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Abstract

In semistructured databases there is no schema fixed in advance.  To provide the benefits of a schema

in such environments, we introduce DataGuides: concise and accurate structural summaries of

semistructured databases.  DataGuides serve as dynamic schemas, generated from the database; they are

useful for browsing database structure, formulating queries, storing information such as statistics and

sample values, and enabling query optimization.  This paper presents the theoretical foundations of

DataGuides along with algorithms for their creation and incremental maintenance.  We provide

performance results based on our implementation of DataGuides in the Lore DBMS for semistructured

data.  We also describe the use of DataGuides in Lore, both in the user interface to enable structure

browsing and query formulation, and as a means of guiding the query processor and optimizing query

execution.

1. Introduction

Traditional relational and object-oriented database systems force all data to adhere to an explicitly specified
schema.  Yet a typical site on the World-Wide Web demonstrates that much of the information available on-
line is semistructured.  Although the data may exhibit some structure, it is too varied, irregular, or mutable to
easily map to a fixed schema.  Recent research has focused on data models, query languages, and systems that
do not require a schema to accompany each database [AQM+96, BDHS96, BDS95, KS95, MAG+97].

Beyond its use to define the structure of the data, a schema serves two important purposes:

• A schema, in the form of either tables and their attributes or class hierarchies, enables users to
understand the structure of the database and form meaningful queries over it.

• A query processor relies on the schema to devise efficient plans for computing query results.

Without a schema, both of these tasks become significantly harder.  Although it may be possible to manually
browse a small database, in general forming a meaningful query is difficult without a schema or some kind of
structural summary of the underlying database.  Further, a lack of information about the structure of a database
can cause a query processor to resort to exhaustive searches.  To address these challenges in “schema-free”
environments, we introduce DataGuides, dynamically generated and maintained structural summaries of
semistructured databases.  This paper makes several contributions:

• We give a formal definition of DataGuides as concise, accurate, and convenient summaries of
semistructured databases.  Further, we motivate and define strong DataGuides, well-suited for
implementation within a DBMS.

• We provide simple algorithms to build strong DataGuides and keep them consistent when the
underlying database changes.

• We show how to store sample values and other statistical information in a DataGuide.
• We demonstrate how DataGuides have been successfully integrated into Lore [MAG+97] (for

Lightweight Object Repository), a DBMS for semistructured data under development at Stanford
University.  DataGuides are vital to Lore’s user interface: users depend on the DataGuide to learn
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about the structure of a database so they can formulate meaningful queries.  In addition, users may
specify and submit queries directly from the DataGuide.

• Finally, we explain how a query processor can use a strong DataGuide to significantly optimize query
execution.

Our work is cast in the context of the Lore system.  All data in Lore follows a simple, graph-based data
model called OEM, for Object Exchange Model [PGW95].  Thus, our work can be applied easily to any graph-
based data model.  A Lore database is queried using Lorel [AQM+96], an OQL-based language designed for
easy and effective querying over semistructured data.  Though initially designed as a lightweight, read-only
system, we are steadily adding traditional DBMS features to Lore, such as update support, concurrency control
and transaction management.

 Within Lore, DataGuides serve much the same role as traditional metadata.  For example, DataGuides are
stored directly in Lore as OEM objects.  As with metadata in relational or object-oriented systems, user
interfaces or client applications may access and query the DataGuide through Lore’s standard interfaces
[MAG+97].  And in the same way that a traditional query processor consults metadata, the DataGuide is
available to guide Lore’s query processor.  Of course, DataGuides also differ significantly from metadata, since
they are dynamically generated: DataGuides conform to the data, rather than forcing data to conform to the
DataGuides.

1.1 Related Work

DataGuides extend initial work presented in [NUWC97], which gives a theoretical foundation to the concept of
dynamically generated structural summaries of graph-structured databases, called Representative Objects

(ROs).  Their foundational work defines these summaries in a functional style, with less emphasis on
implementation; experimental performance and incremental maintenance are not addressed.  While ROs are
shown to be useful to guide query formulation and optimization, DataGuides significantly extend these
contributions.

Other related theoretical research is presented in [BDFS97], which discusses schemas for graph-structured
databases.  A formal definition of a graph schema is given, along with an algorithm to determine whether a
database conforms to a specific schema.  Schema ordering, subsumption, and equivalence are also discussed.
The work in [BDFS97] is presented with a more traditional view of a schema than we take.  Optimization and
browsing functionality depend on having a database (or at least large fragments of the database) conform to an
explicitly specified schema.  In contrast, our work focuses directly on the case where it is inconvenient or
implausible to specify and maintain a schema: DataGuide summaries are dynamically generated and
maintained to always represent the current state of the database.  A DataGuide never includes information that
does not exist in the database, and by definition any database always “conforms” to its DataGuide.  A graph
schema, on the other hand, could be a superset of any database that conforms to it, and complications are
incurred if a database changes and no longer conforms to that schema.

As with many research and commercial user interfaces that use a schema (or structural summary) to guide
browsing and query formulation, our work has been influenced by the seminal work on Query By Example

[Zlo77].  In addition to early research efforts such as Timber [SK82], many commercial relational front-ends
such as Access and Paradox have sophisticated interfaces for visually specifying queries.  Several visual
database browsers have also been developed for richer, object-oriented data models, including KIVIEW
[MDT88] and OdeView [AGS90].  PESTO [CHMW96] is a visual tool for exploring object databases that
integrates browsing and querying into a single interface.  The DataGuide is unique as a graphical browsing and
query tool, since it presents a template dynamically generated directly from a database without regard to any
fixed schema or class hierarchy.

For query optimization, we show how the DataGuide can be used as a path index.  Substantial research on
object-oriented query optimization has focused on the design and use of path indexes, e.g., [BK89, CCY94,
KM92].  In general, previous work has been based on the class hierarchies of the object-oriented model.  The
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issues of how to create, maintain, and use a path index in a semistructured data model such as OEM have not to
the best of our knowledge been addressed.

1.2 Paper Outline

Section 2 first reviews the data model and query language with which we are working.  It then provides the
motivation and definition for DataGuides, along with a simple algorithm for creating them.  In Section 3 we
present experimental results showing the time and space required to build and store typical DataGuides.
Section 4 presents an incremental algorithm for DataGuide maintenance in response to database modifications.
Section 5 describes how DataGuides are used in practice to browse structure and guide query formulation
through a graphical interface to the Lore system.  In Section 6 we see how a strong DataGuide can improve
query processing in Lore.  We conclude the paper and discuss future research in Section 7.

