Search Engines Considered Harmful

In Search of an Unbiased Web Ranking

Junghoo “John” Cho
cho@cs.ucla.edu

UCLA
World-Wide Web

10 years ago

With Web

Search Engines Considered Harmful
Information Overload

- Too much information, too much junk
- Too little time

Cartoons by Randy Glasbergen
Search Engines: The Savior

Altavista
Category: Computers > Internet > Searching > Search Engines
www.altavista.com/ - 10k - Cached - Similar pages

Lycos Home Page
Skip to Search. SEARCH: Web Images Shopping. Advanced Search
| Get Search Traffic | Parental Controls. ...
Category: Computers > Internet > On the Web > Web Portals
www.lycos.com/ - 33k - Cached - Similar pages

Search Engine Watch: Tips About Internet Search Engines & Search ...
Search Engine Watch is the authoritative guide to searching at Internet search engines and search engine registration and ranking issues. ...
Category: Computers > Internet > Searching
searchenginewatch.com/ - 44k - Cached - Similar pages
“If you are not indexed by Google, you do not exist on the Web”

– News.com article, 10/23/2002

- Only a few major players
 - 75% market share by Google alone
- People “discover” pages through search engines
 - Top results: many users
 - Bottom results: no new users
“If you are not indexed by Google, you do not exist on the Web”

– News.com article, 10/23/2002

- Only a few major players
 - 75% market share by Google alone
- People “discover” pages through search engines
 - Top results: many users
 - Bottom results: no new users

- Big question: Are we biased by search engines?
PageRank: “Secret Ranking Recipe”

- Intuition: You are “important” if many other pages link to you

 ![Diagram showing high and low PageRank]

 - High PageRank
 - Low PageRank

- Popular pages are returned at the top
- More details later...
PageRank: “Secret Ranking Recipe”

- Intuition: You are “important” if many other pages link to you

- Popular pages are returned at the top
- More details later...

- “Rich-get-richer” problem?
Outline

- Web popularity-evolution experiment
 - Is “rich-get-richer” happening?
- Impact of search engines
 - How much bias do search engines introduce?
- New ranking metric
 - Can we avoid search-engine bias?
Collect Web history data
 Is “rich-get-richer” happening?

154 sites monitored
 Top sites from each category of Open Directory

Pages downloaded every week
 All pages in each site
 A total of average 4M pages every week (65GB)
“Rich-Get-Richer” Problem

- Construct weekly Web-link graph
 - From the downloaded data
- Partition pages into 10 groups
 - Based on initial link popularity
 - Top 10% group, 10%-20% group, etc.
- How many new links to each group after a month?
 - Rich-get-richer → More new links to top groups
After 7 months
- 70% of new links to top 20% pages
- No new links to bottom 60% pages
After 7 months
- Decrease in PageRank for bottom 50% pages
- Due to normalization of PageRank
Outline

- Web popularity-evolution experiment
 - “Rich-get-richer” is indeed happening
 - Unpopular pages get no attention
- Impact of search engines
 - How much bias do search engines introduce?
- New ranking metric
 - Page quality
Outline

- Web popularity-evolution experiment
 - “Rich-get-richer” is indeed happening
 - Unpopular pages get no attention

- Impact of search engines
 - How much bias do search engines introduce?

- New ranking metric
 - Page quality
How much bias do search engines introduce?
Search Engine Impact

- How much bias do search engines introduce?
- What we mean by bias?
Search Engine Impact

- How much bias do search engines introduce?
- What we mean by bias?
- What is the ideal ranking?
- How do search engines rank pages?
What is the Ideal Ranking?

What do we mean by page quality?
What is the Ideal Ranking?

