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World-Wide Web

10 years ago With Web
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Information Overload

Too much information, too much junk

Too little time
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Search Engines: The Savior
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Search Engine Success: Flip Side

“If you are not indexed by Google, you do not
exist on the Web”

– News.com article, 10/23/2002

Only a few major players
75% market share by Google alone

People “discover” pages through search engines
Top results: many users
Bottom results: no new users

Big question: Are we biased by search engines?
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PageRank: “Secret Ranking Recipe”

Intuition: You are “important” if many other
pages link to you

High PageRank Low PageRank

Popular pages are returned at the top
More details later...

“Rich-get-richer” problem?
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Outline

Web popularity-evolution experiment
Is “rich-get-richer” happening?

Impact of search engines
How much bias do search engines introduce?

New ranking metric
Can we avoid search-engine bias?
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Web Evolution Experiment

Collect Web history data
Is “rich-get-richer” happening?

From Oct. 2002 until Oct. 2003
154 sites monitored

Top sites from each category of Open Directory

Pages downloaded every week
All pages in each site
A total of average 4M pages every week (65GB)
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“Rich-Get-Richer” Problem

Construct weekly Web-link graph
From the downloaded data

Partition pages into 10 groups
Based on initial link popularity
Top 10% group, 10%-20% group, etc.

How many new links to each group after a
month?

Rich-get-richer → More new links to top groups
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Result: Simple Link Count

20 40 60 80 100 Popularity

1 × 106

2 × 106

3 × 106

4 × 106

Increase in number of in−links

After 7 months
70% of new links to top 20% pages
No new links to bottom 60% pages
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Result: PageRank

20 40 60 80 100
Popularity

−0.0010

−0.0005

0.0005

0.0010

0.0015

0.0020

Increase in PageRank

After 7 months
Decrease in PageRank for bottom 50% pages
Due to normalization of PageRank
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Outline

Web popularity-evolution experiment
“Rich-get-richer” is indeed happening
Unpopular pages get no attention

Impact of search engines
How much bias do search engines introduce?

New ranking metric
Page quality
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Search Engine Impact

How much bias do search engines introduce?

What we mean by bias?

What is the ideal ranking?
How do search engines rank pages?
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What is the Ideal Ranking?

What do we mean by page quality?

Very subjective notion

Different quality judgment on the same page

Can there be an “objective” definition?
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Page Quality Q(p)

Definition

The probability that an average Web user will like page
p enough to create a link to it if he looks at it

Idea: More people will like a higher quality page
Democratic measure of quality

p1: 10,000 people, 8,000 liked it, Q(p1) = 0.8
p2: 10,000 people, 2,000 liked it, Q(p2) = 0.2
→ Q(p1) > Q(p2)
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Page Quality Q(p) Cont.

In principle, we can measure Q(p) by

1. showing p to all Web users and
2. counting how many people like it

When consensus is hard to reach, pick the one
that more people like
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PageRank: Intuition

A page is “important” if many pages link to it

Not every link is equal

A link from an “important” page matters more than
others
e.g. Link from Yahoo vs Link from a random home
page
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PageRank: Detail

PageRank of pi, PR(pi):

PR(pi) = [PR(p1)/c1 + · · ·+ PR(pm)/cm] †

p1, . . . , pm: pages with links to pi

cj: number of outgoing links from pj

Links from high PageRank pages have high “weights”

†“Damping factor” is ignored for simplicity
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PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, PR(pi) is the prob-
ability to reach pi

PR(p1): probability to be at p1

Q: Probability to go from p1 to pi?

A: PR(p1)/3

Q: Probability to be at pi, PR(pi)?

A: PR(p1)/3 + PR(p2) + PR(p3)/2

Search Engines Considered Harmful Junghoo “John” Cho 19/45



UCLA

PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, PR(pi) is the prob-
ability to reach pi

p1

pi

PR(p1): probability to be at p1

Q: Probability to go from p1 to pi?

A: PR(p1)/3

Q: Probability to be at pi, PR(pi)?

A: PR(p1)/3 + PR(p2) + PR(p3)/2

Search Engines Considered Harmful Junghoo “John” Cho 19/45



UCLA

PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, PR(pi) is the prob-
ability to reach pi

p1

pi

PR(p1): probability to be at p1

Q: Probability to go from p1 to pi?

