
Enabling	 Declara-ve	 Graph	 Analy-cs	 over	 Large,	
Noisy	 Informa-on	 Networks	

Amol	 Deshpande	
	
Department	 of	 Computer	 Science	 and	 UMIACS	
University	 of	 Maryland	 at	 College	 Park	

Joint work with: Prof. Lise Getoor, Walaa Moustafa,
Udayan Khurana, Jayanta Mondal

l  Everywhere	 and	 growing	 in	 numbers…	
l  Social	 networks,	 social	 contact	 graphs	

l  Email	 networks,	 financial	 transac-on	 networks	

l  Biological	 networks,	 disease	 transmission	 networks	

l  Cita-on	 networks,	 IP	 traffic	 data,	 Web	

l  …	

l  Intense	 amount	 of	 work	 already	 on:	
l  …	 understanding	 proper-es	 of	 these	 networks	 	

l  …	 visualiza-ons	

l  …	 developing	 models	 of	 evolu-on	

l  …	 cleaning	 inherently	 noisy	 observa-onal	 data	

l  …	 compara-ve	 analy-cs	

l  and	 so	 on…	

Mo-va-on:	 Informa-on	 Networks	 	

A protein-protein interaction
network

Supreme court citation network

l  Lack	 of	 established	 data	 management	 tools	
l  Much	 of	 the	 analysis	 exploratory,	 domain	 specific,	 and	 hard	 to	 abstract	

l  Some	 of	 the	 key	 data	 management	 challenges	
l  Inherent	 noise	 and	 uncertainty	 in	 the	 raw	 observa-on	 data	

à  Support	 for	 graph	 cleaning	 must	 be	 -ghtly	 integrated	 into	 the	 system	

•  Graph	 cleaning	 techniques	 oNen	 domain	 specific	

à  Uncertainty-‐aware	 query	 evalua-on	 algorithms	 needed	 that	 can	 handle	 new	
types	 of	 iden>ty	 uncertain-es	

l  Very	 large	 volumes	 of	 heterogeneous	 data	
à  Distributed/parallel	 storage	 and	 query	 processing	 needed	

•  Graph	 par--oning	 notoriously	 hard	 to	 do	 effec-vely	

l  Highly	 dynamic	 and	 rapidly	 changing	 data	 as	 well	 as	 workloads	
à  Need	 to	 support	 real-‐-me	 processing	 through	 aggressive	 replica-on	 and	 pre-‐
computa-on	

Mo-va-on:	 Informa-on	 Networks	 	

l  Lack	 of	 established	 data	 management	 tools	
l  Much	 of	 the	 analysis	 exploratory,	 domain	 specific,	 and	 hard	 to	 abstract	

l  Some	 of	 the	 key	 data	 management	 challenges	
l  Managing	 historical	 informa-on	

à  Need	 to	 support	 complex	 temporal	 analysis	

à  Must	 manage	 large	 volumes	 of	 historical	 traces	 and	 support	 efficient	 retrieval	
of	 past	 network	 snapshots	

à  Need	 to	 support	 different	 frameworks	 for	 inferring	 the	 trace	 itself	 from	
snapshots	

l  Lack	 of	 established	 query	 languages	
à  Develop	 new	 languages	 !!	

à  …	 or	 preferably	 reuse	 an	 old	 one	 	

Mo-va-on:	 Informa-on	 Networks	 	

l  Goal:	 build	 a	 data	 management	 system	 and	 frameworks	 that	 can	 manage	 large	
dynamically-‐changing	 graphs	 and	 support	 a	 variety	 of	 analy-cs	 over	 them	
l  Focus	 on	 the	 abstrac-ons	 and	 the	 system,	 less	 on	 specific	 analysis	 techniques	

l  Work	 so	 far:	

l  Declara-ve	 graph	 cleaning	
l  Proposed	 and	 built	 a	 declara-ve	 framework	 for	 specifying	 complex	 network	
analysis	 and	 cleaning	 tasks	 [GDM’11]	

l  Real-‐-me	 con-nuous	 query	 processing	
l  Aggressive	 replica-on	 to	 manage	 very	 large	 dynamic	 graphs	 efficiently	 in	 a	
distributed	 manner,	 and	 to	 execute	 con-nuous	 queries	 over	 them	 [SIGMOD’12]	 	

l  Historical	 graph	 management	
l  Efficient	 single-‐point	 or	 mul--‐point	 snapshot	 retrieval	 over	 very	 large	 historical	
graph	 traces	 [under	 submission]	

l  Ego-‐centric	 pa^ern	 census	 [ICDE’12]	

What	 we	 are	 doing 	 	

System	 Architecture	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica>on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

A disk-based or
cloud-based
key-value store

Standard API
used to write graph
algorithms/libraries

Many graphs maintained
in an overlaid, memory-efficient
manner

l Overview	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Distributed	 Management	 of	 Dynamic	 Graphs	

l Conclusions	

Outline 	 	

Mo-va-on	
l  The	 observed	 informa>on	 networks	 are	 oNen	 noisy	 and	

incomplete	
l  Missing	 a^ributes,	 missing	 links	
l  Ambiguous	 references	 to	 the	 same	 en-ty	

l  Need	 to	 extract	 the	 underlying	 true	 informa>on	 network	 through:	
l  A^ribute	 Predic-on:	 to	 predict	 values	 of	 missing	 aIributes	
l  Link	 Predic-on:	 to	 infer	 missing	 links	
l  En-ty	 Resolu-on:	 to	 decide	 if	 two	 references	 refer	 to	 the	 same	 en>ty	

l  Typically	 itera-ve	 and	 interleaved	 applica-on	 of	 the	 techniques	

l  These	 predic-on	 tasks	 can	 use:	
l  Local	 node	 informa-on	
l  Rela>onal	 informa-on	 in	 the	 neighborhood	 of	 the	 node	

A^ribute	 Predic-on	

Automatic Rule
Refinement for

Information Extraction

Join Optimization of
Information Extraction
Output: Quality Matters!

A Statistical Model for
Multilingual Entity

Detection and Tracking

Why Not?

Tracing Lineage Beyond
Relational Operators

An Annotation
Management System for
Relational Databases

Language Model Based
Arabic Word
Segmentation.

DB NL ?

Legend

Task: Predict topic of the paper

A^ribute	 Predic-on	

Automatic Rule
Refinement for

Information Extraction

Join Optimization of
Information Extraction
Output: Quality Matters!

A Statistical Model for
Multilingual Entity

Detection and Tracking

Why Not?

Tracing Lineage Beyond
Relational Operators

An Annotation
Management System for
Relational Databases

Language Model Based
Arabic Word
Segmentation.

DB NL ?

Legend

Task: Predict topic of the paper

May generate a probability
distribution here instead

Collec-ve	 (rela-onal)	 Inference	

l  Many	 collec-ve	 techniques	 have	 been	 developed	 over	 the	 years	
l  However,	 no	 support	 from	 data	 management	 systems	 to	 do	 this	 effec-vely	
l  Hard	 for	 a	 network	 analyst	 to	 easily	 construct	 and	 compare	 new	 techniques	

l  Especially	 for	 joint	 inference,	 i.e.,	 interleaved	 and	 pipelined	 applica-on	
l  No	 re-‐usability,	 and	 much	 repe--on	 of	 work	

Divesh
Srivastava

Vladislav
Shkapenyuk Nick

Koudas

Avishek
Saha

Graham
Cormode Flip Korn

Lukasz
Golab

Theodore
Johnson

William
Roberts

Petre
Stoica

Jian
Li

Prabhu
Babu

Amol
Deshpande

Samir
Khuller

Barna
Saha

Jian
Li

Link prediction Entity resolution

Our	 Goal	
l  Mo-va-on:	 To	 support	 declara-ve	 network	 inference	

l  Desiderata:	
l  Declara-ve	 specifica-on	 of	 the	 predic-on	 features	 	

l  Local	 features	
l  Rela-onal	 features	

l  (Almost-‐)declara-ve	 specifica-on	 of	 tasks	
l  A^ribute	 predic-on,	 Link	 predic-on,	 En-ty	 resolu-on	

l  Support	 for	 arbitrary	 interleaving	 or	 pipelining	
l  Support	 for	 complex	 predic-on	 func-ons	

Handle all that efficiently

Proposed	 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Proposed	 Framework	

Specify the domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

For attribute prediction,
the domain is a subset of
the graph nodes.

For link prediction and
entity resolution, the
domain is a subset of
pairs of nodes.

Local: word frequency,
income, etc.
Relational: degree,
clustering coeff., no. of
neighbors with each
attribute value, common
neighbors between pairs
of nodes, etc.