What do we mean by page quality?
- Very subjective notion
- Different quality judgment on the same page
- Can there be an “objective” definition?
Page Quality $Q(p)$

Definition

The probability that an average Web user will like page p enough to create a link to it if he looks at it

- **Idea:** More people will like a higher quality page
- **Democratic measure of quality**
 - p_1: 10,000 people, 8,000 liked it, $Q(p_1) = 0.8$
 - p_2: 10,000 people, 2,000 liked it, $Q(p_2) = 0.2$
 - $Q(p_1) > Q(p_2)$
In principle, we can measure $Q(p)$ by

1. showing p to all Web users and
2. counting how many people like it

When consensus is hard to reach, pick the one that more people like
A page is “important” if many pages link to it.
PageRank: Intuition

- A page is “important” if many pages link to it
- Not every link is equal
 - A link from an “important” page matters more than others
 - e.g. Link from Yahoo vs Link from a random home page
PageRank: Detail

PageRank of p_i, $PR(p_i)$:

$$PR(p_i) = \left[\frac{PR(p_1)}{c_1} + \cdots + \frac{PR(p_m)}{c_m} \right]$$

- p_1, \ldots, p_m: pages with links to p_i
- c_j: number of outgoing links from p_j
- Links from high PageRank pages have high "weights"

† "Damping factor" is ignored for simplicity
Random-Surfer Model

When users follow links randomly, $PR(p_i)$ is the probability to reach p_i.

Q: Probability to go from p_1 to p_i?

A: $PR(p_1)/3$

Q: Probability to be at p_i, $PR(p_i)$?

A: $PR(p_1)/3 + PR(p_2) + PR(p_3)/2$
PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, $PR(p_i)$ is the probability to reach p_i

- $PR(p_1)$: probability to be at p_1
When users follow links randomly, $PR(p_i)$ is the probability to reach p_i.

- $PR(p_1)$: probability to be at p_1
- Q: Probability to go from p_1 to p_i?
PageRank: Random-Surfer Model

When users follow links randomly, $PR(p_i)$ is the probability to reach p_i.

- $PR(p_1)$: probability to be at p_1
- Q: Probability to go from p_1 to p_i?
 A: $PR(p_1)/3$
PageRank: Random-Surfer Model

Random-Surfer Model

When users follow links randomly, $PR(p_i)$ is the probability to reach p_i

- $PR(p_1)$: probability to be at p_1
- Q: Probability to go from p_1 to p_i?
 A: $PR(p_1)/3$
- Q: Probability to be at p_i, $PR(p_i)$?
PageRank: Random-Surfer Model

When users follow links randomly, \(PR(p_i) \) is the probability to reach \(p_i \)

- \(PR(p_1) \): probability to be at \(p_1 \)
- Q: Probability to go from \(p_1 \) to \(p_i \)?
 A: \(PR(p_1)/3 \)
- Q: Probability to be at \(p_i \), \(PR(p_i) \)?
 A: \(PR(p_1)/3 + PR(p_2) + PR(p_3)/2 \)
Page Quality vs PageRank

- High PageRank
 → The page is currently “popular”
- \(\text{PageRank} \approx \text{Page quality if everyone is given equal chance} \)
 - Before Google, PageRank may have been fair
- What about now?
 - High PageRank → High Quality?
 Low PageRank → Low Quality?
Page Quality vs PageRank

- High PageRank
 → The page is currently “popular”

- PageRank \approx\text{ Page quality if everyone is given equal chance}
 - Before Google, PageRank may have been fair

- What about now?
 - High PageRank → High Quality?
 - Low PageRank → Low Quality?

- PageRank is biased against new pages
 - How to measure the PageRank bias?
Measuring Search-Engine Bias

Ideal experiment:

- Divide the world into two groups
 - The users who do not use search engines
 - The users who use search engines very heavily

- Compare popularity evolution
Measuring Search-Engine Bias

Ideal experiment:
- Divide the world into two groups
 - The users who do not use search engines
 - The users who use search engines very heavily
- Compare popularity evolution

Problem: Difficult to conduct in practice
Let us do theoretical experiments!