A: PR(p1)/3

Q: Probability to be at pi, PR(pi)?

A: PR(p1)/3 + PR(p2) + PR(p3)/2

Search Engines Considered Harmful Junghoo “John” Cho 19/45



UCLA

PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, PR(pi) is the prob-
ability to reach pi

p1

pi

PR(p1): probability to be at p1

Q: Probability to go from p1 to pi?

A: PR(p1)/3

Q: Probability to be at pi, PR(pi)?

A: PR(p1)/3 + PR(p2) + PR(p3)/2

Search Engines Considered Harmful Junghoo “John” Cho 19/45



UCLA

PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, PR(pi) is the prob-
ability to reach pi

p1

pip2

p3

PR(p1): probability to be at p1

Q: Probability to go from p1 to pi?

A: PR(p1)/3

Q: Probability to be at pi, PR(pi)?

A: PR(p1)/3 + PR(p2) + PR(p3)/2

Search Engines Considered Harmful Junghoo “John” Cho 19/45



UCLA

PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, PR(pi) is the prob-
ability to reach pi

p1

pip2

p3

PR(p1): probability to be at p1

Q: Probability to go from p1 to pi?

A: PR(p1)/3

Q: Probability to be at pi, PR(pi)?

A: PR(p1)/3 + PR(p2) + PR(p3)/2

Search Engines Considered Harmful Junghoo “John” Cho 19/45



UCLA

Page Quality vs PageRank

High PageRank
→ The page is currently “popular”

PageRank ≈ Page quality if everyone is given
equal chance

Before Google, PageRank may have been fair

What about now?
High PageRank → High Quality?
Low PageRank → Low Quality?

PageRank is biased against new pages

How to measure the PageRank bias?
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Measuring Search-Engine Bias

Ideal experiment:
Divide the world into two groups

The users who do not use search engines
The users who use search engines very heavily

Compare popularity evolution

Problem: Difficult to conduct in practice
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Theoretical Web-User Models

Let us do theoretical experiments!
Random-surfer model

Users follow links randomly
Never use search engines

Search-dominant model
Users always start with a search engine
Only visit pages returned by the search engine

→ Compare popularity evolution
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Basic Definitions for the Models

(Simple) Popularity P(p, t)
Fraction of Web users that like p at time t
E.g, 100,000 users, 10,000 like p, P(p, t) = 0.1

Visit Popularity V(p, t)
Number of users that visit p in a unit time

Awareness A(p, t)
Fraction of Web users who are aware of p
E.g., 100,000 users, 30,000 aware of p, A(p, t) = 0.3

P(p, t) = Q(p) · A(p, t)
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Random-Surfer Model

Popularity-Equivalence Hypothesis

V(p, t) = r · P(p, t) (or V(p, t) ∝ P(p, t))

PageRank is visit probability under random-surfer model
Higher popularity → More visitors

Random-Visit Hypothesis

A visit is done by any user with equal probability
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Random-Surfer Model: Analysis

Current popularity P(p, t)

→ Number of visitors from V(p, t) = r · P(p, t)

→ Awareness increase ∆A(p, t)

→ Popularity increase ∆P(p, t)

→ New popularity P(p, t + 1)

Formal Analysis: Differential Equation

P(p, t) =
[
1− e−

r
n

∫ t

0
P(p,t)dt

]
Q(p)
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Random-Surfer Model: Result

Theorem

The popularity of page p evolves over time through
the following formula:

P(p, t) =
Q(p)

1 + [ Q(p)
P(p,0) − 1] e−[ r

nQ(p)]t

Q(p): quality of p
P(p, 0): initial popularity of p at time zero
n: total number of Web users.
r: normalization constant in V(p, t) = r · P(p, t)
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Random-Surfer Model: Popularity Graph

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

Infant Expansion Maturity

Popularity

Time

Q(p) = 1, P(p, 0) = 10−8,
r

n
= 1
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Comparison with Google Evolution

Jan98 Jan99 Jan00 Jan01 Jan02 Jan03

0.05

0.10

0.15

0.20

0.25

Audience reach

Time

Data from Nielsen//NetRatings

Q(p) = 0.3, P(p, 0) = 5× 10−6,
r

n
= 8
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Search-Dominant Model

V(p, t) ∼ P(p, t)?

For ith result, how many clicks?

For PageRank P(p, t), what ranking?