Proposed	 Framework	

Specify the Domain

Compute features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

Attribute prediction: the
missing attribute

Link prediction: add link
or not?

Entity resolution: merge
two nodes or not?

After predictions are made,
the graph changes:
Attribute prediction
changes local attributes.
Link prediction changes the
graph links.
Entity resolution changes
both local attributes and
graph links.

Some	 Details	
l  Use	 Datalog	 to	 express:	

l  Domains	
l  Local	 and	 rela-onal	 features	

l  Extend	 Datalog	 with	 opera-onal	 seman-cs	 (vs.	 fix-‐point	
seman-cs)	 to	 express:	
l  Predic-ons	 (in	 the	 form	 of	 updates)	
l  Itera-on	

Specifying	 Features	

Degree:
Degree(X, COUNT<Y>) :-Edge(X, Y)

Number of Neighbors with attribute ‘A’
NumNeighbors(X, COUNT<Y>) :− Edge(X, Y), Node(Y, Att=’A’)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) :− Edge(X,Y), Edge(X,Z), Edge(Y,Z)
ClusteringCoeff(X, C) :− NeighborCluster(X,N), Degree(X,D), C=2*N/(D*(D-1))

Jaccard Coefficient
IntersectionCount(X, Y, COUNT<Z>) :− Edge(X, Z), Edge(Y, Z)
UnionCount(X, Y, D) :− Degree(X,D1), Degree(Y,D2), D=D1+D2-D3,
 IntersectionCount(X, Y, D3)
Jaccard(X, Y, J) :− IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D

Specifying	 Domains	
l  Domains	 used	 to	 restrict	 the	 space	 of	 computa-on	 for	
the	 predic-on	 elements	

l  Space	 for	 this	 feature	 is	 |V|2	
	 Similarity(X,	 Y,	 S)	 :−Node(X,	 A^=V1),	 Node(Y,	 A^=V1),	 S=f(V1,	 V2)	

	 	

l  Using	 this	 domain	 the	 space	 becomes	 |E|:	
	 DOMAIN	 D(X,Y)	 :-‐	 Edge(X,	 Y)	

l  Other	 DOMAIN	 predicates:	
l  Equality	 on	 a^ribute	 values	
l  Locality	 sensi-ve	 hashing	
l  String	 similarity	 joins	
l  Traverse	 edges	

Predic-on	 and	 Confidence	 Func-ons	
l  The	 predic-on	 and	 confidence	 func-ons	 are	 user	
defined	 func-ons	

l  Can	 be	 based	 on	 logis>c	 regression,	 Bayes	 classifier,	 or	
any	 other	 classifica-on	 algorithm	

l  The	 confidence	 is	 the	 class	 membership	 value	 	
l  In	 logis-c	 regression,	 the	 confidence	 can	 be	 the	 value	 of	 the	
logis-c	 func-on	

l  In	 Bayes	 classifier,	 the	 confidence	 can	 be	 the	 posterior	
probability	 value	

Update	 Opera-on	
•  Ac-on	 to	 be	 taken	 itself	 specified	 declara-vely	
•  Enables	 specifying,	 e.g.,	 different	 ways	 to	 merge	 in	 case	 of	 en-ty	

resolu-on	
	

DEFINE	 Merge(X,	 Y)	
{	

	 INSERT	 Edge(X,	 Z)	 :-‐	 Edge(Y,	 Z)	
	 DELETE	 Edge(Y,	 Z)	
	 UPDATE	 Node(X,	 A=ANew)	 :-‐	 Node(X,A=AX),	 Node(Y,A=AY),	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ANew=(AX+AY)/2	
	 UPDATE	 Node(X,	 B=BNew)	 :-‐	 Node(X,B=BX),	 Node(X,B=BX),	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 BNew=max(BX,BY)	
	 DELETE	 Node(Y)	

}	
Merge(X,	 Y)	 :-‐	 Features	 (X,	 Y,	 F1,…,Fn),	 predict-‐ER(F1,…,Fn)	 =	 true,	 	

	 	 	 	 	 	 	 confidence-‐ER(F1,…,Fn)	 >	 0.95	

Pipelining	

DOMAIN ER(X,Y) :- ….
{
 ER1(X,Y,F1) :- …
 ER2(X,Y,F1) :- …
 Features-ER(X,Y,F1,F2) :- …
}

DOMAIN LP(X,Y) :- ….
{
 LP1(X,Y,F1) :- …
 LP2(X,Y,F1) :- …
 Features-LP(X,Y,F1,F2) :- …
}

ITERATE(*)
{
 INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2)
 IN TOP 10%
}
ITERATE(*)
{
 MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
 IN TOP 10%
}

Interleaving	

DOMAIN ER(X,Y) :- ….
{
 ER1(X,Y,F1) :- …
 ER2(X,Y,F1) :- …
 Features-ER(X,Y,F1,F2) :- …
}

DOMAIN LP(X,Y) :- ….
{
 LP1(X,Y,F1) :- …
 LP2(X,Y,F1) :- …
 Features-LP(X,Y,F1,F2) :- …
}

ITERATE(*)
{
 INSERT EDGE(X,Y) :- FT-LP(X,Y,F1,F2), predict-LP(X,Y,F1,F2), confidence-LP(X,Y,F1,F2
 IN TOP 10%

 MERGE(X,Y) :- FT-ER(X,Y,F1,F2), predict-ER(X,Y,F1,F2), confidence-ER(X,Y,F1,F2)
 IN TOP 10%
}

Real-‐world	 Experiment	
l  Real-‐world	 PubMed	 graph	

l  Set	 of	 publica-ons	 from	 the	 medical	 domain,	 their	 abstracts,	 and	 cita-ons	
l  50,634	 publica-ons,	 115,323	 cita-on	 edges	
l  Task:	 A^ribute	 predic-on	

l  Predict	 if	 the	 paper	 is	 categorized	 as	 Cogni-on,	 Learning,	 Percep-on	 or	 Thinking	
l  Choose	 top	 10%	 predic-ons	 aNer	 each	 itera-on,	 for	 10	 itera-ons	
l  Incremental:	 28	 minutes.	 Recompute:	 42	 minutes	
	 DOMAIN	 Uncommi^ed(X):-‐Node(X,Commi^ed=‘no’)	

{	
	 	 	 ThinkingNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Thinking’)	
	 	 	 Percep-onNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Percep-on’)	
	 	 	 Cogni-onNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Cogni-on’)	
	 	 	 LearningNeighbors(X,Count<Y>):-‐	 Edge(X,Y),	 Node(Y,Label=‘Learning’)	
	 	 	 Features-‐AP(X,A,B,C,D,Abstract):-‐	 ThinkingNeighbors(X,A),	 Percep-onNeighbors(X,B),	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Cogni-onNeighbors(X,C),	 LearningNeighbors(X,D),Node(X,Abstract,	 _,_)	
}	
ITERATE(10)	 	
{	
	 	 	 UPDATE	 Node(X,_,P,‘yes’):-‐	 Features-‐AP(X,A,B,C,D,Text),	 P	 =	 predict-‐AP(X,A,B,C,D,Text),	

	 	 	 	 	 	 	 	 	 	 confidence-‐AP(X,A,B,C,D,Text)	 IN	 TOP	 10%	
}	

l  Using	 a	 simple	 RDBMS	 built	 on	 top	 of	 Java	 Berkeley	 DB	
l  Predicates	 in	 the	 program	 correspond	 to	 materialized	 tables	
l  Datalog	 rules	 converted	 into	 SQL	

l  Incremental	 maintenance:	
l  Every	 set	 of	 changes	 done	 by	 AP,	 LP,	 or	 ER	 logged	 into	 two	 change	 tables	

ΔNodes	 and	 ΔEdges	
l  Aggregate	 maintenance	 is	 performed	 by	 aggrega-ng	 the	 change	 table	 then	

refreshing	 the	 old	 table	

l  Proved	 hard	 to	 scale	
l  Incremental	 evalua-on	 much	 faster	 than	 recompute,	 but	 SQL-‐based	

evalua-on	 was	 inherently	 a	 bo^leneck	
l  Hard	 to	 do	 complex	 features	 like	 centrality	 measures	
l  In	 the	 process	 of	 changing	 the	 backend	

