
  Features	
  (X,	
  Y,	
  F1,…,Fn),	
  predict-­‐ER(F1,…,Fn)	
  =	
  true,	
  	
  

	
   	
   	
   	
   	
   	
   	
  confidence-­‐ER(F1,…,Fn)	
  >	
  0.95	
  



Pipelining	
  

DOMAIN ER(X,Y) :- …. 
{ 
     ER1(X,Y,F1) :- … 
     ER2(X,Y,F1) :- … 
     Features-ER(X,Y,F1,F2) :- … 
} 

DOMAIN LP(X,Y) :- …. 
{ 
     LP1(X,Y,F1) :- … 
     LP2(X,Y,F1) :- … 
     Features-LP(X,Y,F1,F2) :- … 
} 
 

ITERATE(*) 
{ 
     INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2) 
     IN TOP 10% 
} 
ITERATE(*) 
{ 
     MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2) 
     IN TOP 10% 
} 



Interleaving	
  

DOMAIN ER(X,Y) :- …. 
{ 
     ER1(X,Y,F1) :- … 
     ER2(X,Y,F1) :- … 
     Features-ER(X,Y,F1,F2) :- … 
} 

DOMAIN LP(X,Y) :- …. 
{ 
     LP1(X,Y,F1) :- … 
     LP2(X,Y,F1) :- … 
     Features-LP(X,Y,F1,F2) :- … 
} 
 

ITERATE(*) 
{ 
     INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2 
     IN TOP 10% 
      
     MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2) 
     IN TOP 10% 
} 
 
 
 



Real-­‐world	
  Experiment	
  
l  Real-­‐world	
  PubMed	
  graph	
  

l  Set	
  of	
  publica-ons	
  from	
  the	
  medical	
  domain,	
  their	
  abstracts,	
  and	
  cita-ons	
  
l  50,634	
  publica-ons,	
  115,323	
  cita-on	
  edges	
  
l  Task:	
  A^ribute	
  predic-on	
  

l  Predict	
  if	
  the	
  paper	
  is	
  categorized	
  as	
  Cogni-on,	
  Learning,	
  Percep-on	
  or	
  Thinking	
  
l  Choose	
  top	
  10%	
  predic-ons	
  aNer	
  each	
  itera-on,	
  for	
  10	
  itera-ons	
  
l  Incremental:	
  28	
  minutes.	
  Recompute:	
  42	
  minutes	
  
	
   DOMAIN	
  Uncommi^ed(X):-­‐Node(X,Commi^ed=‘no’)	
  

{	
  
	
  	
  	
  ThinkingNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Thinking’)	
  
	
  	
  	
  Percep-onNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Percep-on’)	
  
	
  	
  	
  Cogni-onNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Cogni-on’)	
  
	
  	
  	
  LearningNeighbors(X,Count<Y>):-­‐	
  Edge(X,Y),	
  Node(Y,Label=‘Learning’)	
  
	
  	
  	
  Features-­‐AP(X,A,B,C,D,Abstract):-­‐	
  ThinkingNeighbors(X,A),	
  Percep-onNeighbors(X,B),	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cogni-onNeighbors(X,C),	
  LearningNeighbors(X,D),Node(X,Abstract,	
  _,_)	
  
}	
  
ITERATE(10)	
  	
  
{	
  
	
  	
  	
  UPDATE	
  Node(X,_,P,‘yes’):-­‐	
  Features-­‐AP(X,A,B,C,D,Text),	
  P	
  =	
  predict-­‐AP(X,A,B,C,D,Text),	
  

	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  confidence-­‐AP(X,A,B,C,D,Text)	
  IN	
  TOP	
  10%	
  