Empirical measurement by Lempel et al. and us

New Visit-Popularity Hypothesis

V(p, t) = r · P(p, t)
9
4

Random-Visit Hypothesis

A visit is done by any user with equal probability
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Search-Dominant Model: Result

1500 1550 1600 1650
Time

0.2

0.4

0.6

0.8

1.0
Popularity

∞∑
i=1

[P(p, t)](i−
9
4 ) − [P(p, 0)](i−

9
4 )(

i− 9
4

)
Q(p)i

=
r

n
t (same parameters as before)
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Comparison of Two Models

Time to final popularity
Random surfer: 25 time units
Search dominant: 1650 time units
→ 66 times increases!

Expansion stage
Random surfer: 12 time units
Search dominant: non existent

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

Infant Expansion Maturity

Popularity

Time
1500 1550 1600 1650

Time
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Search Engines Considered Harmful Junghoo “John” Cho 31/45



UCLA

Outline

Web popularity-evolution experiment
Is “rich-get-richer” happening?

Impact of search engines
Random-surfer model
Search-dominant model

New ranking metric
How to measure page quality?
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Measuring Quality: Basic Idea

Quality: probability of link creation by a new
visitor

Assuming the same number of visitors
Q(p) ∝ Number of new links

(or popularity increase)

Quality Estimator

Q(p) =

C ·

∆P(p)

/P(p) + P(p)
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Measuring Quality: Problem 1

Different number of visitors to each page
More visitors to more popular page

How to account for number of visitors?

Idea: PageRank = visit probability

Quality Estimator

Q(p) =

C ·

∆P(p)

/P(p) + P(p)
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Measuring Quality: Problem 2

No more new links to very popular pages
Everyone already knows them
∆P(p)/P(p) ≈ 0 for well-known pages

How to account for well-known pages?

Idea: P(p) = Q(p) when everyone knows p
Use P(p) to measure Q(p) for well-known pages

C: relative weight given to popularity increase

Quality Estimator

Q(p) =

C ·

∆P(p)/P(p)

+ P(p)

C: weight given to popularity increase
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Measuring Quality: Theoretical Proof

Theorem

Under the random-surfer model, the quality of page
p, Q(p), always satisfies the following equation:

Q(p) =
(n

r

) (
dP(p, t)/dt

P(p, t)

)
+ P(p, t)

Compare it with Q(p) = C · ∆P(p)

P(p)
+ P(p)
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Is Page Quality Effective?

How to measure its effectiveness?
Implement it to a major search engine?
Any other alternatives?

Idea: Pages eventually obtain deserved popularity
(however long it may take...)

“Future” PageRank ≈ Q(p)
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Page Quality: Evaluation (1)

Q(p) as a predictor of future PageRank
Compare the correlations of

“current” Q(p) with “future” PageRank
“current” PageRank with “future” PageRank

→ Q(p) predicts “future” PageRank better?

Download the Web multiple times with long
intervals
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Page Quality: Evaluation (2)

Compare the average relative error

err(p) =


∣∣∣PR(p,t4)−Q(p,t3)

PR(p,t4)

∣∣∣∣∣∣PR(p,t4)−PR(p,t3)
PR(p,t4)

∣∣∣

Result ∗

For Q(p, t3): average err = 0.32
For PR(p, t3): average err = 0.78
Q(p, t3) twice as accurate.

∗For the pages whose PageRank consistently increased/decreased from
t1 through t3.
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Quality Evaluation: More Detail

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

0.1

0.2

0.3

0.4

0.5

0.6

Q(p)
PR(p)

Fraction of pages

err(p)
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Summary

Web popularity-evolution experiment
“Rich-get-richer” is indeed happening

Impact of search engines
Random-surfer model
Search-dominant model
→ Search engines have worrisome impact

New ranking metric
Page quality: Based on popularity evolution
Identify high-quality pages early on
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Thank You

For more details, see

A. Ntoulas, J. Cho and C. Olston.
What’s New on the Web?
In WWW Conference, 2004.

J. Cho and S. Roy
Impact of Web Search Engines on Page Popularity
In WWW Conference, 2004.

J. Cho and R. Adams.
Page Quality: In Search of an Unbiased Web Ranking
UCLA CS Department, Nov. 2003.

Any Questions?
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Popularity Increase: Relative Link Count
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Popularity Increase: Relative PageRank
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Search-Dominant Model: Result
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