Prototype	 Implementa-on	

Related	 Work	
l  Dedupalog	 [Arasu	 et	 al.,	 ICDE	 2009]:	 Datalog-‐based	 en-ty	 resolu-on	

l  User	 defines	 hard	 and	 soN	 rules	 for	 deduplica-on	
l  System	 sa-sfies	 hard	 rules	 and	 minimizes	 viola-ons	 to	 soN	 rules	 when	

deduplica-ng	 references	

l  Swoosh	 [Benjelloun	 et	 al.,	 VLDBJ	 2008]:	
l  Generic	 En-ty	 resolu-on	

l  Match	 func-on	 for	 pairs	 of	 nodes	 (based	 on	 a	 set	 of	 features)	
l  Merge	 func-on	 determines	 which	 pairs	 should	 be	 merged	

l  Dyna:	 Extending	 Datalog	 for	 Modern	 AI	 [Eisner	 and	 Filardo,	 2011]	
l  High-‐level	 programming	 language	 for	 specifying	 NLP	 tasks	
l  Many	 similari-es	 to	 Datalog	

l Overview	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Distributed	 Management	 of	 Dynamic	 Graphs	

l Conclusions	

Outline 	 	

l  Increasing	 interest	 in	 temporal	 analysis	 of	 informa-on	 networks	 to:	
l  Understand	 evolu-onary	 trends	 (e.g.,	 how	 communi-es	 evolve)	 	

l  Perform	 compara-ve	 analysis	 and	 iden-fy	 major	 changes	

l  Develop	 models	 of	 evolu-on	 or	 informa-on	 diffusion	

l  Visualiza-ons	 over	 -me	
l  For	 be^er	 predic-ons	 in	 the	 future	

l  Focused	 explora-on	 and	 querying	
l  “Who	 had	 the	 highest	 PageRank	 in	 a	 cita>on	 network	 in	 1960?”	

l  “Iden>fy	 nodes	 most	 similar	 to	 X	 as	 of	 one	 year	 ago”	
l  “Iden>fy	 the	 days	 when	 the	 network	 diameter	 (over	 some	 transient	 edges	

like	 messages)	 is	 smallest”	
l  “Find	 a	 temporal	 subgraph	 paIern	 in	 a	 graph”	

Historical	 Graph	 Data	 Management	

ti tj tk

l  Focus	 of	 the	 work	 so	 far:	 snapshot	 retrieval	 queries	
l  Given	 one	 >mepoint	 or	 a	 set	 of	 >mepoints	 in	 the	 past,	 retrieve	 the	

corresponding	 snapshots	 of	 the	 network	 in	 memory	

l  Queries	 may	 specify	 only	 a	 subset	 of	 the	 columns	 to	 be	 fetched	

l  Some	 more	 complex	 types	 of	 queries	 can	 be	 specified	

l  Given	 the	 ad	 hoc	 nature	 of	 much	 of	 the	 analysis,	 one	 of	 the	 most	
important	 query	 types	

l  Key	 challenges:	
l  Needs	 to	 be	 very	 fast	 to	 support	 interac-ve	 analysis	

l  Should	 support	 analyzing	 100’s	 or	 more	 snapshots	 simultaneously	

l  Support	 for	 distributed	 retrieval	 and	 distributed	 analysis	 (e.g.,	 using	 Pregel)	

Snapshot	 Retrieval	 Queries	

l  Temporal	 rela-onal	 databases	
l  Vast	 body	 of	 work	 on	 models,	 query	 languages,	 and	 systems	

l  Dis-nc-on	 between	 transac>on-‐>me	 and	 valid-‐>me	 temporal	 databases	

l  Snapshot	 retrieval	 queries	 also	 called	 valid	 >meslice	 queries	

l  Op-ons	 for	 execu-ng	 snapshot	 queries	
l  External	 Interval	 Trees	 [Arge	 and	 Vi^er,	 1996]	

l  Op-mal	 storage,	 op-mal	 (logarithmic)	 updates	 for	 managing	 interval	 data	

l  Retrieval	 in	 the	 size	 of	 the	 retrieved	 graph	

l  External	 Segment	 Trees	 [Blakenagal	 and	 Gu-ng,	 1994]	
l  Op-mal	 retrieval,	 but	 higher	 storage	 requirements	

l  Snapshot	 index	 [Slazberg	 and	 Tsotras,	 1999]	
l  Op-mal	 for	 transac>on-‐>me	 databases	

l  Copy	 +	 Log	
l  Maintain	 some	 snapshots	 explicitly,	 and	 keep	 chains	 of	 events	 between	 them	 	

	

Prior	 Work	

l  No	 flexibility	 or	 tunability	
l  Would	 like	 to	 control	 the	 distribu-on	 of	 snapshot	 retrieval	 -mes,	 at	 run	 -me	

l  No	 support	 for	 mul--‐point	 queries	

l  Not	 easy	 to	 support	 parallel	 retrieval/processing	

l  No	 support	 for	 retrieving	 por-ons	 of	 the	 network	

l  Would	 like	 to	 support	 different	 storage	 backends	

l  Most	 prior	 techniques	 primarily	 op-mized	 for	 disks	

Prior	 Work:	 Limita-ons	

System	 Architecture	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica>on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

System	 Architecture	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica>on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

Currently supports a programmatic API to
access the historical graphs

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan 2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Table 1: Options for node attribute retrieval. Similar options

exist for edge attribute retrieval.

Option Explanation
-node:all (default) None of the node attributes
+node:all All node attributes
+node:attr1 Node attribute named “attr1”; overrides

“-node:all” for that attribute
-node:attr1 Node attribute named “attr1”; overrides

“+node:all” for that attribute

3.2 System Overview

Figure 2 shows a high level overview of our system and its key
components. At a high level, there are multiple ways that a user or
an application may interact with a historical graph database. Given
the wide variety of network analysis or visualization tasks that are
commonly executed against an information network, we expect a
large fraction of these interactions will be through a programmatic
API where the user or the application programmer writes her own
code to operate on the graph (as shown in the figure). Such interac-
tions result in what we call snapshot queries being executed against
the database system. Executing such queries is the primary focus
of this paper, and we further discuss these types of queries below.
In ongoing work, we are also working on developing a high-level
declarative query language (similar to TSQL [24]) and query pro-
cessing techniques to execute such queries against our database. As
a concrete example, an analyst who may have designed a new net-
work evolution model and wants to see how it fits the observed data,
may want to retrieve a set of historical snapshots and process them
using the programmatic API. On the other hand, a declarative query
language may better fit the needs of a user interested in searching
for a temporal pattern (e.g., find nodes that had the fastest growth

in the number of neighbors since joining the network).
Next, we briefly discuss snapshot queries and the key compo-

nents of the system.

3.2.1 Snapshot Queries

We differentiate between a singlepoint snapshot query and a mul-

tipoint snapshot query. An example of the first kind of query is:
“Retrieve the graph as of January 2, 1995”. On the other hand,
a multipoint snapshot query requires us to simultaneously retrieve
multiple historical snapshots. An example of such a query is: “Re-
trieve the graphs as of every Sunday between 1994 to 2004”. We
also support more complex snapshot queries where a TimeExpres-

sion or a time interval is specified instead. Any snapshot query
can specify whether it requires only the structure of the graph, or a
specified subset of the node or edge attributes, or all attributes.

Specifically, the following is a list of some of the retrieval func-
tions that we support in our programmatic API.
GetHistGraph(Time t, String attr options): In this basic singlepoint

graph retrieval call, the first parameter indicates the time; the
second parameter indicates the attribute information to be fetched
from the database, as a string formed by concatenating sub-
options listed in Table 1. For example, attr options = “+node:all-
node:salary+edge:name” specifies that all node attributes ex-
cept salary, and the edge attribute name should be fetched.

GetHistGraphs(List<Time> t list, String attr options), where t list
specifies a list of time points.

GetHistGraph(TimeExpression tex, String attr options): This is used
to retrieve a hypothetical graph using a multinomial Boolean
expression over time points. For example, the expression (t1 ∧
¬t2) specifies the components of the graph that were valid at

time t1 but not at time t2. The TimeExpression data struc-
ture consists of a list of k time points, {t1, t2, . . . , tk}, and a
Boolean expression over them.

GetHistGraphInterval(Time ts, Time te, String attr options): This is
used to retrieve a graph over all the elements that were added
during the time interval [ts, te). This query also fetches the
transient events, not fetched (by definition) by the above calls.

The (Java) code snippet below shows an example program that re-
trieves several graphs, and operates upon them.

/* Loading the index */
GraphManager gm = new GraphManager(. . .);
gm.loadDeltaGraphIndex(. . .);
. . .
/* Retrieve the historical graph structure along with node names as of
Jan 2, 1985 */
HistGraph h1 = gm.GetHistGraph(“1/2/1985”, “+node:name”);
. . .
/* Traversing the graph*/
List<HistNode> nodes = h1.getNodes();
List<HistNode> neighborList = nodes.get(0).getNeighbors();
HistEdge ed = h1.getEdgeObj(nodes.get(0), neighborList.get(0));
. . .
/* Retrieve the historical graph structure alone on Jan 2, 1986 and Jan
2, 1987 */
listOfDates.add(“1/2/1986”);
listOfDates.add(“1/2/1987”);
List<HistGraph> h1 = gm.getHistGraphs(listOfDates, “”);
. . .