}	
  



l  Using	
  a	
  simple	
  RDBMS	
  built	
  on	
  top	
  of	
  Java	
  Berkeley	
  DB	
  
l  Predicates	
  in	
  the	
  program	
  correspond	
  to	
  materialized	
  tables	
  
l  Datalog	
  rules	
  converted	
  into	
  SQL	
  

l  Incremental	
  maintenance:	
  
l  Every	
  set	
  of	
  changes	
  done	
  by	
  AP,	
  LP,	
  or	
  ER	
  logged	
  into	
  two	
  change	
  tables	
  

ΔNodes	
  and	
  ΔEdges	
  
l  Aggregate	
  maintenance	
  is	
  performed	
  by	
  aggrega-ng	
  the	
  change	
  table	
  then	
  

refreshing	
  the	
  old	
  table	
  

l  Proved	
  hard	
  to	
  scale	
  
l  Incremental	
  evalua-on	
  much	
  faster	
  than	
  recompute,	
  but	
  SQL-­‐based	
  

evalua-on	
  was	
  inherently	
  a	
  bo^leneck	
  
l  Hard	
  to	
  do	
  complex	
  features	
  like	
  centrality	
  measures	
  
l  In	
  the	
  process	
  of	
  changing	
  the	
  backend	
  

Prototype	
  Implementa-on	
  



Related	
  Work	
  
l  Dedupalog	
  [Arasu	
  et	
  al.,	
  ICDE	
  2009]:	
  Datalog-­‐based	
  en-ty	
  resolu-on	
  

l  User	
  defines	
  hard	
  and	
  soN	
  rules	
  for	
  deduplica-on	
  
l  System	
  sa-sfies	
  hard	
  rules	
  and	
  minimizes	
  viola-ons	
  to	
  soN	
  rules	
  when	
  

deduplica-ng	
  references	
  

l  Swoosh	
  [Benjelloun	
  et	
  al.,	
  VLDBJ	
  2008]:	
  
l  Generic	
  En-ty	
  resolu-on	
  

l  Match	
  func-on	
  for	
  pairs	
  of	
  nodes	
  (based	
  on	
  a	
  set	
  of	
  features)	
  
l  Merge	
  func-on	
  determines	
  which	
  pairs	
  should	
  be	
  merged	
  

l  Dyna:	
  Extending	
  Datalog	
  for	
  Modern	
  AI	
  [Eisner	
  and	
  Filardo,	
  2011]	
  
l  High-­‐level	
  programming	
  language	
  for	
  specifying	
  NLP	
  tasks	
  
l  Many	
  similari-es	
  to	
  Datalog	
  



l Overview	
  

l Declara-ve	
  Graph	
  Cleaning	
  

l Historical	
  Graph	
  Data	
  Management	
  

l Distributed	
  Management	
  of	
  Dynamic	
  Graphs	
  

l Conclusions	
  

Outline 	
  	
  



l  Increasing	
  interest	
  in	
  temporal	
  analysis	
  of	
  informa-on	
  networks	
  to:	
  
l  Understand	
  evolu-onary	
  trends	
  (e.g.,	
  how	
  communi-es	
  evolve)	
  	
  

l  Perform	
  compara-ve	
  analysis	
  and	
  iden-fy	
  major	
  changes	
  

l  Develop	
  models	
  of	
  evolu-on	
  or	
  informa-on	
  diffusion	
  

l  Visualiza-ons	
  over	
  -me	
  
l  For	
  be^er	
  predic-ons	
  in	
  the	
  future	
  

l  Focused	
  explora-on	
  and	
  querying	
  
l  “Who	
  had	
  the	
  highest	
  PageRank	
  in	
  a	
  cita>on	
  network	
  in	
  1960?”	
  

l  “Iden>fy	
  nodes	
  most	
  similar	
  to	
  X	
  as	
  of	
  one	
  year	
  ago”	
  
l  “Iden>fy	
  the	
  days	
  when	
  the	
  network	
  diameter	
  (over	
  some	
  transient	
  edges	
  

like	
  messages)	
  is	
  smallest”	
  
l  “Find	
  a	
  temporal	
  subgraph	
  paIern	
  in	
  a	
  graph”	
  