2. Foundations

In this section we describe our basic data model and query language. We then motivate and define DataGuides
and their properties, and we provide an algorithm for building them.

2.1 Object Exchange Model

Our research is based on the Object Exchange Model (OEM), a simple and flexible data model that originates
from the Tsimmis project at Stanford University [PGW95].  OEM itself is not particularly original, and the
work presented here adapts easily to any graph-structured data model.  In OEM, each object contains an object
identifier (oid) and a value.  A value may be atomic or complex.  Atomic values may be integers, reals, strings,
images, programs, or any other data considered indivisible.  A complex OEM value is a collection of 0 or more
OEM subobjects, each linked to the parent via a descriptive textual label.  Note that a single OEM object may
have multiple parent objects and that cycles are allowed.  For more details on OEM and its motivation see
[AQM+96, PGW95].

Figure 1 presents a very small sample OEM database, representing a portion of an imaginary eating guide
database.  Each object has an integer oid.  Our database contains one complex root object with three subobjects,
two Restaurants and one Bar.  Each Restaurant is a complex object and the Bar is atomic, containing the string
value “Rose & Crown.”  Each Restaurant has an atomic Name. The Chili’s restaurant has atomic data
describing its Phone number and one available Entree.  We can see that the database structure is irregular,
since restaurant Darbar, with two Entrees, doesn’t include any phone number information. Finally, we see that
OEM databases need not be tree-structured—Smith is the Owner of one restaurant and Manager of the other.

Next, we give several simple definitions useful for describing an OEM database and subsequently for
defining DataGuides.

Restaurant

Name

5

Restaurant Bar

Name Entree Entree EntreePhone

Chili 's

6

Burger

7

555-1234

9

Darbar

10

Lamb
Curry

11

Beef
Curry

4

Rose &
Crown

8

Smith

ManagerOwner

3

1

2

Figure 1.  A sample OEM database
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Definition 1.  A label path of an OEM object o is a sequence of one or more dot-separated labels, l1.l2…ln, such
that we can traverse a path of n edges (e1…en) from o where edge ei has label l i. ❏

In Figure 1, Restaurant.Name and Bar are both valid label paths of object 1.   In an OEM database, queries are
based on label paths.  For example, in Figure 1, a valid query might request the values of all Restaurant.Entree

objects that satisfy a given condition.  Queries are further discussed in Section 2.2.

Definition 2.  A data path of an OEM object o is a dot-separated alternating sequence of labels and oids of the
form l1.o1.l2.o2 …ln.on such that we can traverse from o a path of n edges (e1…en) through n objects (x1…xn)
where edge ei has label l i and object xi has oid oi. ❏

�� Figure 1, Restaurant.2.Name.5 and Bar.4 are data paths of object 1.

Definition 3.  A data path d is an instance of a label path l if the sequence of labels in d is equal to l. ❏

Again in Figure 1, Restaurant.2.Name.5 is an instance of Restaurant.Name and Bar.4 is an instance of Bar.

Definition 4.  In an OEM object s, a target set is a set t of oids such that there exists some label path l of s
where t = {o | l1.o1.l2.o2…ln.o is a data path instance of l}. That is, a target set t is the set of all objects that can
be reached by traversing a given label path l of s.  We also say that t is “the target set of l in s,” and we write
t = Ts(l).  We say that l reaches any element of t, and likewise each element of t is reachable via l. ❏

For example, the target set of Restaurant.Entree in Figure 1 is {6, 10, 11}.  Note that two different label paths
may share the same target set. {8}, for instance, is the target set of both Restaurant.Owner and
Restaurant.Manager.

2.2 Lorel Query Language

Lorel (for Lore language) was developed at Stanford to enable queries over semistructured OEM databases.
Lorel is based on OQL [Cat93], with modifications and enhancements to support semistructured data; for
details see [AQM+96].  As an extremely simple example, in Figure 1 the Lorel query

Select Restaurant.Entree

returns all entrees served by any restaurant, the set of objects {6, 10, 11}.  As another simple example, we may
request the names of all restaurants that serve burgers:

Select Restaurant.Name

Where  Restaurant.Entree = “Burger”

In Figure 1, the answer to the query is the single object 5.
As these brief examples indicate, some knowledge of the structure of the database is important for forming

meaningful queries.  The Lorel language does provide several facilities, such as “wildcards” in label paths, to
enable queries when the database structure isn’t entirely known. Still, a summary of the structure of the
underlying database is invaluable for guiding the formulation of meaningful queries in Lorel.

2.3 DataGuides

We are now ready to define a DataGuide, intended to be a concise, accurate, and convenient summary of the
structure of a database.  Hereafter, we refer to a database that we summarize as the source database, or simply
the source.  We assume a given source database is identified by its root object.  To achieve conciseness, we
specify that a DataGuide describes every unique label path of a source exactly once, regardless of the number of
times it appears in that source.  To ensure accuracy, we specify that the DataGuide encodes no label path that
does not appear in the source.  Finally, for convenience, we require that a DataGuide itself be an OEM object so
we can store and access it using the same techniques available for processing OEM databases.  The formal
definition follows.
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Definition 5.  A DataGuide for an OEM source object s is an OEM object d such that every label path of s has
exactly one data path instance in d, and every label path of d is a label path of s. ❏

Figure 2 shows a DataGuide for the source OEM database shown in Figure 1.  Using a DataGuide, we can
check whether a given label path of length n exists in the original database by considering at most n objects in
the DataGuide.  For example, in Figure 2 we need only examine the outgoing edges of objects 12 and 13 to
verify that the path Restaurant.Owner exists in the database.  Similarly, if we traverse the single instance of a
label path l in the DataGuide and reach some object o, then the labels on the outgoing edges of o represent all
possible labels that could ever follow l in the source database.  In Figure 2, the five different labeled outgoing
edges of object 13 represent all possible labels that ever follow Restaurant in the source.  Notice that the
DataGuide contains no atomic values.  Since a DataGuide is intended to reflect the structure of a database,
atomic values are unnecessary.  Later we will see how special atomic values, when added to DataGuides, can
play an important role in query formulation and optimization.  Note that every target set in a DataGuide is a
singleton set.  Recalling Definition 4, a target set denotes all objects reachable by a given label path.  Since any
label path in a DataGuide has just one data path instance, the target set contains only one object—the last
object in that data path.