Eventually, our goal is to support Blueprints, a collection of inter-
faces analogous to JDBC but for graph data. Blueprints is a generic
graph Java API that already binds to various graph database back-
ends (e.g., Neo4j), and many graph processing and programming
frameworks are built on top of it (e.g., Gremlin, a graph traversal
language8; Furnace, a graph algorithms package9; etc.). By sup-
porting the Blueprints API, we immediately enable use of many of
these already existing toolkits.

3.2.2 Key Components

There are two key data structure components of our system.

1. GraphPool is an in-memory data structure that can store multi-
ple graphs together in a compact way by overlaying the graphs
on top of each other. At any time, the GraphPool contains: (1)
the current graph that reflects the current state of the network,
(2) the historical snapshots, retrieved from the past using the
commands above and possibly modified by an application pro-
gram, and (3) materialized graphs, which are graphs that corre-
spond interior or leaf nodes in the DeltaGraph, but may not cor-
respond to any valid graph snapshot (Section 4.5). GraphPool
exploits redundancy amongst the different graph snapshots that
need to be retrieved, and considerably reduces the memory re-
quirements for historical queries. More specifically, memory
footprint of the system is given by: |Gc + G1 + · · · + Gn| ≈
|Gc ∪G1 ∪G2 · · · ∪Gn| + z, where Gc is the current graph,
G1, . . . , Gn are retrieved snapshots, and z is the small extra
overhead of maintaining the overlaid structure. We discuss
GraphPool in detail in Section 6.

2. DeltaGraph is a disk-resident index structure that stores the
historical network data using a hierarchical index structure over
deltas and leaf-level eventlists (called leaf-eventlists). To exe-
cute a snapshot retrieval query, a set of appropriate deltas and
leaf-eventlists are fetched and the resulting graph snapshot is

8http://github.com/tinkerpop/gremlin/wiki
9http://github.com/tinkerpop/furnace/wiki

l  Hierarchical	 index	 structure	 with	 (logical)	 snapshots	 at	 the	 leaves	
l  Only	 the	 edge	 deltas	 stored	 explicitly	
l  Key	 parameter:	 differen>al	 func>on	 (f,	 f1,	 f2)	
l  Can	 have	 mul-ple	 hierarchies	 within	 the	 same	 structure	

DeltaGraph	

S7=
f(S5,S6)

S5 =
f(S1,S2)

S6=
f(S3,S4)

S1 S2
S3 S4

S8=∅

∆(S1,S5) ∆(S2,S5)

∆(S5,S7) ∆(S6,S7)

∆(S7,S8)

∆(S4,S6)

E1 E2 E3

L L L

∆(S3,S6)

Super-Root

Root

Δ(Si,Sj) = Sj - Si

S7=
f1(S5,S6)

S5 =
f1(S1,S2)

S6=
f1(S3,S4)

S1
S2 S3 S4

S8=∅

E1 E2 E3

L L L

S11=
f2(S9,S10)

S9 =
f2(S1,S2)

S10=
f2(S3,S4)

Super-Root

Root1 Root2

l  Deltas	 stored	 in	 a	 key-‐value	 store	
l  Currently	 using	 disk-‐based	 Kyoto	 Cabinet	

l  Each	 edge	 delta	 split	 into	 mul-ple	 smaller	 deltas	
l  Ver-cally	 by	 columns:	 To	 retrieve	 only	 some	 a^ributes	
l  Horizontally	 by	 nodes:	 To	 facilitate	 distributed	 processing,	 and	 to	 speed	 up	

construc-on	
l  The	 skeleton	 maintained	 in	 memory	

l  Expected	 to	 be	 small	 –	 the	 deltas	 are	 usually	 large	 to	 take	 advantage	 of	
compression	 and	 to	 reduce	 the	 number	 of	 I/Os	

l  Memory	 materializa-on	
l  Basic	 idea:	 Explicitly	 materialize	 a	 snapshot	 in	 memory	

l  “Current	 graph”	 treated	 as	 materialized	 (assuming	 an	 online	 system)	
l  In	 the	 DeltaGraph,	 add	 an	 edge	 with	 cost	 0	 from	 the	 root	
l  Enables	 much	 flexibility	 in	 reducing	 the	 snapshot	 retrieval	 costs	

DeltaGraph	 Storage	

Snapshot	 Queries	
l  Single	 point:	 Lowest	 weight	 Path	 from	 Root	

l  Edge	 is	 associated	 with	 several	 different	 weights	 for	 different	 a^ributes	
l  Mul--‐point:	 Lowest	 weight	 Steiner	 Tree	 from	 Root	

l  Use	 the	 standard	 2-‐approxima-on	 for	 this	 purpose	
l  Similar	 techniques	 for	 other	 types	 of	 more	 complex	 queries	

involving	 >me-‐expressions	

S7

S5 S6

S1 S2 S3 S4
c(E1)

c(∆(S1,S5))

c(E2)

S8

St1

c(S1,t1) c(S2,t1)

c(E3)

c(∆(S5,S7))

c(∆(S7,S8))

S7

S5 S6

S1 S2 S3 S4

S8

St1 St2 St3

Name Description

Intersection f(a,b,c...) = a∩b∩c…

Union f(a,b,c...) = a∪b∪c...

Skewed f (a, b) = a + r.(b − a), 0 ≤ r ≤ 1

Right Skewed f (a, b) = a ∩ b + r.(b − a ∩ b), 0 ≤ r ≤ 1

Left Skewed f (a, b) = a ∩ b + r.(a − a ∩ b), 0 ≤ r ≤ 1

Mixed f(a,b,c...) = a + r1.(δab + δbc ...) − r2.(ρab +ρbc...),0≤r2 ≤r1
≤ 1

Balanced f(a,b,c...) = a + 0.5(δab + δbc ...) −0.5(ρab +ρbc ...)

Empty f(a,b,c...) = ∅

Differen-al	 Func-ons	
l  Choice	 of	 differen-al	 func-on	 greatly	 influences	 the	 proper-es	
l  Many	 func-ons	 of	 interest	

Analysis	
l  Model	 of	 graph	 dynamics	

l  G|E|:	 Graph	 aNer	 |E|	 events	
l  Assume	 a	 constant	 rate	 of	 inserts	 and	 deletes	

l  Not	 equivalent	 to	 assuming	 constant	 rate	 of	 change/-me	

l  Summary	 of	 results	
l  Balanced	 func-on	 balances	 the	 retrieval	 -mes	 at	 the	 expense	 of	 higher	

storage	 requirements	
l  Space	 requirements	

l  Interval	 trees:	 O(|E|)	
l  Segment	 trees:	 O(|E|	 log|E|)	
l  DeltaGraph:	 Somewhere	 between	 O(|E|)	 and	 O(|E|	 log	 N)	

l  Depending	 on	 the	 differen-al	 func-on,	 arity,	 and	 graph	 dynamics	
l  N	 =	 Number	 of	 leaves	

Some	 More	 Details	
l  DeltaGraph	 Construc-on	

l  Bo^om-‐up:	 Similar	 to	 the	 construc-on	 of	 a	 bulkloaded	 B+-‐tree	
l  Construc-on	 parameters:	 	

l  Evetlist	 size:	 L,	 Arity:	 k	
l  Differen-al	 Func-on:	 f()	
l  Par--oning	 of	 the	 nodes	

l  Construc-on	 algorithm	 memory	 intensive	
l  Need	 to	 do	 in	 a	 par--oned	 fashion	 to	 handle	 large	 graphs	
l  Details	 in	 the	 paper	

l  Choosing	 what	 to	 materialize	
l  Current	 approach	 is	 to	 materialize	 one	 or	 two	 of	 the	 top	 levels	
l  Inves-ga-ng	 approaches	 based	 on	 facility	 loca>on	 	

GraphPool	
l  Goal:	 Store	 many	 graphs	 in	 memory	 in	 an	 overlaid	 fashion	

l  To	 minimize	 memory	 consump-on	
l  To	 reduce	 retrieval	 cost	 by	 using	 bitmaps	 to	 encode	 differences	

Gt1 Gcurrent

Gt2
GraphPool{current, t1, t2}

Empirical	 Results	
l  DeltaGraph	 vs	 In-‐Memory	 Interval	 Tree	
	

1998 1999 2000
Query Timepoint

0

500

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(a) Performance: Dataset 2a

Interval Tree
DG
DG (Total Mat)

