Berkeley Data Analytics Stack (BDAS)
Overview

Ion Stoica
UC Berkeley
March 7, 2013

What is Big Data used For?

• Reports, e.g.,
 – Track business processes, transactions
• Diagnosis, e.g.,
 – Why is user engagement dropping?
 – Why is the system slow?
 – Detect spam, worms, viruses, DDoS attacks
• Decisions, e.g.,
 – Decide what feature to add
 – Decide what ad to show
 – Block worms, viruses, ...

Data is only as useful as the decisions it enables
Data Processing Goals

- **Low latency (interactive) queries on historical data**: enable faster decisions
 - E.g., identify why a site is slow and fix it

- **Low latency queries on live data (streaming)**: enable decisions on real-time data
 - E.g., detect & block worms in real-time (a worm may infect 1mil hosts in 1.3sec)

- **Sophisticated data processing**: enable “better” decisions
 - E.g., anomaly detection, trend analysis

Today’s Open Analytics Stack...

- ..mostly focused on large on-disk datasets: great for sophisticated **batch** applications, but **slow**
Goals

- Easy to combine batch, streaming, and interactive computations
- Easy to develop sophisticated algorithms
- Compatible with existing open source ecosystem (Hadoop/HDFS)

Our Approach: Support Interactive and Streaming Comp.

- Aggressive use of memory
- Why?
 1. Memory transfer rates >> disk or even SSDs
 - Gap is growing especially w.r.t. disk
 2. Many datasets already fit into memory
 - The inputs of over 90% of jobs in Facebook, Yahoo!, and Bing clusters fit into memory
 - E.g., 1TB = 1 billion records @ 1 KB each
 3. Memory density (still) grows with Moore’s law
 - RAM/SSD hybrid memories at horizon

High end datacenter node

<table>
<thead>
<tr>
<th>Data transfer rates</th>
<th>Capacity</th>
<th>Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2-1GB/s (x10 disks)</td>
<td>10-30TB</td>
<td>16 cores</td>
</tr>
<tr>
<td>1-4GB/s (x4 disks)</td>
<td>1-4TB</td>
<td></td>
</tr>
<tr>
<td>40-60GB/s</td>
<td>128-512GB</td>
<td></td>
</tr>
<tr>
<td>10Gbps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Approach: Support Interactive and Streaming Comp.

- Increase *parallelism*
- Why?
 - Reduce work per node → improve latency

- Techniques:
 - Low latency parallel scheduler that achieve high locality
 - Optimized parallel communication patterns (e.g., shuffle, broadcast)
 - Efficient recovery from failures and straggler mitigation

Our Approach: Support Interactive and Streaming Comp.

- Trade between result *accuracy* and *response times*
- Why?
 - In-memory processing does not guarantee interactive query processing
 - E.g., ~10’s sec just to scan 512 GB RAM!
 - Gap between memory capacity and transfer rate increasing
- Challenges:
 - Accurately estimate error and running time for…
 - … arbitrary computations
Our Approach

- **Easy** to combine batch, streaming, and interactive computations
 - Single execution model that supports all computation models

- **Easy** to develop sophisticated algorithms
 - Powerful Python and Scala shells
 - High level abstractions for graph based, and ML algorithms

- **Compatible** with existing open source ecosystem (Hadoop/HDFS)
 - Interoperate with existing storage and input formats (e.g., HDFS, Hive, Flume, ..)
 - Support existing execution models (e.g., Hive, GraphLab)

Berkeley Data Analytics Stack (BDAS)

- Application
 - New apps: AMP-Genomics, Carat, ...

- Data Processing
 - in-memory processing
 - trade between time, quality, and cost

- Data Management

- Resource Management
 - Efficient data sharing across frameworks
 - Share infrastructure across frameworks (multi-programming for datacenters)
The Berkeley AMPLab

- "Launched" January 2011: 6 Year Plan
 - 8 CS Faculty
 - ~40 students
 - 3 software engineers
- Organized for collaboration:

The Berkeley AMPLab

- Funding:
 - DARPA data, NSF Expedition Grant
 - Industrial, founding sponsors
 - 18 other sponsors, including

Goal: next Generation of open source analytics stack for industry & academia:
- Berkeley Data Analytics Stack (BDAS)
Berkeley Data Analytics Stack (BDAS)

- Existing stack components...

- Data Processing
- Data Management
- Resource Management
Mesos [Released, vo.9]

- Management platform that allows multiple framework to share cluster
- Compatible with existing open analytics stack
- Deployed in production at Twitter on 3,500+ servers

One Framework Per Cluster Challenges

- Inefficient resource usage
 - E.g., Hadoop cannot use available resources from MPI’s cluster
 - No opportunity for stat. multiplexing
- Hard to share data
 - Copy or access remotely, expensive
- Hard to cooperate
 - E.g., Not easy for MPI to use data generated by Hadoop

Need to run multiple frameworks on same cluster
Solution: Mesos

- Common resource sharing layer
 - abstracts (“virtualizes”) resources to frameworks
 - enable diverse frameworks to share cluster

Dynamic Resource Sharing

- 100 node cluster
Spark [Release, v0.7]

- In-memory framework for **interactive** and **iterative** computations
 - Resilient Distributed Dataset (RDD): fault-tolerance, in-memory storage abstraction
- Scala interface, Java and Python APIs