A considerable theoretical foundation behind DataGuides can be found in [NUWC97]. That paper proved
that creating a DataGuide over a source database is equivalent to conversion of a non-deterministic finite
automaton (NFA) to a deterministic finite automaton (DFA), a well-studied problem [HU79].  When the source
database is a tree, this conversion takes linear time.  However, in the worst case, conversion of a graph-
structured database may require time (and space) exponential in the number of objects and edges in the source.
Despite these worst-case possibilities, experimental results in Section 3 are encouraging, indicating that for
typical OEM databases, the running time is very reasonable and the resulting DataGuides are significantly
smaller than their sources.  (Unfortunately, no research known to the authors formally identifies those NFAs
that do or do not require exponential time or space to be converted to equivalent DFAs.)  Work in [NUWC97]
focuses on the benefits of relaxing the DataGuide definition to enable a more compact, and sometimes faster-to-
create, structural summary called a k-Representative Object (k-RO).  A k-RO may describe a superset of the
label paths that exist in the source, therefore violating the accuracy constraint of our DataGuide definition.
The k-RO can still be useful to guide query formulation, but DataGuide accuracy is crucial for the query
optimization features we discuss in Section 6.  Here, we concentrate on (accurate) DataGuides, which in the
common case are reasonably small and fast to create.

2.4 Existence of Multiple DataGuides

From automata theory, we know that a single NFA may have many equivalent DFAs [HU79].  Similarly, as
shown in Figure 3, one OEM source database may have multiple DataGuides.  Figures 3(b) and (c) are both
DataGuides of the source in Figure 3(a).  Each label path in the source appears exactly once in each DataGuide,

12

Restaurant

Name

Entree

15 16 17

Phone

Bar

1413

18

Owner

19

Manager

Figure 2. A DataGuide for Figure 1
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and neither DataGuide introduces any label paths that do not exist in the source.  Figure 3(c) is in fact minimal:
the smallest possible DataGuide.  (Well-known state minimization algorithms can be used to convert any
DataGuide into a minimal one [Hop71].)  Given the existence of multiple DataGuides for a source, it is
important to decide what kind of DataGuide should be built and maintained in a semistructured database
system.  Intuitively, a minimal DataGuide might seem desirable, furthering our goal of having as concise a
summary as possible; [NUWC97] also suggests building a minimal DataGuide.  Yet, as we now explain, a
minimal DataGuide is not always best.

First, incremental maintenance of a minimal DataGuide can be very difficult.  In Figure 3(a), suppose we
add a new child object to 10, via the label E.  To correctly reflect this source insertion in Figure 3(b), we simply
add a new object via label E to object 17.  But to reflect the same insertion in the minimal DataGuide in Figure
3(c), we must do more work in order to somehow generate the same DataGuide as our updated version of
Figure 3(b), since it now is the minimal DataGuide for the source.  In general, maintaining a minimal
DataGuide in response to a source update may require much of the original database to be reexamined.  The
next subsection describes a second significant problem with minimal DataGuides.

2.5 Annotations

Beyond using a DataGuide to summarize the structure of a source, we may wish to keep additional information
in a DataGuide.  For example, consider a source with a label path l.  To aid query formulation, we might want
to present to a user sample database values that are reachable via l.  (Such a feature is very useful in OEM,
since there are no constraints on the type or format of atomic data.)  As another example, we may wish to
provide the user or the query processor with the statistical odds than an object reachable via l has any outgoing
edges with a specific label.  Finally, for query processing, direct access through the DataGuide to all objects
reachable via l can be very useful, as will be seen in Section 6.  The following definition classifies all of these
examples.

Definition 6.  In a source database s, given a label path l, a property of the set of objects that comprise the
target set of l in s is said to be an annotation of l.  That is, an annotation of a label path is a statement about the
set of objects in the database reachable by that path. ❏

 A DataGuide guarantees that each source label path l reaches exactly one object o in the DataGuide.
Object o seems like an ideal place to store annotations for l, since we can access all annotations of l simply by
traversing the DataGuide’s single data path instance of l.  Unfortunately, nothing in our definition of a
DataGuide prevents multiple label paths from reaching the same object in a DataGuide, even if the label paths
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Figure 3. A source and two DataGuides
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have different target sets in the source.  Referring to Figure 3(c), we see that label paths A.C and B.C both reach
the same object.  Thus, if we store an annotation on object 20, we cannot know if the annotation applies to label
path A.C, label path B.C, or both.  In the DataGuide in  Figure 3(b), however, we have two distinct objects for
the two label paths, so we can correctly separate the annotations. Next, we formalize DataGuide characteristics
that enable unambiguous annotation storage.

2.6 Strong DataGuides

We define a class of DataGuides that supports annotations as described in the previous subsection.  Intuitively,
we are interested in DataGuides where each set of label paths that share the same (singleton) target set in the
DataGuide is exactly the set of label paths that share the same target set in the source.  Formally:

Definition 7.  Consider OEM objects s and d, where d is a DataGuide for a source s.  Given a label path l of s,
let Ts(l) be the target set of l in s, and let Td(l) be the (singleton) target set of l in d.  Let Ls(l) = {m | Ts(m) =
Ts(l)}. That is, Ls(l) is the set of all label paths in s that share the same target set as l.  Similarly, let Ld(l) =
{ m | Td(m) = Td(l)}.  That is, Ld(l) is the set of all label paths in d that share the same target set as l.  If, for all
label paths l of s, Ls(l) = Ld(l), then d is a strong DataGuide for s. ❏

For example, Figure 3(c) is not a strong DataGuide for Figure 3(a).  The source target set Ts(B.C) is {6, 7},
and the DataGuide target set Td(B.C) is {20}.  In the source, Ls(B.C) is {B.C}, since no other source label paths
have the same target set.  In the DataGuide, however, Ld(B.C) is {B.C, A.C}.  Since Ls(B.C) ≠ Ld(B.C), the
DataGuide is not strong.  The reader may verify that Figure 3(b) is in fact a strong DataGuide.

Next, we prove that a strong DataGuide is sufficient for storage of annotations.

Theorem 1.  Suppose d is a strong DataGuide for a source s.  If an annotation p of some label path l is stored
on the object o reachable via l in d, then p describes the target set in s of each label path that reaches o.