0

100

200

300

Sp
ac

e
(M

B
)

(b) Memory: Dataset 2a

Interval Tree
DG
DG (Total Mat)

Dataset 2a: 500,000 nodes+edges, 500,000 events

Empirical	 Results	
l  Effect	 of	 Materializa-on	

0

200

400

600

Ti
m

e
(m

s)

(a) Average Query Time

None
Root
Root’s children
Root’s grandchildren

0

20

40

60

80

Sp
ac

e
(M

B)

(b) Memory Consumption

None

Root

Root’s children

Root’s grandchildren

Empirical	 Results	
l  Differen-al	 Func-ons,	 A^ributes	

1980 1985 1990
Query Timepoint

0

200

400

600

800

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(a) Int vs Bal (Dataset 1a)

Balanced
Intersection (root materialized)
Balanced (root materialized)

1990 1991 1992 1993
Query Timepoint

0

50

100

150

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(b) Different mixed functions (Dataset 2c)

r1=0.1, r2=0.1
r1=0.5, r2=0.5
r1=0.9, r2=0.9

1990 1991 1992
Query Timepoint

0

200

400

600

800

1000

G
ra

ph
 R

et
ri

ev
al

 T
im

e
(m

s)

(c) Retrieval with and without attributes (Dataset 2c)

Structure+Attributes
Structure Only

l Overview	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Distributed	 Management	 of	 Dynamic	 Graphs	

l Conclusions	

Outline 	 	

System	 Architecture	

Con-nuous	
Query	

Processor	

One-‐-me	
Query	

Processor	

Blueprints	 API	 Historical	
Query	

Processor	

Replica-on	
Manager	 Co

m
m
un

ic
a-

on
s	 M

od
ul
e	

GraphPool	
Current	 graph;	
Views;	
Historical	
snapshots	

DeltaGraph	
Persistent,	 Historical	 	

Graph	 Storage	

Replica>on	 	
Maintenance	

Forwarded	
Queries	

Graph	
Updates	

l  Graph	 par--oning	 hard	 to	 do	 effec-vely	
l  Random	 par--oning	 typically	 results	 in	 large	 edge	 cuts	 	

à Distributed	 traversals	 to	 answer	 queries	 leading	 to	 high	 latencies	
l  Sophis-cated	 par--oning	 techniques	 oNen	 do	 not	 work	 either	

l  Clean,	 disjoint	 par--onings	 oNen	 do	 not	 exist	
l  Hard	 to	 scale	 (although	 some	 recent	 work)	

l  Not	 appropriate	 for	 highly	 dynamic	 environments	

l  We	 employ	 an	 aggressive	 replica-on	 approach	 to	 reduce	 latencies	
l  How	 to	 choose	 what	 to	 replicate?	 –	 A	 new	 “fairness”	 criterion	
l  Eager	 or	 Lazy	 replica-on?	 –	 Fine-‐grained	 access	 pa^ern	 monitoring	

Mo-va-on	

Prior	 Work	
l  Pujol	 et	 al.	 [SIGCOMM’11]	

l  Local	 seman-cs:	 For	 every	 node,	 every	 neighbor	 is	 replicated	
locally	 (if	 not	 already	 present)	

l  High	 replica-on	 overhead	
l  Similar	 approach	 proposed	 by	 Huang	 et	 al.	 [VLDB’11]	

l  Adap-ve	 replica-on	 [Wolfson	 et	 al.,	 TODS’97]	
l  Monitor	 access	 frequencies	
l  Focused	 on	 tree	 communica-on	 networks	

l  Feed	 delivery	 [Silberstein	 et	 al.,	 SIGMOD’10]	
l  Similar	 problem	 in	 a	 publish-‐subscribe	 se�ng	
l  No	 reciprocal	 rela-onship	 between	 publishers	 and	 subscribers	

Our	 Approach	
l  Key	 idea	 1	 	

l  Use	 a	 “fairness”	 criterion	 to	 decide	 what	 to	 replicate	
l  For	 every	 node,	 at	 least	 t	 frac-on	 of	 nodes	 should	 be	 present	 locally	

l  Can	 make	 some	 progress	 for	 all	 queries	
l  Guaranteeing	 fairness	 NP-‐Hard	

	

Local Semantics

Fair with t = 2/3

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

! "

#$% #$$% #$$$%

Figure 2: (i) An example graph partitioned across two partitions; (ii) Maintaining local semantics [41] requires replicating 80% of
the nodes; (iii) We can guarantee fairness with τ = 2

3
by replicating just two nodes

load of a site is equally important. Key resources that can get hit
hard in such scenario are the CPU and the main memory. Once
again, hash partitioning naturally helps us with guaranteeing bal-
anced load, however skewed replication decisions may lead to load
imbalance.
Fairness Criterion: Ideally we would like that all queries are ex-
ecuted with very low latencies, which in our context, translates to
minimizing the number of pulls that are needed to gather infor-
mation needed to answer a query. For “fetch neighbors’ updates”
queries, this translates into minimizing the number of neighbors
that are not present locally. In a recent work, Pujol et al. [41] pre-
sented a solution to this problem where they guarantee that all the
neighbors of a node are replicated locally, and the replicas are kept
up-to-date (they called this local semantics). This guarantees that
no pulls are required to execute the query. However, the number of
replicas needed to do this in a densely connected graph can be very
high. Figure 2 shows an instance of this where we need to replicate
8 out of 10 nodes to guarantee local semantics for all the partitions.
The cost of maintaining such replicas is likely to overwhelm the
system. This may be okay in a highly over-provisioned system (we
would expect Facebook to be able to do this), but in most cases, the
cost of additional resources required may be prohibitive.
Instead, we advocate a more conservative approach here where

we attempt to ensure that all queries can make some progress lo-
cally, and the query latencies are largely uniform across the nodes
of the graph. Such uniformity is especially critical when we are us-
ing read/write frequencies to make replication decisions, because
the nodes with low read frequencies tend to have their neighbors
not replicated, and queries that start at such nodes suffer from high
latencies. We encapsulate this desired property using what we call
a fairness criterion. Given a τ ≤ 1, we require that for all nodes in
the graph, at least a τ fraction of its neighbors are present or repli-
cated locally. In case of “fetch neighbors’ updates” queries, this
allows us to return some answers to the query while waiting for
the information from the neighbors that are not present locally. For
other queries, the fairness requirement helps in making progress on
the queries, but the effect is harder to quantify precisely, and we
plan to analyze it further in future work. As we can see in Figure
2(c), we need to replicate 2 nodes to guarantee a fairness of 0.8 for
the example graph.
Provide Cushion for Flash Traffic: Flash traffic is simply a flood
of unexpected read/write requests issued to the system within a
small period of time. For example, events like earthquake could
cause a deluge of tweets to be posted and consumed on Twitter
within seconds. In such situation, any system that does aggres-
sive active replication (e.g., if we were maintaining local seman-
tics) could suffer significantly, as the bandwidth requirement will
increase suddenly. We do not optimize for flash traffic directly in
this work. However, conservative replication and hash-based parti-
tioning helps in alleviating these problems in our system.

3. REPLICATION MANAGER
In this section, we describe the design of our replication manager

in detail. We begin with a brief overview and describe the key
operating steps. We then discuss each of the steps in detail.

3.1 Overview
We define some notation that we use in the rest of the paper. Let

G(V,E) denote the data graph, let Π = {P1, · · · , Pl} denote the
disjoint partitions created by hash partitioning, i.e., ∀i : Pi ⊂ V
and ∩iPi = φ. Each of the partitions Pi itself is divided into a
number of clusters, Ci1, · · · , Cik (we assume the same number of
clusters across the partitions for clarity). All replication decisions
are made at the granularity of a cluster, i.e., the replication deci-
sions for all nodes within a cluster are identical (this does not how-
ever mean that the nodes are replicated as a group – if a node has
no edges to any node in another partition, we will never replicate it
to that partition). We discuss both the rationale for the clustering,
and our approach to doing it below.