Our Solution

- **Resilient Distributed Data Sets (RDD)**
 - Partitioned collection of records
 - Immutable
 - Can be created only through deterministic operations from other RDDs
- Handle of each RDD stores its **lineage**:
 - Lineage: sequence of operations that created the RDD
- Recovery: use lineage information to rebuild RDD
RDD Example

- Two-partition RDD $A = \{A_1, A_2\}$ stored on disk
 1) Apply $f()$ and cache → RDD B
 2) Shuffle, and apply $g()$ → RDD C
 3) Aggregate using $h()$ → D

\[
A_1 \xrightarrow{f()} B_1 \xrightarrow{g()} C_1 \xrightarrow{h()} D
\]

\[
A_2 \xrightarrow{f()} B_2 \xrightarrow{g()} C_2
\]

- C_1 lost due to node failure before $h()$ is computed

\[
A_1 \xrightarrow{f()} B_1 \xrightarrow{g()} C_1 \xrightarrow{h()} D
\]

\[
A_2 \xrightarrow{f()} B_2 \xrightarrow{g()} C_2
\]

\[
D = C.h()
\]
RDD Example

- C_1 lost due to node failure before $h()$ is computed
- Reconstruct C_1, eventually, on a different node

![Diagram of RDD example]

PageRank Performance

![Bar chart showing PageRank performance comparison between Hadoop and Spark]
Other Iterative Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time per Iteration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Means Clustering</td>
<td>4.1</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>

Spark Community

- 3000 people attended online training in August
- 500+ meetup members
- 14 companies contributing
Spark Streaming [Alpha Release]

- Large scale streaming computation
- Ensure exactly one semantics
- Integrated with Spark → unifies *batch, interactive, and streaming* computations!

<table>
<thead>
<tr>
<th>Spark Streaming</th>
<th>HIVE</th>
<th>Pig</th>
<th>Storm</th>
<th>MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spark Streaming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Streaming Systems

- Traditional streaming systems have a event-driven **record-at-a-time** processing model
 - Each node has mutable state
 - For each record, update state & send new records

- State is lost if node dies!

- Making stateful stream processing be fault-tolerant is challenging
Spark: Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic batch jobs

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches
Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latency

- Tested with 100 streams of data on 100 EC2 instances with 4 cores each

Comparison with Storm and S4

Higher throughput than Storm

- Spark Streaming: 670k records/second/node
- Storm: 115k records/second/node
- Apache S4: 7.5k records/second/node
Fast Fault Recovery

Recovering from faults/stragglers within 1 sec

[Chart showing interval processing time over time with a peak at 30 seconds indicating failure happens]

Sliding WordCount on 10 nodes with 30s checkpoint interval

Shark [Release, v0.2]

- HIVE over Spark: SQL-like interface (supports Hive 0.9)
 - up to 100x faster for in-memory data, and 5-10x for disk
- In tests on hundreds node cluster at Yahoo!

Diagram showing Shark, Spark, Spark Streaming, HIVE, Pig, Hadoop, Storm, MPI, Data Processing, Data Mgmt., Resource Mgmt.
Conviva Warehouse Queries (1.7 TB)

<table>
<thead>
<tr>
<th>Run time (seconds)</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shark</td>
<td>1.1</td>
<td>0.8</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Shark (disk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hive</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Spark & Shark available now on EMR!
Tachyon [Alpha Release, this Spring]

- High-throughput, fault-tolerant in-memory storage
- Interface compatible to HDFS
- Support for Spark and Hadoop

BlinkDB [Alpha Release, this Spring]

- Large scale approximate query engine
- Allow users to specify *error* or *time* bounds
- Preliminary prototype starting being tested at Facebook

Diagram:
- Tachyon and BlinkDB are highlighted.
- Dependencies and integration with other systems such as HDFS, Spark, Pig, Hadoop, and Mesos are shown.

3/12/13
SparkGraph [Alpha Release, this Spring]

- GraphLab API and Toolkits on top of Spark
- Fault tolerance by leveraging Spark

MLbase [In development]

- Declarative approach to ML
- Develop scalable ML algorithms
- Make ML accessible to non-experts
Compatible with Open Source Ecosystem

• **Support** existing interfaces whenever possible

GraphLab API

Hive Interface and Shell

HDFS API

Compatibility layer for Hadoop, Storm, MPI, etc to run over Mesos

Accept inputs from Kafka, Flume, Twitter, TCP Sockets, ...

Support Hive API

Support HDFS API, S3 API, and Hive metadata
Summary

Holistic approach to address next generation of Big Data challenges!

• Support *interactive* and *streaming* computations
 – In-memory, fault-tolerant storage abstraction, low-latency scheduling,...
• *Easy* to combine *batch*, *streaming*, and *interactive* computations
 – Spark execution engine supports all comp. models
• *Easy* to develop *sophisticated* algorithms
 – Scala interface, APIs for Java, Python, Hive QL, ...
 – New frameworks targeted to graph based and ML algorithms
• *Compatible* with existing open source ecosystem
• *Open source* (Apache/BSD) and fully committed to release *high quality* software
 – Three-person software engineering team lead by Matt Massie (creator of Ganglia, 5th Cloudera engineer)

Thanks!
Hive Architecture

Shark Architecture