Proof.  Suppose otherwise.  Then there exists some label path m that reaches o, such that p incorrectly
describes the target set of m in s.  This implies that Ts(l) ≠ Ts(m), since we know by Definition 6 that p is a valid
property of Ts(l). We reuse the notation from the definition of a strong DataGuide: let Ld(l) denote the set of
label paths in d whose target set is Td(l), and let Ls(l) denote the set of label paths in s whose target set is Ts(l).
By construction, Ld(l) contains both l and m.  By definition of a strong DataGuide, Ld(l) = Ls(l).  Therefore l
and m are both elements of Ls(l). But this means that Ts(m), the target set of m in s, is equal to Ts(l), a
contradiction to Ts(l) ≠ Ts(m), derived above. ❏

We also prove that a strong DataGuide induces a straightforward one-to-one correspondence between
source target sets and DataGuide objects. This property is useful for incremental maintenance (Section 4) and
query processing (Section 6).

Theorem 2.  Suppose d is a strong DataGuide for a source s.  Given any target set t of s, t is by definition the
target set of some label path l.  Compute Td(l), the target set of l in d, which has a single element o.  Let F
describe this procedure, which takes a source target set as input and yields a DataGuide object as output.  In a
strong DataGuide, F induces a one-to-one correspondence between source target sets and DataGuide objects.

Proof. We show that F is (1) a function, (2) one-to-one, and (3) onto.  (1) To show F is a function we prove that
for any two source target sets t and u, if t = u then F(t) = F(u).  t is the target set of some label path l, and u is
the target set of some label path m, so t = Ts(l) and u = Ts(m).  If t = u, then l and m are both elements of Ls(l),
the set of label paths in s that share Ts(l). Since d is strong, Ls(l) = Ld(l).  Therefore m is also an element of
Ld(l), Td(l) = Td(m), and their single elements are equal.  Hence F(t) = F(u).  (2) We show that F is one-to-one
using the same notation and a symmetrical argument.  If F(t) = F(u), by construction we know that Td(l) =
Td(m). l and m are therefore both elements of Ld(l), and by definition of a strong DataGuide are also elements of
Ls(l).  Therefore Ts(l) = Ts(m), i.e., t = u. (3) Finally, we see that the accuracy constraint of any DataGuide
(Section 2.3) guarantees that F is onto.  Any object in d must be reachable by some label path l that also exists
(and therefore has a target set) in s. ❏
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If a DataGuide is not strong, it may be impossible to find a one-to-one correspondence between source
target sets and DataGuide objects.  For example, Figure 3(a) contains seven different target sets, each
corresponding to one of the label paths A, A.C, A.C.D, B, B.C, B.C.D, and the empty path.  Since Figure 3(c)
has only 4 objects, we cannot have a one-to-one correspondence.

2.7 Building a Strong DataGuide

Strong DataGuides are easy to create.  In a depth-first fashion, we examine the source target sets reachable by
all possible label paths.  Each time we encounter a new target set t for some path l, we create a new object o for
t in the DataGuide—object o is the single element of the DataGuide target set of l.  Theorem 2 guarantees that
if we ever see t again via a different label path m, rather than creating a new DataGuide object we instead add
an edge to the DataGuide such that m will also refer to o.  A hash table mapping source target sets to
DataGuide objects serves this purpose.  The algorithm is specified in Figure 4.  Note that we must create and
insert DataGuide objects into targetHash  before recursing, in order to prevent a cyclic OEM source from
causing an infinite loop.  Also, since we compute target sets to construct the DataGuide, we can easily augment
the algorithm to store annotations in the DataGuide.

3. Experimental Performance

As described in Section 2.3, computing a DataGuide for a source is equivalent to converting a non-
deterministic finite automaton into an equivalent deterministic finite automaton.  For a tree-structured source,
this conversion always runs in linear time, and the size of the DataGuide is bounded by the size of the source.
Yet for an arbitrary graph-structured source, creating a DataGuide may require exponential running time and
could feasibly generate a DataGuide exponentially larger than the source.  Needless to say, we are very
concerned about the potential for exponential behavior, and as far as we know no research has tried to
formalize automaton characteristics that lead to better or worse behavior.

// MakeDataGuide: algorithm to build a strong DataGuide over a source database
// Input: o, the oid of the root of a source database
// Effect: dg is set to be the root of a strong DataGuide for o

targetHash = global empty hash table, to map source target sets to DataGuide objects
dg         = global oid

MakeDataGuide(o) {
dg = NewObject()
targetHash.Insert({o}, dg)
RecursiveMake({o}, dg)

}

RecursiveMake(t1, d1) {
p = set of <label, oid> children pairs of each object in t1
foreach (unique label l in p)  {

t2 = set of oids paired with l in p
d2 = targetHash.Lookup(t2)
if (d2 != nil) {

add an edge from d1 to d2 with label l
} else {

d2 = NewObject()
targetHash.Insert(t2, d2)
add an edge from d1 to d2 with label l
RecursiveMake(t2, d2)

}
}

}

Figure 4. Algorithm to create a strong DataGuide
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In this section, we show that for many classes of OEM databases, experimental performance results are
very encouraging.  We begin by discussing performance on two operational OEM databases that, although
admittedly are relatively small, require very little time for DataGuide creation and yield DataGuides
significantly smaller than the source.  We then describe further experiments conducted on synthetic OEM
databases.  For a wide range of parameters, we find that many large graph-structured databases still yield good
performance.  All measurements are taken running the Lore system on a Sun Ultra 2 with 256MB RAM.

3.1 Operational Databases

We first consider two medium-sized databases used in Lore.  One is a tree, and the other is a graph with
significant data sharing.  We believe tree-structured sources will be common in Lore; any relational database,
for example, can be modeled as an OEM tree.  Our tree-structured database contains a snapshot of data
imported from a large and popular Web site covering many different sports, with the OEM database following
the structure of the menus and links at the site.  While the overall structure is quite regular, data for each sport
differs significantly.  We captured only a small portion of the Web site, building a database with about 3,000
objects and links, 40 unique labels, and a maximum height of 5.  Building a strong DataGuide requires 1.37
seconds, and the DataGuide contains 75 objects and 74 links.

Our second operational database contains information about the Stanford Database Group, describing the
group’s members, projects, and publications.  (We will see this database again in Section 5 when we discuss
Lore’s user interface.)  The database uses extensive data-sharing (graph structure).  As an example, a single
group member might be reachable as a member of one or more projects and as an author of any number of
publications.  The graph also contains numerous cycles; for example, each group member reachable by a link
from a project also has links to all projects he or she works on.  Our database currently contains about 950
objects and 1,100 links, with 32 unique labels.  Building a strong DataGuide takes 1.52 seconds; the resulting
DataGuide has 138 objects and 168 links.  Performance for both databases is summarized in Table 1.