- **Random-surfer model**
 - Users follow links randomly
 - Never use search engines

- **Search-dominant model**
 - Users always start with a search engine
 - Only visit pages returned by the search engine

→ Compare popularity evolution
Basic Definitions for the Models

(Simple) Popularity $\mathcal{P}(p, t)$
- Fraction of Web users that like p at time t
- E.g., 100,000 users, 10,000 like p, $\mathcal{P}(p, t) = 0.1$

Visit Popularity $\mathcal{V}(p, t)$
- Number of users that visit p in a unit time

Awareness $\mathcal{A}(p, t)$
- Fraction of Web users who are aware of p
- E.g., 100,000 users, 30,000 aware of p, $\mathcal{A}(p, t) = 0.3$
Basic Definitions for the Models

(Simple) Popularity $\mathcal{P}(p, t)$
- Fraction of Web users that like p at time t
- E.g., 100,000 users, 10,000 like p, $\mathcal{P}(p, t) = 0.1$

Visit Popularity $\mathcal{V}(p, t)$
- Number of users that visit p in a unit time

Awareness $\mathcal{A}(p, t)$
- Fraction of Web users who are aware of p
- E.g., 100,000 users, 30,000 aware of p, $\mathcal{A}(p, t) = 0.3$

\[
\mathcal{P}(p, t) = Q(p) \cdot \mathcal{A}(p, t)
\]
Random-Surfer Model

Popularity-Equivalence Hypothesis

\[V(p, t) = r \cdot P(p, t) \quad \text{(or } V(p, t) \propto P(p, t)) \]

- PageRank is visit probability under random-surfer model
- Higher popularity → More visitors

Random-Visit Hypothesis

A visit is done by any user with equal probability
Random-Surfer Model: Analysis

Current popularity $P(p, t)$
→ Number of visitors from $\mathcal{V}(p, t) = r \cdot P(p, t)$
→ Awareness increase $\Delta A(p, t)$
→ Popularity increase $\Delta P(p, t)$
→ New popularity $P(p, t + 1)$
Random-Surfer Model: Analysis

Current popularity $P(p, t)$

→ Number of visitors from $V(p, t) = r \cdot P(p, t)$

→ Awareness increase $\Delta A(p, t)$

→ Popularity increase $\Delta P(p, t)$

→ New popularity $P(p, t + 1)$

Formal Analysis: Differential Equation

$P(p, t) = \left[1 - e^{-\frac{r}{n} \int_{0}^{t} P(p,t) \, dt} \right] Q(p)$
Random-Surfer Model: Result

Theorem

The popularity of page p evolves over time through the following formula:

$$P(p, t) = \frac{Q(p)}{1 + \left[\frac{Q(p)}{P(p, 0)} - 1 \right] e^{-\left[\frac{r}{n} Q(p) \right] t}}$$

- $Q(p)$: quality of p
- $P(p, 0)$: initial popularity of p at time zero
- n: total number of Web users.
- r: normalization constant in $V(p, t) = r \cdot P(p, t)$
Random-Surfer Model: Popularity Graph

\[Q(p) = 1, \quad P(p, 0) = 10^{-8}, \quad \frac{r}{n} = 1 \]

Search Engines Considered Harmful

Junghoo “John” Cho
Comparison with Google Evolution

Data from Nielsen//NetRatings

\[Q(p) = 0.3, \quad \mathbb{P}(p, 0) = 5 \times 10^{-6}, \quad \frac{r}{n} = 8 \]
Search-Dominant Model

\[V(p, t) \sim P(p, t) \]
Search-Dominant Model

\[\mathcal{V}(p, t) \sim \mathcal{P}(p, t) ? \]

- For \(i \)th result, how many clicks?
- For PageRank \(\mathcal{P}(p, t) \), what ranking?

Empirical measurement by Lempel et al. and us

Random-Visit Hypothesis
A visit is done by any user with equal probability

Search Engines Considered Harmful
Junghoo “John” Cho
Search-Dominant Model

\[\mathcal{V}(p, t) \sim \mathcal{P}(p, t) \]

- For \(i \)th result, how many clicks?
- For PageRank \(\mathcal{P}(p, t) \), what ranking?
- Empirical measurement by Lempel et al. and us
Search-Dominant Model

\[\mathcal{V}(p, t) \sim \mathcal{P}(p, t) \? \]

- For \(i \)th result, how many clicks?
- For PageRank \(\mathcal{P}(p, t) \), what ranking?
- Empirical measurement by Lempel et al. and us