Historical	
  Graph	
  Data	
  Management	
  

ti tj tk



l  Focus	
  of	
  the	
  work	
  so	
  far:	
  snapshot	
  retrieval	
  queries	
  
l  Given	
  one	
  >mepoint	
  or	
  a	
  set	
  of	
  >mepoints	
  in	
  the	
  past,	
  retrieve	
  the	
  

corresponding	
  snapshots	
  of	
  the	
  network	
  in	
  memory	
  

l  Queries	
  may	
  specify	
  only	
  a	
  subset	
  of	
  the	
  columns	
  to	
  be	
  fetched	
  

l  Some	
  more	
  complex	
  types	
  of	
  queries	
  can	
  be	
  specified	
  

l  Given	
  the	
  ad	
  hoc	
  nature	
  of	
  much	
  of	
  the	
  analysis,	
  one	
  of	
  the	
  most	
  
important	
  query	
  types	
  

l  Key	
  challenges:	
  
l  Needs	
  to	
  be	
  very	
  fast	
  to	
  support	
  interac-ve	
  analysis	
  

l  Should	
  support	
  analyzing	
  100’s	
  or	
  more	
  snapshots	
  simultaneously	
  

l  Support	
  for	
  distributed	
  retrieval	
  and	
  distributed	
  analysis	
  (e.g.,	
  using	
  Pregel)	
  

Snapshot	
  Retrieval	
  Queries	
  



l  Temporal	
  rela-onal	
  databases	
  
l  Vast	
  body	
  of	
  work	
  on	
  models,	
  query	
  languages,	
  and	
  systems	
  

l  Dis-nc-on	
  between	
  transac>on-­‐>me	
  and	
  valid-­‐>me	
  temporal	
  databases	
  

l  Snapshot	
  retrieval	
  queries	
  also	
  called	
  valid	
  >meslice	
  queries	
  

l  Op-ons	
  for	
  execu-ng	
  snapshot	
  queries	
  
l  External	
  Interval	
  Trees	
  [Arge	
  and	
  Vi^er,	
  1996]	
  

l  Op-mal	
  storage,	
  op-mal	
  (logarithmic)	
  updates	
  for	
  managing	
  interval	
  data	
  

l  Retrieval	
  in	
  the	
  size	
  of	
  the	
  retrieved	
  graph	
  

l  External	
  Segment	
  Trees	
  [Blakenagal	
  and	
  Gu-ng,	
  1994]	
  
l  Op-mal	
  retrieval,	
  but	
  higher	
  storage	
  requirements	
  

l  Snapshot	
  index	
  [Slazberg	
  and	
  Tsotras,	
  1999]	
  
l  Op-mal	
  for	
  transac>on-­‐>me	
  databases	
  

l  Copy	
  +	
  Log	
  
l  Maintain	
  some	
  snapshots	
  explicitly,	
  and	
  keep	
  chains	
  of	
  events	
  between	
  them	
  	
  

	
  

Prior	
  Work	
  



l  No	
  flexibility	
  or	
  tunability	
  
l  Would	
  like	
  to	
  control	
  the	
  distribu-on	
  of	
  snapshot	
  retrieval	
  -mes,	
  at	
  run	
  -me	
  

l  No	
  support	
  for	
  mul--­‐point	
  queries	
  

l  Not	
  easy	
  to	
  support	
  parallel	
  retrieval/processing	
  

l  No	
  support	
  for	
  retrieving	
  por-ons	
  of	
  the	
  network	
  

l  Would	
  like	
  to	
  support	
  different	
  storage	
  backends	
  

l  Most	
  prior	
  techniques	
  primarily	
  op-mized	
  for	
  disks	
  

Prior	
  Work:	
  Limita-ons	
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Currently supports a programmatic API to 
access the historical graphs 
 

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan 2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Table 1: Options for node attribute retrieval. Similar options

exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview

Figure 2 shows a high level overview of our system and its key
components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth

in the number of neighbors since joining the network).
Next, we briefly discuss snapshot queries and the key compo-

nents of the system.