3.2 Synthetic Databases

To further study performance, we generated numerous large synthetic databases, both trees and graphs, with
and without cycles.  For tree-structured databases we have the following parameters.

• Height, or number of levels, in the tree.
• For each level in the tree, the number of unique labels on outgoing edges (labels per level).  The sets

of labels corresponding to different levels are disjoint.
• Maximum number of outgoing edges from any non-leaf (fan-out).
• Whether to use maximum fan-out for each object (full) or to simulate irregular structure by varying the

number of outgoing edges of any object from zero to the maximum fan-out (irregular).

For graph-structured databases we modify and supplement the above tree parameters as follows.

• Height is defined as the longest path in a breadth-first traversal from the root of the graph.  Level n

includes all objects whose shortest path from the root has n edges.
• Fan-out no longer is sufficient to specify the number of objects at a level, since many edges of one

level may point to the same object.  Hence, a new parameter is the maximum number of objects per

level, as an integer to be multiplied by the level number.  Until this number is exceeded, every edge

Source DataGuide
Description Objects Links Labels Height Objects Links Time (secs)

Sports (Tree) 3,095 3,094 41 5 75 74 1.37

DBGroup (Graph) 947 1,102 32 -- 138 168 1.52

Table 1.  DataGuide performance for operational Lore databases
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from the previous level points to a different object. When the limit is reached, all remaining edges are
evenly distributed among existing objects in the level.

• Rather than sending all outgoing edges to objects in the next level, any proportion of outgoing edges
(backlink frequency) may be redirected to objects in previous levels; here we always redirect edges to
objects a fixed number of levels (backlink level) above the current level.

The results discussed below are captured in Table 2.  We begin by summarizing the performance for two
tree-structured databases.  A large full tree with only one label per level provides an extreme example of how a
DataGuide can be very small when compared to the source.  DB1, a full tree with a fan-out of 8, height of 5,
and one label per level, contains 37,449 objects. The strong DataGuide contains only 6 objects, and building it
takes 11.3 seconds.  As a larger example, we built DB2, which has an irregular edge distribution with a
maximum fan-out of 8, height of 12, and 2 labels per level.  The tree contains 329,176 objects.  It takes 127.3
seconds to build a strong DataGuide with 1,802 objects.

 Next, we describe several graph-structured databases.  We begin with a regular, cycle-free graph, and then
progress to more intricate examples.  In DB3, each non-leaf has 10 outgoing edges, with two labels per level.
There are 12 levels of objects, with a maximum of 500 objects in level 1, 1,000 in level 2, 1,500 in level 3, and
so on.  The source database has 37,111 objects and 311,111 links.  The DataGuide has 156 objects and 288
links, requiring 123.1 seconds to create.  Next, we introduce irregularity in the number of outgoing edges from
each object.  This irregular version, DB4, is expectedly smaller, with 26,700 objects and 93,151 links.  The
irregularity results in more time for DataGuide creation and a larger DataGuide: 712.6 seconds, with 3,074
objects and 3,073 links.

For the remaining databases we introduce backlinks, which clearly can complicate DataGuide
performance.  We begin with DB5, which has relatively shallow height (5) but large breadth, with 80 outgoing
edges per object and up to 2,000 objects on level 1, 4,000 on  level 2, etc.  Every tenth edge is a backlink to an
object two levels closer to the root.  The database has 11,134 objects and 44,346 links, and it yields good
performance: 22.6 seconds to build the DataGuide, which has 198 objects and 720 links.  In practice, we expect
many databases to follow this style, generally structured as a wide but reasonably shallow tree with some cycles
and links for data-sharing.

   For our next examples, we reduce the breadth and significantly increase the height; we cut fan-out to 10,
reduce objects per level to at most 200 times the level number, and increase height to 12.  In DB6, we make
every tenth edge a link to another object at the same level.  While the time required to create the DataGuide is
still reasonable, we see that the DataGuide has become larger than the source.  Keep in mind that even if larger
than the source, the properties of any strong DataGuide make it useful for schema browsing and query
optimization, as we will discuss later.  In DB7, we have fewer backlinks but allow them to point to objects three
levels closer to the root.  Performance is similar, with fast creation time but a DataGuide larger than the source.

Source DataGuide
DB
No

Tree
?

Objects Links Height Labs.
per

Level

Fan-
out

Full
?

Objs.
per

Level

Backlink
Freq/
Level

Objects Links Time
(secs)

1 Y 37,449 37,448 5 1 8 Y -- -- 6 5 11.3

2 Y 329,176 329,175 12 2 8 N -- -- 1,802 1,801 127.3

3 N 37,111 311,111 12 2 10 Y 500 -- 156 288 123.1

4 N 26,700 93,151 12 2 10 N 500 -- 3,074 3,073 712.6

5 N 11,134 44,346 5 4 80 N 2000 10/2 198 720 22.6

6 N 4,524 13,151 8 4 10 N 200 10/0 14,326 29,101 78.5

7 N 3,108 6,787 8 4 10 N 200 15/3 8,736 16,805 36.2

Table 2.  DataGuide performance for synthetic databases
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While it is impossible here to explore all possible graphs, our results categorize performance for a
significant range of databases.  In summary, we see that as expected, performance for any tree is good.  Acyclic
graphs with repetitive structure do not cause problems in common situations.  For relatively shallow graphs
with a large number of outgoing edges per object, cycles do not pose much of a problem either.  For much
deeper graphs, however, cycles can cause DataGuides to be larger than the source.  While the examples
presented here yield reasonable performance, the potential does certainly exist for very poor performance.
Many unconstrained backlinks in deep graphs, for instance, can cause significant problems.  While we are
confident that in practice OEM databases will rarely exhibit structure that results in poor performance, we plan
to continue to investigate the matter by building additional operational Lore databases for empirical testing.
Also, we hope to formalize properties that can guarantee (or prohibit) good performance, or to find heuristics to
help an algorithm detect when a database may result in poor performance.  In such cases, we may be able to
achieve better performance by building a strong DataGuide over only the first few levels.  This way,
DataGuides can still be useful for guiding queries that do not examine long paths.