Notation Description
Π = {P1, · · · , Pl} Set of all partitions
Rijk Replication table corresponding to the

cluster Cij and partition Pk

Cij jth cluster of Pi

〈Cij , Pk〉 a cluster-partition pair, i '= k
H Cost of a push message
L Cost of a pull message
ω(ni, t) Write frequency of ni at time interval t
ω(Cij , t) Cumulative write frequency of Cij

ρ(ni, t) Read frequencies for ni

ρ(Pk, Cij) Cumulative read frequency for Pk w.r.t.
Cij

Table 1: Notation

Implementing the Replication Decisions: As we have discussed
before, we use CouchDB as our backend store and to implement
the basic replication logic itself. In CouchDB, we can specify a
table (called database in CouchDB) to be replicated between two
CouchDB servers. Our replication logic is implemented on top of
this as follows. For every clusterCij ∈ Pi, for every other partition
Pk with which it has at least one edge, we create a table, Rijk , and
ask it to be replicated to the CouchDB server corresponding to Pk.
We then copy the relevant contents from Cij to be replicated to that
tableRijk . Note that, we usually do not copy the entire information
associated with a graph node, but only the information that would
be of interest in answering the query (e.g., the latest updates, rather
than the history of all updates).
If the decision for the cluster-partition pair 〈Cij , Pk〉 is a “push”

decision, then we ask the CouchDB server to keep this table con-
tinuously replicated (by setting an appropriate flag). Otherwise, the
table has to be manually sync-ed. We discuss the impact of this
design decision on the overall performance of the system in detail
in Section 5. We periodically delete old entries from Rijk to keep
its size manageable.

Our	 Approach	
l  Key	 idea	 2	 	

l  Exploit	 pa^erns	 in	 the	 read/write	 access	 frequencies	

l  Use	 pull	 replica-on	 in	 the	 first	 12	 hours,	 push	 in	 the	 next	 12	
l  Significant	 benefits	 from	 adap-vely	 changing	 the	 replica-on	
decision	

l  Such	 pa^erns	 observed	 in	 human-‐centric	 networks	 like	 social	
networks	

	

We also need to maintain metadata in partition Pk recording
which clusters are pushed, and which clusters are not (consulting
Rijk alone is not sufficient since partial contents of a node may
exist in Rijk even if it is not actively replicated). There are two
pieces of information that we maintain: first, we globally replicate
the information about which clusters are replicated to which parti-
tions. Since the number of clusters is typically small, the size of this
metadata is not significant. Further, the replication decisions are
not changed very frequently, and so keeping this information up-
to-date does not impose a significant cost. Secondly, for each node,
we maintain the cluster membership for all its cross-partition neigh-
bors. This coupled with the cluster replication information enables
us to deduce whether a cross-partition neighbor is actively repli-
cated (pushed) or not. Note that, the cluster membership informa-
tion is largely static, and is not expected to change frequently. If we
were to instead explicitly maintain the information about whether
a cross-partition neighbor is replicated with each node, the cost of
changing the replication decisions would be prohibitive.

How and When to Make the Replication Decisions: We present
our algorithms for making the replication decisions in the next sec-
tion. Here we present a brief overview.
• The key information that we use in making the replication deci-
sions are the read/write access patterns for different nodes. We
maintain this information with the nodes at a fine granularity, by
maintaining two histograms for each node. As an example, for a
social network, we would wish to maintain histograms spanning
a day, and we may capture information at 5-minute granulari-
ties (giving us a total of 120 entries). We use the histogram as a
predictive model for future node access patterns. However, more
sophisticated predictive models could be plugged in instead. We
discuss this further in Section 3.2.

• For every cluster-partition pair 〈Cij , Pj〉, we analyze the aggre-
gate read/write histograms of Cij and Pk to choose the switch
points, i.e., the times at which we should change the decision
for replicating Cij to Pk. As we discuss in the next section, this
is actually not optimal since it overestimates the number of pull
messages required. However, not only can we do this very effi-
ciently (we present a linear-time optimal algorithm), but we can
also make the decisions independently for each cluster-partition
pair affording us significant more flexibility.

• When the replication decision for a cluster-partition pair 〈Cij , Pk〉
is changed from push to pull, we need to ensure that the fairness
criterion for the nodes in Pk is not violated. We could attempt
to do a joint optimization of all the decisions involving Pk to
ensure that it does not happen. However, the cost of doing that
would be prohibitive, and further the decisions can no longer be
made in a decentralized fashion. Instead we reactively address
this problem by heuristically adjusting some of the decisions for
Pk to guarantee fairness.

In the rest of section, we elaborate on the motivation behind moni-
toring access patterns and our clustering technique.

3.2 Monitoring Access Patterns
Many approaches have been proposed in the past for making

replication decisions based on the node read/write frequencies to
minimize the network communication while decreasing query la-
tencies. Here we present an approach to exploit periodic patterns
in the read/write accesses, often seen in applications like social net-
works [4, 13], to further reduce the communication costs. We illus-
trate this through a simple example shown in Figure 3. Here for two
nodes w and v that are connected to each other but are in different

! "

#$%&'()*+%,-./0(1*-2(3(/0 #$%&'(*,&4-./0(1*-2(3(/5
!*+%,-(&%(671*(8*&9:'&*+%;3(

<=>?=>?/?/@
A,&4-(&%(671*(8*&9:'&*+%;3

(</?/?B?=>@

C= C/

Figure 3: Illustrating benefits of fine-grained decision making:
Making decisions at 6-hr granularity will result in a total cost
of 8 instead of 23.
partitions, we have that over the course of the day, w is predicted to
be updated 24 times, and whereas v is predicted to be read (causing
a read on w) 23 times. Assuming the push and pull costs are iden-
tical, we would expect the decision of whether to push the updates
to w to the partition containing v or not to be largely immaterial.
However, when we look at fine granularity access patterns, we can
see that the two nodes are active at different times of the day, and
we can exploit that to significantly reduce the total communication
cost, by having v pull the updates fromw during the first half of the
day, and having w push the updates to v in the second half of the
day. In the context of human-activity centered networks like social
networks, we expect such patterns to be ubiquitous in practice.
To fully exploit such patterns, we collect fine granularity infor-

mation about the node access patterns. Specifically, for each node
we maintain two equi-width histograms, one that captures the up-
date activity, and one that captures the read activity. Both of these
histograms are maintained along with the node information in the
CouchDB server. Wewill assume that the histogram spans 24 hours
in our discussion; in general, we can either learn an appropriate pe-
riod, or set it based on the application. We use these histograms as
a predictive model for the node activity in future.
For a node ni, we denote by ω(ni, t) the predicted update fre-

quency for that node during the time interval starting at t (recall
that the width of the histogram buckets is fixed and hence we omit
it from the notation). We denote cumulative write frequency for all
nodes in a cluster Cij for that time interval by ω(Cij , t). We sim-
ilarly define ρ(ni, t) to denote the read frequency for ni. Finally,
we denote by ρ(Pk, Cij , t) the cumulative read frequency for Pk

with respect to the cluster Cij (i.e., the number of reads in Pk that
require access to a node in Cij).

3.3 Clustering
As we discussed above, we cluster all the nodes in a partition into

multiple clusters, and make replication decisions for the cluster as a
unit. However, we note that this does not mean that all the nodes in
the cluster are replicated as a unit. For a given node n, if it does not
have a neighbor in a partition Pj , then it will never be replicated
at that partition. Clustering is a critical component of our overall
framework for several reasons.
First, since we would like to be able to switch the replication

decisions frequently to exploit the fine-grained read/write frequen-
cies, the cost of changing these decisions must be sufficiently low.
The major part of this cost is changing the appropriate metadata
information as discussed above. By having a small number of clus-
ters, we can reduce the number of required entries that need to be
updated after a decision is changed. Second, clustering also helps
us in reducing the cost of making the replication decisions itself,
both because the number of decisions to be made is smaller, and
also because the inputs to the optimization algorithm are smaller.
Third, clustering helps us avoid overfitting. Fourth, clustering makes
node addition/deletion easier to handle as we can change node’s as-
sociation to cluster transparently w.r.t. other system operations. By
making decisions for clusters of nodes together, we are in essence

Our	 Approach	
l  Key	 idea	 3	 	

l  Make	 replica-on	 decisions	 for	 all	 nodes	 in	 a	 pair	 of	 par--ons	 together	
l  Prior	 work	 had	 suggested	 doing	 this	 for	 each	 (writer,	 reader)	 pair	 separately	
l  Works	 in	 the	 publish-‐subscribe	 domain,	 but	 not	 here	

l  Can	 be	 reduced	 to	 maximum	 density	 sub-‐hypergraph	 problem	

!"

!#

!$

!%

&"

&#

&$

&%

'(!")*+*# ,(&")*+*$

'(!#)*+*-

'(!$)*+*.

'(!%)*+*#

,(&#)*+*#

,(&$)*+*#

,(&%)*+*$

!"#

!"

!#

!$

!%

&"

&#

&$

&%

!""#$%&'($)$*+$,$-.

!"

!#

!$

!%

&"

&#

&$

&%

!"""#$%&'($)$/+$,$-.