New Visit-Popularity Hypothesis

\[\mathcal{V}(p, t) = r \cdot \mathcal{P}(p, t)^{\frac{9}{4}} \]
Search-Dominant Model

\[\mathcal{V}(p, t) \sim \mathcal{P}(p, t)? \]
- For \(i \)th result, how many clicks?
- For PageRank \(\mathcal{P}(p, t) \), what ranking?
- Empirical measurement by Lempel et al. and us

New Visit-Popularity Hypothesis

\[\mathcal{V}(p, t) = r \cdot \mathcal{P}(p, t)^{\frac{9}{4}} \]

Random-Visit Hypothesis
A visit is done by any user with equal probability
Search-Dominant Model: Result

\[
\sum_{i=1}^{\infty} \frac{[P(p, t)]^{(i - \frac{9}{4})} - [P(p, 0)]^{(i - \frac{9}{4})}}{(i - \frac{9}{4}) Q(p)^i} = \frac{r}{n} t \quad \text{(same parameters as before)}
\]
Comparison of Two Models

- **Time to final popularity**
 - Random surfer: 25 time units
 - Search dominant: 1650 time units → 66 times increases!

- **Expansion stage**
 - Random surfer: 12 time units
 - Search dominant: non existent
Outline

- Web popularity-evolution experiment
 - Is “rich-get richer” happening?
- Impact of search engines
 - Random-surfer model
 - Search-dominant model
- New ranking metric
 - How to measure page quality?
Measuring Quality: Basic Idea

- Quality: probability of link creation by a new visitor
Measuring Quality: Basic Idea

- Quality: probability of link creation by a new visitor
- Assuming the same number of visitors
 \[Q(p) \propto \text{Number of new links} \]
 (or popularity increase)
Measuring Quality: Basic Idea

- Quality: probability of link creation by a new visitor
- Assuming the same number of visitors
 \[Q(p) \propto \text{Number of new links} \]
 (or popularity increase)

Quality Estimator

\[Q(p) = \frac{\Delta P(p)}{P(p)} \]
Measuring Quality: Problem 1

- Different number of visitors to each page
 - More visitors to more popular page
- How to account for number of visitors?

Quality Estimator

\[Q(p) = \frac{\Delta P(p)}{P(p)} \]
Measuring Quality: Problem 1

- Different number of visitors to each page
 - More visitors to more popular page
- How to account for number of visitors?
- Idea: PageRank = visit probability

Quality Estimator

\[Q(p) = \Delta P(p) \]
Measuring Quality: Problem 1

- Different number of visitors to each page
 - More visitors to more popular page
- How to account for number of visitors?
- Idea: PageRank = visit probability

Quality Estimator

\[Q(p) = \frac{\Delta P(p)}{P(p)} \]
Measuring Quality: Problem 2

- No more new links to very popular pages
 - Everyone already knows them
 - $\Delta \mathcal{P}(p)/\mathcal{P}(p) \approx 0$ for well-known pages
- How to account for well-known pages?

Quality Estimator

$$Q(p) = \Delta \mathcal{P}(p)/\mathcal{P}(p)$$
No more new links to very popular pages
- Everyone already knows them
- $\Delta \mathcal{P}(p) / \mathcal{P}(p) \approx 0$ for well-known pages

How to account for well-known pages?
- Idea: $\mathcal{P}(p) = Q(p)$ when everyone knows p
- Use $\mathcal{P}(p)$ to measure $Q(p)$ for well-known pages

Quality Estimator

$$Q(p) = \Delta \mathcal{P}(p) / \mathcal{P}(p)$$
Measuring Quality: Problem 2

- No more new links to very popular pages
 - Everyone already knows them
 - $\Delta \mathcal{P}(p)/\mathcal{P}(p) \approx 0$ for well-known pages

- How to account for well-known pages?
- Idea: $\mathcal{P}(p) = Q(p)$ when everyone knows p
 - Use $\mathcal{P}(p)$ to measure $Q(p)$ for well-known pages

Quality Estimator

$$Q(p) = C \cdot \Delta \mathcal{P}(p)/\mathcal{P}(p) + \mathcal{P}(p)$$

C: weight given to popularity increase
Theorem

Under the random-surfer model, the quality of page \(p \), \(Q(p) \), always satisfies the following equation:

\[
Q(p) = \left(\frac{n}{r} \right) \left(\frac{dP(p, t)}{dt} \frac{P(p, t)}{P(p, t)} \right) + P(p, t)
\]

Compare it with \(Q(p) = C \cdot \frac{\Delta P(p)}{P(p)} + P(p) \)
Is Page Quality Effective?