4. Incremental Maintenance

If a DataGuide is to be useful for query formulation and especially optimization, we must keep it consistent
when the source database changes.  In this section we address how to update a strong DataGuide to reflect
insertions or deletions of edges in the source.  Note that updates to atomic values do not affect the DataGuide.
We modify the DataGuide creation algorithm in Figure 4 for incremental maintenance.  First, we list changes
to the algorithm’s data structures, as summarized in Figure 5.

• As we construct target sets in the DataGuide algorithm (in variables t1  and t2 ), we store them within
the database as auxiliary OEM objects.

• We make persistent the targetHash  table, which maps source target sets to DataGuide objects.
• For each DataGuide object, we add an edge connecting it to its corresponding target set (guaranteed to

exist by Theorem 2).  The edge has the special label TargetOf .
• In parallel, we build an additional persistent hash table, objectHash , to map a source object o to all

DataGuide objects that correspond to target sets containing o.

Source DataGuide

Target Set

targetHash

objectHash

TargetOf

Figure 5. Data structures to support DataGuide maintenance



12

Our algorithm updates the DataGuide in response to any number of edge insertions or deletions on the
source.  Each edge can be written as u.l.v, indicating an edge from object u to object v via the label l.  We refer
to u as the update point.  (When adding an edge, v may or may not already exist in the database.)  Note that the
algorithm can directly handle the insertion of a complete subgraph, given an update point connecting the new
graph to the existing database.  The first step of the algorithm is to identify all DataGuide regions that might be
affected by the changes: for each update point u, we use objectHash  to find every DataGuide object whose
corresponding source target set contains u.  Each such DataGuide object is a “sub-DataGuide” that describes
the potential structure of any object in the corresponding source target set (including one or more of the update
points).  The updates may affect each such sub-DataGuide, so we must reexamine all of them, relying on
targetHash  to avoid excessive recomputation.  The algorithm turns out to be only a slightly modified
version of the DataGuide creation algorithm from Figure 4.  In fact, the new RecursiveMake  algorithm can
and should be used to build the initial DataGuide to ensure that the data structures are built correctly.  The
algorithm is presented in Figure 6.  Lines that are different from the original RecursiveMake  algorithm are
numbered and emphasized.

The HandleUpdate  algorithm is very simple, using objectHash  to identify all sub-DataGuide objects
that might need to be updated.  The modifications to RecursiveMake  are as follows.  Line (1) checks to

// Algorithm to update a DataGuide in response to source insertions or deletions
// Input: U, a set of edge updates, each of the form u.l.v
// Effect: The global DataGuide dg correctly reflects all updates to the source

targetHash = global persistent hash table, mapping source target sets to DataGuide objects
objectHash = global persistent hash table, mapping source objects to DataGuide objects
dg         = global oid of the root of a strong DataGuide

HandleUpdate(U) {
foreach (update point u in U) {

foreach (DataGuide object d in objectHash.Lookup(u)) {
RecursiveMake(TargetOf(d),d)

}
}

}

RecursiveMake(t1, d1) {
p = set of <label, oid> children pairs of each object in t1
foreach (unique label l in p)  {

t2 = set of oids paired with l in p
d2 = targetHash.Lookup(t2)
if (d2 != nil) {

(1) if an edge does not already exist from d1 to d2 with label l {

(2) if d1 has an outgoing edge with label l, remove it
add an edge from d1 to d2 with label l

(3) }
} else {

d2 = NewObject()
targetHash.Insert(t2, d2)

  (4) foreach (oid o in t2) {

  (5) objectHash.Append(o, d2)

  (6) }

  (7) TargetOf(d2) = t2

(8) if d1 has an outgoing edge with label l, remove it
add an edge from d1 to d2 with label l
RecursiveMake(t2, d2)

}
}

(9) remove any outgoing edges of d1 (other than TargetOf) with a label not in p
}

Figure 6.  Algorithm to incrementally update a strong DataGuide
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make sure that the exact edge we wish to add does not already exist.  In truth this check is only an
optimization, since the two lines following the check would simply remove and re-add that edge.  Line (2)
removes old DataGuide edges that are no longer correct: a change in target sets may cause a DataGuide edge to
point to a new object.  Lines (4)-(7) simply maintain objectHash  and the TargetOf  links when new
objects are added to the DataGuide.1  Line (8) performs the same function as line (2).  To preserve DataGuide
accuracy, line (9) removes DataGuide edges with labels no longer represented in the source due to edge
deletion.  The edge removal in lines (2), (8), and (9) may result in detached subgraphs in the DataGuide.  In
Lore, garbage collection periodically deletes any unreachable objects.  We must at the same time remove
obsolete references from the persistent hash tables.

Next, we trace two examples to demonstrate the algorithm.

Example 4.1.  Figure 7 shows one of the trickier cases for insertion. Figure 7(a), without the dashed B edge
between objects 1 and 3, is our original source, and Figure 7(b) is a strong DataGuide for this source (with
TargetOf  links omitted).  Suppose we insert the B edge.  HandleUpdate  is called with the argument
{ 1.B.3}, and 1 is the sole update point.  DataGuide object 8 corresponds to the only target set that object 1 is a
part of.  Hence, we call RecursiveMake  with {1} as the initial target set and 8 as the initial DataGuide
object.  As in the original algorithm, we examine the children of all objects in the initial source target set, label
by label.  Suppose we consider children via label A first.  The target set t2  is {2, 3}.  From our persistent
targetHash , we see that object 9 corresponds to this set.  Line (1) catches the fact that an edge from 8 to 9
with the label A already exists, so no additional work is required for that label.  Proceeding to examine children
via label B, we see that the target set is now also {2, 3}.  Hence we add a new edge from 8 to 9 with the label B.
Before doing so, we remove the existing B edge, as specified by line (2) in RecursiveMake .  The detached
subgraph is garbage collected, and the final result is the strong DataGuide shown in Figure 7(c).