01'2

0133

0133

01'2

01'2

0133

0133

0133

!"

!% !$

!#

&"

&% &$

&#

!"4#

Figure 4: (i) An example instance where we consider whether to replicate the single-node clusters from the left partition to the right
partition; (ii) Making decisions for each cluster-partition pair independently; (iii) Optimal decisions; (iv) Modeling the problem
instance as a weighted hypergraph.

averaging their frequency histograms, and that can help us in better
handling the day-to-day variations in the read/write frequencies.
To ensure that clustering does not reduce the benefits of fine-

grained monitoring, we create the clusters by grouping together the
nodes that have similar write frequency histograms. More specif-
ically, we treat the write frequency histogram as a vector, and use
the standard k-means algorithm to the clustering. We discuss the
impact of different choices of k in our experimental evaluation.
We note that clustering is done offline, and we could use sam-

pling techniques to do it more efficiently. When a new node is
added to the system, we assign it to a random cluster first, and
reconsider the decision for it after sufficient information has been
collected for it.

4. MAKING REPLICATION DECISIONS
In this section, we present our algorithms for making replica-

tion decisions. We assume that the clustering decisions are al-
ready made (using the k-means algorithm), and design techniques
to make the cluster-level replication decisions. We begin with a
formal problem definition, and analyze the complexity of the prob-
lem. We then present an optimal linear-time algorithm for making
the replication decisions for a given cluster-partition pair in isola-
tion ignoring the fairness requirement (as we discuss below, this is
not an overall optimal since the decisions for the clusters on a sin-
gle partition are coupled and cannot be made independently). We
then present an algorithm for modifying the resulting solution to
guarantee fairness.

4.1 Problem Definition
As before let G(V, E) denote the data graph, P1, · · · , Pl de-

note the hash partitioning of the graph, and let Cij denote the
clusters. We assume that fine-grained read/write frequency his-
tograms are provided as input. For the bucket that starts at t, we
let ω(ni, t),ω(Cij , t) denote write frequencies for ni and Cij ;
ρ(ni, t) denote the read frequency for ni; and , ρ(Pk, Cij , t) de-
note the cumulative read frequency for Pk with respect to the clus-
ter Cij .
Next we elaborate on our cost model. We note that the total

amount of information that needs to be transmitted across the net-
work is independent of the replication decisions made, and depends
only on the partitioning of the graph (which is itself fixed a priori).
This is because: (1) the node updates are assumed to be append-
only so waiting to send an update does not eliminate the need to
send it, and (2) we cache all the information that is transmitted from
one partition to the other partition. Further, even if these assump-
tions were not true, for small messages, the size of the payload
usually does not impact the overall cost of sending the message
significantly. Hence, our goal reduces to minimizing the number

of messages that are needed. Let H denote the cost of one push
message sent because of a node update, and let L denote the cost
of a single pull message sent from one partition to the other. We
allow H and L to be different from each other.
Given this, our optimization problem is to make the replication

decisions for each cluster-partition pair for each time interval, so
that the total communication cost is minimized and the fairness cri-
terion is not violated for any node.
It is easy to capture the read/write frequencies at very fine granu-

larities (e.g., at 5-minute granularity), however it would not be ad-
visable to reconsider the replication decisions that frequently. We
can choose when to make the replication decisions in a cost-based
fashion (by somehow quantifying the cost of making the replication
decisions into the problem formulation). However, the two costs
are not directly comparable. Hence, for now, we assume that we
have already chosen a coarser granularity at which to make these
decisions (we evaluate the effect of this choice in our experimental
evaluation).

4.2 Analysis
Figure 4(i) shows an example data graph partitioned across two

partitions that we use to illustrate the challenges with solving this
problem. We assume that the cluster size is set to 1 (i.e., each node
is a cluster by itself). We omit the intra-partition edges, and also
the time interval annotation for clarity. We consider the question of
whether to replicate the clusters from P1 to P2, and use the write
frequencies for the nodes in P1, and the read frequencies for the
nodes in P2. We call a node in P1 a writer node, and a node in P2

a reader node.
Following prior work [43], one option is to make the replication

decision for each pair of nodes, one writer and one reader, indepen-
dently. Clearly that would be significantly suboptimal, since we
ignore that there may be multiple readers connected to the same
writer. Instead, we can make the decision for each writer node in
P1 independently from the other writer nodes, by considering all
reader nodes from P2. In other words, we can make the decisions
for each cluster-partition pair. Figure 4(ii) shows the resulting de-
cisions. For example, we choose to push w1 since the total read
frequency of r1 and r2 exceeds its write frequency (here we as-
sume thatH = L).
These decisions are however suboptimal. This is because it is

useless to replicate w4 in the above instance without replicating
w2 and w3, because of the node r4. Since neither of w2 and w3

is replicated, when doing a query at node r4, we will have to pull
some information fromP1. We can collect the information fromw4

at the same time (recall that we only count the number of messages
in our cost model – the total amount of data transmitted across the
network is constant). Figure 4(iii) shows the optimal decisions.

No point in pushing w4 – r4 will have to pull from the partition anyway

Pairwise decisions Optimal

Some	 more	 details	
l  Hash	 par--oning	

l  The	 basic	 par--oning	 is	 done	 using	 standard	 hash-‐based	 techniques	
l  Be^er	 load	 balancing,	 and	 much	 simpler	 rou-ng	 logic	

l  Clustering	
l  Infeasible	 to	 make	 replica-on	 decisions	 on	 a	 per	 node	 basis	
l  Instead	 cluster	 nodes	 based	 on	 the	 read/write	 frequencies	
l  Significantly	 reduces	 the	 metadata	 needed	 to	 implement	 replica-on	

decisions	
l  Decentralized	 algorithms 	 	

l  Decisions	 made/re-‐evaluated	 independently	 at	 each	 par--on	

l  Implementa-on	
l  Use	 CouchDB	 key-‐value	 store	 for	 storing	 the	 data	
l  Leverage	 upon	 the	 replica-on	 support	 built-‐in	

Empirical	 Results	

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

1/2 hr 1 hr 2 hr 4 hr 6 hr 8 hr 12 hr

A
ve

ra
ge

 N
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Network activity across partitions

All Pull Hybrid All Push

Figure 5: Making fine-grained decisions can result in almost
33% savings over coarse-grained decisions
as logged by our replication middleware. As we discussed earlier,
once a data item is replicated to a partition, it is cached and will not
be transferred again. Because of this, the amount of data transfer
across the servers is independent of the replication decisions that
are made (we can easily modify the cost functions in our algorithms
to account for this if desired). Hence for most of the results, we re-
port the total number of push and pull messages (i.e., we assume
H = L = 1).

For a push decision, we use continuous replication of CouchDB
and there is a message involved every time the corresponding graph
node is updated. However, the way we count the number of pull
messages is slightly different, and reflects the constraints imposed
by CouchDB and our setup. In fact, this results in a significant
underestimation in the number of pull messages as some of our
experiments also illustrate.

The way a pull works in our system is that, the replication man-
ager asks CouchDB to sync the appropriate replication table (see
Section 3.1). However since the replication tables correspond to
clusters, all updates to that cluster are pulled from the cluster’s
home partition. To amortize the cost of this, we enforce a minimum
gap between two pulls corresponding to the same cluster by using
a timeout. In other words, if a cluster has been recently pulled, we
do not pull it again until the timeout expires. In our experimental
evaluation, the timeout is set to 800ms, so the data can be at most
800ms stale (which is reasonable in a social network application).
We further discuss the rationale in Section 5.4.7.

5.4 Results

5.4.1 Impact of Histogram Granularity
We start with a set of experiments to verify our hypothesis that

by making decisions in a fine-grained manner can result in signifi-
cant savings. Figure 5 shows the results for this experiment. Here
we varied the histogram granularity from 1/2 hour to 12 hours, and
counted the total number of messages that were needed. The all-
pull and all-push approaches are unaffected by this, however, we
can see that by making decisions at the finest granularity, i.e., every
1/2 hour, resulted in almost 33% savings over coarse-grained de-
cisions. This validates our hypothesis that we can exploit the user
activity patterns to reduce the network communication costs.

We also note that overall our default workload is read-heavy, and
hence all-push solution is usually better than all-pull solution (al-
though it results in higher memory consumption). As we move
toward coarse-grained histograms, we observed that most of the
replication decisions became push. But our algorithm is able to ex-

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Server1 Server2 Server3 Server4 Server5 Server6

A
ve

ra
ge

 N
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Network activity and load across partitions

All Pull Hybrid All Push

Figure 6: Hash partitioning results in almost uniform load
across the partitions
ploit the diversity in the access patterns when making decisions at
finer granularities to achieve significant savings.