3.2.1 Snapshot Queries

We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-

sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ∧
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . . );
gm.loadDeltaGraphIndex(. . . );
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components

There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| ≈
|Gc ∪G1 ∪G2 · · · ∪Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki



l  Hierarchical	
  index	
  structure	
  with	
  (logical)	
  snapshots	
  at	
  the	
  leaves	
  
l  Only	
  the	
  edge	
  deltas	
  stored	
  explicitly	
  
l  Key	
  parameter:	
  differen>al	
  func>on	
  (f,	
  f1,	
  f2)	
  
l  Can	
  have	
  mul-ple	
  hierarchies	
  within	
  the	
  same	
  structure	
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l  Deltas	
  stored	
  in	
  a	
  key-­‐value	
  store	
  
l  Currently	
  using	
  disk-­‐based	
  Kyoto	
  Cabinet	
  

l  Each	
  edge	
  delta	
  split	
  into	
  mul-ple	
  smaller	
  deltas	
  
l  Ver-cally	
  by	
  columns:	
  To	
  retrieve	
  only	
  some	
  a^ributes	
  
l  Horizontally	
  by	
  nodes:	
  To	
  facilitate	
  distributed	
  processing,	
  and	
  to	
  speed	
  up	
  

construc-on	
  
l  The	
  skeleton	
  maintained	
  in	
  memory	
  

l  Expected	
  to	
  be	
  small	
  –	
  the	
  deltas	
  are	
  usually	
  large	
  to	
  take	
  advantage	
  of	
  
compression	
  and	
  to	
  reduce	
  the	
  number	
  of	
  I/Os	
  

l  Memory	
  materializa-on	
  
l  Basic	
  idea:	
  Explicitly	
  materialize	
  a	
  snapshot	
  in	
  memory	
  

l  “Current	
  graph”	
  treated	
  as	
  materialized	
  (assuming	
  an	
  online	
  system)	
  
l  In	
  the	
  DeltaGraph,	
  add	
  an	
  edge	
  with	
  cost	
  0	
  from	
  the	
  root	
  
l  Enables	
  much	
  flexibility	
  in	
  reducing	
  the	
  snapshot	
  retrieval	
  costs	
  

DeltaGraph	
  Storage	
  



Snapshot	
  Queries	
  
l  Single	
  point:	
  Lowest	
  weight	
  Path	
  from	
  Root	
  

l  Edge	
  is	
  associated	
  with	
  several	
  different	
  weights	
  for	
  different	
  a^ributes	
  
l  Mul--­‐point:	
  Lowest	
  weight	
  Steiner	
  Tree	
  from	
  Root	
  

l  Use	
  the	
  standard	
  2-­‐approxima-on	
  for	
  this	
  purpose	
  
l  Similar	
  techniques	
  for	
  other	
  types	
  of	
  more	
  complex	
  queries	
  

involving	
  >me-­‐expressions	
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Name Description 

Intersection f(a,b,c...) = a∩b∩c… 

Union f(a,b,c...) = a∪b∪c... 

Skewed f (a, b) = a + r.(b − a), 0 ≤ r ≤ 1 

Right Skewed f (a, b) = a ∩ b + r.(b − a ∩ b), 0 ≤ r ≤ 1 

Left Skewed f (a, b) = a ∩ b + r.(a − a ∩ b), 0 ≤ r ≤ 1 

Mixed f(a,b,c...) = a + r1.(δab + δbc ...) − r2.(ρab +ρbc...),0≤r2 ≤r1 
≤ 1 

Balanced f(a,b,c...) = a + 0.5(δab + δbc ...) −0.5(ρab +ρbc ...) 