Notice that deleting the edge we just inserted would regenerate a DataGuide equivalent to Figure 7(b).
After the deletion, the target set of A remains {2, 3}, but the target set of B is now {2}.  Hence, the B edge from 8
to 9 is removed, and recursive calls to RecursiveMake  generate a new DataGuide path from the root for
B.C.D. ❏

Example 4.2.  We now demonstrate how the algorithm handles deletion in a case where we must recompute
multiple sub-DataGuides.  Figure 8(a), including the dashed E edge from 6 to 9, is our source.  Note that object
6 is in two target sets, {5, 6} for A.C, and {6, 7} for B.C.  Figure 8(b) is the original strong DataGuide.  Suppose
we delete the E edge.  Because object 6 is in two target sets, we must reconsider two sub-DataGuides, objects 14

                                                       
1 Similar lines also must be added to the MakeDataGuide  function in Figure 4 to correctly store root information.
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and 15.  Consider 14 first.  We call RecursiveMake  with target set {5, 6} and object 14 as arguments.  The
target set for children via label D is {8}, which already corresponds to object 16, so no change is made.  There
are no other children to consider, and line (9) of the algorithm will remove the obsolete E edge from object 14.
Calling RecursiveMake  for target set {6, 7} and object 15, we eliminate the other E edge in the same
manner, and object 17 is garbage collected.  The final result is in Figure 8(c). ❏

The work required to maintain the DataGuide depends entirely on the structural impact of the updates.  For
example, inserting a new leaf into a tree-structured database requires only one target set to be recomputed (and
one new object added to the DataGuide).  At the other extreme, in a graph-structured databases extensive
sharing may cause many sub-DataGuides to be recomputed after an update.  Regardless, keeping accurate target
set data prevents any excessive recomputation: recursion is halted whenever a target set lookup in
targetHash  is successful, indicating that the sub-DataGuide corresponding to that target set is already
correct.

5. Query Formulation

Without some notion of the structure of a database, formulating queries can be extremely difficult.  The
user is limited to an ad-hoc combination of browsing the entire database, issuing exploratory queries, and
guesswork.  Since DataGuides provide concise, accurate, and up-to-date summarizing information about the
structure of a database, they are very useful for query formulation.  In this section we demonstrate the value of
DataGuides in the context of a Java-based Web user interface we have created for Lore.  From the interface, a
user can interactively explore the DataGuide to aid formulation of Lorel queries.  Further, the DataGuide
enables end-users to specify a large class of queries in a “by example” style, without any knowledge of the Lorel
query language.
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In all of our examples we refer to a medium-sized database we have built describing members, projects,
and publications of the Stanford Database Group, first introduced in Section 3.  The database mirrors much of
the information available on the Database Group Web site, and in fact contains links to many of our site’s home
pages, images, and publications.  Once a connection to the database is made, the user is presented with an
HTML page framing a Java DataGuide, as shown in Figure 9.

The user can explore the DataGuide by clicking on the arrows (triangles), which expand or collapse
complex objects within the DataGuide.  Immediately, we see how the DataGuide guides the specification of
path expressions used in queries (recall Section 2.2): every valid path expression must begin with the
DB_Group label, followed by Group_Member , Project , or Publication .  Expanding a DataGuide
complex object lists all potential subobject labels that are found in the database, and we never see two
subobjects with the same label.  Therefore, we can determine whether any label path of length n exists in the
database by clicking on at most n-1 DataGuide arrows.  In contrast, when browsing a semistructured database
directly, we may have to examine many like-labeled objects before finding one with a specific outgoing label.

While the DataGuide is useful for deducing valid path expressions, values in the database at this point
remain a mystery.  A user interested in locating all group members from Nevada doesn’t know if
Original_Home  for someone from Las Vegas would be stored as “Las Vegas, NV” ,  “Nevada” , or
“Nevada, USA” . One option is to use Lorel’s pattern matching features [AQM+96] to write a query that
attempts to encompass all possible formats, but in many cases a better approach is to examine sample values

Figure 9.  A Java DataGuide
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from the database.  As described in Section 2.5, we can effectively store such sample values as annotations in
the DataGuide.  In Figure 9, notice that a diamond accompanies every label, corresponding to a distinct label
path from the root.  Clicking on the diamond brings up a dialog box such as the one shown in Figure 10, which
was obtained by clicking on the diamond next to the Original_Home  label.

The top portion of the dialog box identifies the path expression and shows two DataGuide annotations: the
total number of database objects reachable by that path expression, and a list of sample values.  Currently, a
fixed number of values are chosen arbitrarily from the database, although clearly we could be more
sophisticated here.  Annotations are stored as specially marked children of DataGuide objects that are
interpreted by the user interface.  They are computed during DataGuide creation and maintenance by simple
extensions to the algorithm in Figure 6.

The other elements in the dialog box allow users to specify queries directly from the DataGuide without
writing Lorel, in a style reminiscent of Query By Example [Zlo77].  As shown, a user can click a button to
select a path for the query result.  Further, value-filtering conditions may be specified using common arithmetic
and logical operators, as well as custom operators such as the UNIX utility grep  and the SQL function like .
(These comparisons correspond to Lorel “where” conditions, but users need not be aware of that fact.)  The on-
screen DataGuide is updated to reflect any query specifications, highlighting diamonds for selected path
expressions and displaying filtering conditions next to the corresponding label.  Figure 11 shows the DataGuide
after a user has specified to select all graduate students in the group that are originally from Nevada or New
York and have been at Stanford for more than two years.  (The like  predicate will satisfy any PhD Student

or Masters Student .)  When the user clicks the Go button from Figure 9, the Java program generates a
Lorel query equivalent to the DataGuide query specification, and sends it to Lore to be processed.  Lore returns
query results in HTML, using a hierarchical format that is easy to browse and navigate: like-labeled objects are
grouped together, and complex objects are represented as hyperlinks.  At any point the user may return to the
DataGuide to modify the original query or submit a new one.

Figure 10. DataGuide path information
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Currently, DataGuide queries can specify any Lorel query with simple path expressions (no path wildcards)
and “where” clauses that are conjunctive with respect to unique path expressions.  Also, all value comparisons
must be made against constants.  We hope to add techniques that expand the expressive power of DataGuide
queries; e.g., disjunctions across path expressions, path wildcard specifications, and variables to enable joins.

On a larger scale, we believe that there is much opportunity for blurring the distinction between
formulating a query and browsing a query result, in the spirit of PESTO [CHMW96].  For example, suppose
that instead of supplying just a few sample values, the dialog box for each path expression always displayed all
values.  Then clicking on a diamond answers the simple query to find all values reachable by a given path.
Furthermore, by integrating the query processor with our DataGuide maintenance algorithms, we could quickly
respond to a filtering condition specified in the DataGuide by updating the DataGuide and its value lists to
reflect that condition.  For example, suppose the user specified the condition in Figure 11 on Position  first,
restricting the query to only consider students.  It may be that the database has no Research_Interest

data for any such group members, so that path could be removed temporarily from the DataGuide.  More
importantly, clicking on the diamond next to Original_Home  would now display the homes of students
only.  In the same manner, restricting Years_At_Stanford  would evaluate the entire desired query, since
clicking on the diamonds for labels under Group_Member  would only display data that matched our query
conditions.  At that point, it may be desirable to revert to the current model of result browsing, allowing a user
to examine one by one the group members that satisfied the query.