5.4.2 Bandwidth Consumption and Network Load
Figure 6 shows the total network communication across the servers.

For each server, we aggregated the network communication result-
ing from writes happening to the corresponding partition, and the
reads directed to the partition. As we can see, all the approaches
resulted in fairly balanced load across the partitions, with hybrid
achieving almost 20% savings over all-push in all cases. This can
be attributed to the hash partitioning scheme that we use, which
guarantees that the overall read and write distributions across the
partitions are largely uniform.

5.4.3 Varying the Number of Clusters
Next we study the effect of k, the number of clusters in each

partition. We varied the number of clusters from 4 to 9, and we
show the results in Figure 7. Along with the network communica-
tion costs (plotted on the left y-axis), we also plot the size of the
cluster mapping table, the metadata that is needed to decide which
of a node’s neighbors are replicated (on the right y-axis). As we
can see, as the number of clusters increases the size of the cluster
mapping table increases as expected. What is somewhat counter-
intuitive is that the total communication cost also increases beyond
6. We expect that with large numbers of clusters, we can make
more fine-grained decisions which should aid in reducing the total
network communication cost.

The reason for this is somewhat subtle, and has to do with the
way pulls are handled in our system. Recall that a single pull ac-
tually syncs an entire cluster, i.e., it propagates all updates for a
single cluster from the home partition to the partition making the
pull. Thus increasing the cluster sizes results in an decrease in the
number of pulls that are required. We expect that if we were count-
ing the number of pulls explicitly, that would result in the behavior
as expected (however, in a read-heavy workload, that would imply
that the all-push solution would always be better by a margin).

5.4.4 Varying Write-Read Ratio
We examine how the replication techniques perform for work-

loads that have different mixes of reads and writes. We simply
varied the read/write ratio of the workload and calculated the av-
erage cost in terms of total number of communications, incurred
by the three approaches. For hybrid, we also plot the costs when
the fairness threshold τ is set to 0.5. Figure 9 shows the results of

Fine-grained, adaptive decisions can result in substantial savings
in number of messages

Empirical	 Results	

Fairness factor can be used to effectively trade-off latencies and replication cost

 0

 200000

 400000

 600000

 800000

 1e+06

4 5 6 7 8 9
 0

 5

 10

 15

 20

 25

 30

 35

A
ve

ra
ge

 u
m

be
r o

f n
et

w
or

k
 m

es
sa

ge
s (

pe
r s

ite
)

Si
ze

 o
f t

he
 C

al
us

te
r M

ap
pi

ng
/p

er
 si

te
 (i

n
M

B)Network activity across partitions

Avg All Pull
Avg Hybrid

Avg All Push
Hybrid

Figure 7: Varying the number of clusters

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 620000

 640000

 660000

 0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Fairness ratio

Impact of fairness-factor on the average \n number of messages

All Push
Hybrid

Hybrid Fair

Figure 8: Impact of fairness factor on network communication

this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.05 0.1 0.15 0.2 0.25A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Write:Read ratio

Impact of write/read ratio on network activity

All Pull
Hybrid

All Push
Hybrid 0.5 fairness

Figure 9: Increasing the write:read ratio results in favoring
pulls over pushes

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1
A

ve
ra

ge
 R

ea
d

La
te

nc
y

(m
s)

Fairness factor

Impact of fairness-factor on latency

All Push
Hybrid
All Pull

Hybrid Fair

Figure 10: Impact of the fairness factor on read query latencies

proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.

 0

 200000

 400000

 600000

 800000

 1e+06

4 5 6 7 8 9
 0

 5

 10

 15

 20

 25

 30

 35

A
ve

ra
ge

 u
m

be
r o

f n
et

w
or

k
 m

es
sa

ge
s (

pe
r s

ite
)

Si
ze

 o
f t

he
 C

al
us

te
r M

ap
pi

ng
/p

er
 si

te
 (i

n
M

B)Network activity across partitions

Avg All Pull
Avg Hybrid

Avg All Push
Hybrid

Figure 7: Varying the number of clusters

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 620000

 640000

 660000

 0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Fairness ratio

Impact of fairness-factor on the average \n number of messages

All Push
Hybrid

Hybrid Fair

Figure 8: Impact of fairness factor on network communication

this experiment. We kept the number of reads more or less con-
stant, and varied the number of writes. As we can see, our ap-
proach did consistently better than the other two. Since the number
of reads were almost constant, the performance of the all-pull ap-
proach does not change significantly. However, the costs of the
other three approaches increase almost linearly, with base hybrid
showing the best performance. In fact, with low write/read ratio,
the hybrid approach is almost equivalent to all-push, but as the
write frequency increases, pull decisions are favored, and hybrid
starts performing much better than all-push. With fairness thresh-
old set to 0.5, the hybrid approach does worse than the basic hybrid
approach, because in order to guarantee fairness, it is forced to do
more active replication than optimal.

5.4.5 Varying the Fairness Threshold
Next we investigate the impact of fairness threshold (Section

2.3). We vary the threshold from 0 (in which case, the approach is
the basic hybrid approach) to 1 (equivalent to all-push). In general,
increasing fairness threshold will result in more push decisions than
is optimal. Figure 8 illustrates this point where we plot the average
network communication cost as before. As we can see, increasing
the fairness threshold results in a move toward all-push solution.
We do not plot the cost of all-pull in this case for clarity.

Figure 5.4.5 shows the latencies of read queries for the different
approaches. As we expect, the latency is lowest for the all-push
solution, with an absolute value of about 2ms. The cost for the all-
pull approach is relatively quite high, almost 22ms. The hybrid ap-

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.05 0.1 0.15 0.2 0.25A
ve

ra
ge

 n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s (

pe
r s

ite
)

Write:Read ratio

Impact of write/read ratio on network activity

All Pull
Hybrid

All Push
Hybrid 0.5 fairness

Figure 9: Increasing the write:read ratio results in favoring
pulls over pushes

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
ea

d
La

te
nc

y
(m

s)

Fairness factor

Impact of fairness-factor on latency

All Push
Hybrid
All Pull

Hybrid Fair

Figure 10: Impact of the fairness factor on read query latencies

proach is somewhere in-between, with somewhat higher latencies
than the all-push approach but with, as we saw earlier, significantly
lower network activity. As expected, when the fairness factor is
varied, the average latency drops reaching 2ms with τ = 1.

This set of experiments not only validates our assertion that fair-
ness threshold is an important novel consideration for highly dy-
namic graph databases, but also shows the efficiency of our system
at processing queries with very low absolute latencies.

5.4.6 Varying the Graph Density
We also investigated how our system performs as we increase the

density of the graph. We changed the preferential attachment fac-
tor (PA) in the graph generator to create graph with same number
of nodes but with different densities. Here by density we mean the
average number of neighbors of a node. We changed the attach-
ment factor from 5 to 20 and analyzed the performance of different
replication strategies. This results in varying the average degree of
the graph from about 5 to about 20.

Figure 11 shows that our hybrid replication techniques continues
to perform better than all-pull and all-push approaches. One point
to note here is, as we increase the density of the graph the per-
formance of our hybrid techniques degrades, and moves towards
all-push. The reason for this is, though the write frequency of the
nodes remains the same, the cumulative read frequency increases
on an average. Thus our already read-heavy workload becomes
even more skewed towards reads, resulting a preference for the all-
push approach. We note that the cost of the all-pull approach in-
creases as expected with the increase in the graph density.

l Overview	

l Declara-ve	 Graph	 Cleaning	

l Historical	 Graph	 Data	 Management	

l Distributed	 Management	 of	 Dynamic	 Graphs	

l Conclusions	

Outline 	 	

Conclusions	 and	 Ongoing	 Work	
l  Graph	 data	 management	 becoming	 increasingly	 important	
l  Many	 challenges	 in	 dealing	 with	 the	 scale,	 the	 noise,	 and	 the	

variety	 of	 analy-cal	 tasks	
l  Presented:	 	

l  A	 declara-ve	 framework	 for	 cleaning	 noisy	 graphs	
l  A	 system	 for	 managing	 historical	 data	 and	 snapshot	 retrieval	
l  Techniques	 for	 managing	 and	 querying	 highly	 dynamic	 graphs	

l  Ongoing	 work	 on	 improving	 and	 extending	 this	 preliminary	 work	
l  Developing	 temporal	 query	 languages	 for	 graph	 querying	
l  Replica-on	 and	 pre-‐computa-on	 for	 con-nuous	 queries	
l  Efficiently	 suppor-ng	 distributed	 graph	 analy-cs	

Thank	 you	 !!	