Empty f(a,b,c...) = ∅ 

Differen-al	
  Func-ons	
  
l  Choice	
  of	
  differen-al	
  func-on	
  greatly	
  influences	
  the	
  proper-es	
  
l  Many	
  func-ons	
  of	
  interest	
  



Analysis	
  
l  Model	
  of	
  graph	
  dynamics	
  

l  G|E|:	
  Graph	
  aNer	
  |E|	
  events	
  
l  Assume	
  a	
  constant	
  rate	
  of	
  inserts	
  and	
  deletes	
  

l  Not	
  equivalent	
  to	
  assuming	
  constant	
  rate	
  of	
  change/-me	
  

l  Summary	
  of	
  results	
  
l  Balanced	
  func-on	
  balances	
  the	
  retrieval	
  -mes	
  at	
  the	
  expense	
  of	
  higher	
  

storage	
  requirements	
  
l  Space	
  requirements	
  

l  Interval	
  trees:	
  O(|E|)	
  
l  Segment	
  trees:	
  O(|E|	
  log|E|)	
  
l  DeltaGraph:	
  Somewhere	
  between	
  O(|E|)	
  and	
  O(|E|	
  log	
  N)	
  

l  Depending	
  on	
  the	
  differen-al	
  func-on,	
  arity,	
  and	
  graph	
  dynamics	
  
l  N	
  =	
  Number	
  of	
  leaves	
  



Some	
  More	
  Details	
  
l  DeltaGraph	
  Construc-on	
  

l  Bo^om-­‐up:	
  Similar	
  to	
  the	
  construc-on	
  of	
  a	
  bulkloaded	
  B+-­‐tree	
  
l  Construc-on	
  parameters:	
  	
  

l  Evetlist	
  size:	
  L,	
  Arity:	
  k	
  
l  Differen-al	
  Func-on:	
  f()	
  
l  Par--oning	
  of	
  the	
  nodes	
  

l  Construc-on	
  algorithm	
  memory	
  intensive	
  
l  Need	
  to	
  do	
  in	
  a	
  par--oned	
  fashion	
  to	
  handle	
  large	
  graphs	
  
l  Details	
  in	
  the	
  paper	
  

l  Choosing	
  what	
  to	
  materialize	
  
l  Current	
  approach	
  is	
  to	
  materialize	
  one	
  or	
  two	
  of	
  the	
  top	
  levels	
  
l  Inves-ga-ng	
  approaches	
  based	
  on	
  facility	
  loca>on	
  	
  



GraphPool	
  
l  Goal:	
  Store	
  many	
  graphs	
  in	
  memory	
  in	
  an	
  overlaid	
  fashion	
  

l  To	
  minimize	
  memory	
  consump-on	
  
l  To	
  reduce	
  retrieval	
  cost	
  by	
  using	
  bitmaps	
  to	
  encode	
  differences	
  

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}



Empirical	
  Results	
  
l  DeltaGraph	
  vs	
  In-­‐Memory	
  Interval	
  Tree	
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Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.
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We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair 〈Cij , Pj〉, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair 〈Cij , Pk〉
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different
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Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij ).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence
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Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway 

Pairwise decisions Optimal 
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Figure 5: Making fine-grained decisions can result in almost
33% savings over coarse-grained decisions
as logged by our replication middleware. As we discussed earlier,
once a data item is replicated to a partition, it is cached and will not
be transferred again. Because of this, the amount of data transfer
across the servers is independent of the replication decisions that
are made (we can easily modify the cost functions in our algorithms
to account for this if desired). Hence for most of the results, we re-
port the total number of push and pull messages (i.e., we assume
H = L = 1).

For a push decision, we use continuous replication of CouchDB
and there is a message involved every time the corresponding graph
node is updated. However, the way we count the number of pull
messages is slightly different, and reflects the constraints imposed
by CouchDB and our setup. In fact, this results in a significant
underestimation in the number of pull messages as some of our
experiments also illustrate.