- How to measure its effectiveness?
 - Implement it to a major search engine?
 - Any other alternatives?

Idea: Pages eventually obtain deserved popularity (however long it may take...)

"Future" PageRank $\approx Q(p)$
Is Page Quality Effective?

- How to measure its effectiveness?
 - Implement it to a major search engine?
 - Any other alternatives?

- Idea: Pages eventually obtain deserved popularity (however long it may take...)
 - “Future” PageRank $\approx Q(p)$
Page Quality: Evaluation (1)

$Q(p)$ as a predictor of future PageRank

- Compare the correlations of
 - “current” $Q(p)$ with “future” PageRank
 - “current” PageRank with “future” PageRank

$\rightarrow Q(p)$ predicts “future” PageRank better?
$Q(p)$ as a predictor of future PageRank

- Compare the correlations of
 - “current” $Q(p)$ with “future” PageRank
 - “current” PageRank with “future” PageRank

→ $Q(p)$ predicts “future” PageRank better?

- Download the Web multiple times with long intervals

\[
\begin{align*}
&\text{1 month} & &\text{4 months} \\
& t_1 & & t_3 \\
& t_2 & & t_4
\end{align*}
\]
$Q(p)$ as a predictor of future PageRank

- Compare the correlations of
 - “current” $Q(p)$ with “future” PageRank
 - “current” PageRank with “future” PageRank

→ $Q(p)$ predicts “future” PageRank better?

- Download the Web multiple times with long intervals

1 month
\[t_1 \quad t_2 \quad t_3 \quad t_4 \]
4 months

$PR(p, t_3)$
$PR(p, t_4)$
Page Quality: Evaluation (1)

$Q(p)$ as a predictor of future PageRank

- Compare the correlations of
 - “current” $Q(p)$ with “future” PageRank
 - “current” PageRank with “future” PageRank

$\rightarrow Q(p)$ predicts “future” PageRank better?

- Download the Web multiple times with long intervals

\[Q(p, t_3) \]

\[PR(p, t_4) \]
Compare the average relative error

\[err(p) = \begin{cases}
\frac{|PR(p,t_4) - Q(p,t_3)|}{PR(p,t_4)} \\
\frac{|PR(p,t_4) - PR(p,t_3)|}{PR(p,t_4)}
\end{cases} \]

*For the pages whose PageRank consistently increased/decreased from \(t_1 \) through \(t_3 \).
Compare the average relative error

\[
err(p) = \begin{cases}
\frac{|PR(p,t_4) - Q(p,t_3)|}{PR(p,t_4)} \\
\frac{|PR(p,t_4) - PR(p,t_3)|}{PR(p,t_4)}
\end{cases}
\]

Result *

- For \(Q(p,t_3)\): average \(err = 0.32\)
- For \(PR(p,t_3)\): average \(err = 0.78\)
- \(Q(p,t_3)\) twice as accurate.

*For the pages whose PageRank consistently increased/decreased from \(t_1\) through \(t_3\).
Quality Evaluation: More Detail

Search Engines Considered Harmful

Junghoo “John” Cho
Summary

- Web popularity-evolution experiment
 - “Rich-get-richer” is indeed happening
- Impact of search engines
 - Random-surfer model
 - Search-dominant model
 → Search engines have worrisome impact
- New ranking metric
 - Page quality: Based on popularity evolution
 - Identify high-quality pages early on
Thank You

For more details, see

Any Questions?
Popularity Increase: Relative Link Count

Relative increase in number of in-inks

Search Engines Considered Harmful

Junghoo “John” Cho
Search Engines Considered Harmful

Junghoo “John” Cho
Search-Dominant Model: Result

Search Engines Considered Harmful

Junghoo “John” Cho