The way a pull works in our system is that, the replication man-
ager asks CouchDB to sync the appropriate replication table (see
Section 3.1). However since the replication tables correspond to
clusters, all updates to that cluster are pulled from the cluster’s
home partition. To amortize the cost of this, we enforce a minimum
gap between two pulls corresponding to the same cluster by using
a timeout. In other words, if a cluster has been recently pulled, we
do not pull it again until the timeout expires. In our experimental
evaluation, the timeout is set to 800ms, so the data can be at most
800ms stale (which is reasonable in a social network application).
We further discuss the rationale in Section 5.4.7.

5.4 Results

5.4.1 Impact of Histogram Granularity
We start with a set of experiments to verify our hypothesis that

by making decisions in a fine-grained manner can result in signifi-
cant savings. Figure 5 shows the results for this experiment. Here
we varied the histogram granularity from 1/2 hour to 12 hours, and
counted the total number of messages that were needed. The all-
pull and all-push approaches are unaffected by this, however, we
can see that by making decisions at the finest granularity, i.e., every
1/2 hour, resulted in almost 33% savings over coarse-grained de-
cisions. This validates our hypothesis that we can exploit the user
activity patterns to reduce the network communication costs.

We also note that overall our default workload is read-heavy, and
hence all-push solution is usually better than all-pull solution (al-
though it results in higher memory consumption). As we move
toward coarse-grained histograms, we observed that most of the
replication decisions became push. But our algorithm is able to ex-
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Figure 6: Hash partitioning results in almost uniform load
across the partitions
ploit the diversity in the access patterns when making decisions at
finer granularities to achieve significant savings.

5.4.2 Bandwidth Consumption and Network Load
Figure 6 shows the total network communication across the servers.

For each server, we aggregated the network communication result-
ing from writes happening to the corresponding partition, and the
reads directed to the partition. As we can see, all the approaches
resulted in fairly balanced load across the partitions, with hybrid
achieving almost 20% savings over all-push in all cases. This can
be attributed to the hash partitioning scheme that we use, which
guarantees that the overall read and write distributions across the
partitions are largely uniform.

5.4.3 Varying the Number of Clusters
Next we study the effect of k, the number of clusters in each

partition. We varied the number of clusters from 4 to 9, and we
show the results in Figure 7. Along with the network communica-
tion costs (plotted on the left y-axis), we also plot the size of the
cluster mapping table, the metadata that is needed to decide which
of a node’s neighbors are replicated (on the right y-axis). As we
can see, as the number of clusters increases the size of the cluster
mapping table increases as expected. What is somewhat counter-
intuitive is that the total communication cost also increases beyond
6. We expect that with large numbers of clusters, we can make
more fine-grained decisions which should aid in reducing the total
network communication cost.

The reason for this is somewhat subtle, and has to do with the
way pulls are handled in our system. Recall that a single pull ac-
tually syncs an entire cluster, i.e., it propagates all updates for a
single cluster from the home partition to the partition making the
pull. Thus increasing the cluster sizes results in an decrease in the
number of pulls that are required. We expect that if we were count-
ing the number of pulls explicitly, that would result in the behavior
as expected (however, in a read-heavy workload, that would imply
that the all-push solution would always be better by a margin).

5.4.4 Varying Write-Read Ratio
We examine how the replication techniques perform for work-

loads that have different mixes of reads and writes. We simply
varied the read/write ratio of the workload and calculated the av-
erage cost in terms of total number of communications, incurred
by the three approaches. For hybrid, we also plot the costs when
the fairness threshold τ is set to 0.5. Figure 9 shows the results of

Fine-grained, adaptive decisions can result in substantial savings  
in number of messages 
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Figure 7: Varying the number of clusters
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Figure 8: Impact of fairness factor on network communication

this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-
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Figure 10: Impact of the fairness factor on read query latencies

proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.
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this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-
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proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.
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