The DataGuide-driven user interface described here is accessible to the public via the Lore Home page on
the Web, at www-db.stanford.edu/lore .

6. Query Optimization

In this section we discuss how the information maintained by a strong DataGuide can be used to significantly
speed up query processing for a broad class of Lorel queries.  Essentially, a strong DataGuide can also serve as
a path index.  While path indexes have been studied for traditional object-oriented systems, e.g., [BK89,
CCY94, KM92], their use in a semistructured environment has not been addressed.  In particular, creating and
maintaining a path index without a fixed schema may be quite difficult, yet we can conveniently use strong
DataGuides to address the problem.  As shown in Section 4 for incremental maintenance, each object in the
strong DataGuide can have a link to its corresponding target set in the source.  Hence, in time proportional to
the length of a label path, we can use the DataGuide to find all source objects reachable via that path,
independent of the size of the source.  In this section we analyze a sequence of queries to show the benefits of
having fast access to target sets during query processing.

All of our query processing comparisons are based on the number of objects examined.  We use a very
simple cost model that assigns a uniform cost to every object examination since, in general, it is difficult to
make guarantees about clustering in a graph-based model like OEM; each object examination may therefore

Figure 11. A DataGuide query specification
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require a random disk access.  Note that the value of a complex object is a sequence of <label, oid> pairs
representing its subobjects [MAG+97], so time spent to examine only the labels and oids of those subobjects is
included in the cost of examining the complex object itself.  For some queries, we need to find parents of an
OEM object.  Parent pointers need not be stored explicitly within the database; Lore, for example, instead uses
a hash-based index to map an object o and a label l to all parents that reach o via l [MAG+97].  For simplicity,
we assume that examining an object yields that object’s parents at no additional cost.

Example 6.1.  We begin by tracing a very simple Lorel query over a sample database, showing how the
DataGuide can dramatically reduce query execution cost.  Suppose we wish to execute the following Lorel
query (recall Section 2.2) over a database with structure similar to the Stanford Database Group database
described in Section 5.  It finds all publications in Troff format.

Select DB_Group.Group_Member.Publication.Troff

The result is a set of oids.  For this example, let us consider an extreme database that has one DBGroup object
containing 10,000 group members (among other objects).  Each GroupMember has an average of 100
Publications, but only one Troff subobject exists in the entire database.  Without any a priori knowledge of the
structure of the database, a query processor would be forced to examine each GroupMember, in turn each
Publication of each GroupMember, and finally return every Troff object of each such Publication.  We see that,
in addition to the root and the DBGroup object, the query processor must examine 1,000,000 objects.  Note that
Lore’s current indexing schemes are not applicable to this query [MAG+97].

In this example, the query result is exactly the objects in the target set of
DBGroup.GroupMember.Publication.Troff.  To find the target set, we simply traverse the path from the root of
the DataGuide, and we know there is only one such path.  Hence, we need examine only six objects to find the
result: the DataGuide root, the DBGroup object, the GroupMember, the Publication, the Troff object, and the
object containing the path’s target set.  (As in Section 4, the object in the DataGuide reachable by
DBGroup.GroupMember.Publication.Troff includes as part of its value a TargetOf link to a special complex
object whose children are all objects in the path’s target set.)

 Note that when traversing the DataGuide, we may find that a path does not exist.  For this query and many
others, such a finding guarantees that the query result is empty.  This type of optimization does not require a
strong DataGuide and was in fact suggested by [NUWC97]. ❏

Example 6.2.  We now show a somewhat more interesting query.  Suppose we wish to find the publication
years of some of the group’s older publications:

Select DB_Group.Group_Member.Publication.Year

Where  DB_Group.Group_Member.Publication.Year < 1975

This query is similar to the previous example but introduces a filtering condition.  For such conditions Lore
includes a B-tree based value index (Vindex) that takes a label, operator, and value and returns the set of oids of
objects that satisfy the given value constraint and have the specified incoming label [MAG+97].  Note that this
index is based only on the last label in a label path to an object.  Using the DataGuide, we can compute the
intersection between the set of objects returned by the Vindex on (Year, <, 1975) and the target set of the full
label path, DBGroup.GroupMember.Publication.Year.  Because the DataGuide algorithm in Figure 6 constructs
each target set in one step (and never modifies a target set), we can typically expect target sets to be stored
contiguously on disk.  Further, since oids returned by the Vindex are stored efficiently in a B-tree, we expect
computation of this intersection to be fast, with few additional random disk accesses.

We now specify a sample database for analyzing the performance of both this query and Example 6.3
below.  While the numbers are contrived in this particular database, they are representative of the size and
structure of databases we are likely to encounter in practice.  Suppose the path
DBGroup.GroupMember.Publication.Year has a target set Y of 20,000 objects.  Assume 1,000 of these objects
satisfy the value constraint, each reachable via a single Publication along that path.  Also, suppose that these
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1,000 Year objects are referenced by 1,000 other Publications along the path DBGroup.Project.Publication.Year,
and that 9,000 other Year objects with value less than 1975 are reachable from 9,000 more Publications on that
same path.  Hence, a Vindex lookup on (Year, <, 1975) returns 10,000 objects, pointed to by 11,000 different
Publications.

To process the query using the DataGuide, we first examine 5 DataGuide objects to find the oid identifying
Y.  Next, we retrieve the 10,000 valid oids from the Vindex and intersect them with the 20,000 oids of Y to
compute the result.  Now consider processing the query without the DataGuide.  A “top-down” exploration that
does not use the Vindex would need to examine the values of all 20,000 objects in Y, and as in the previous
example we might examine many GroupMember or Publication objects that do not even have the appropriate
subobjects.  Alternatively, Lore can build a query plan to take advantage of the Vindex by traversing “bottom-
up” to identify objects reachable by valid paths [MAG+97].  In this example, for each object o returned by the
Vindex, the system would find all objects that have a Year link to o, check to see which of those objects have
incoming links with the label Publication, and so on up to the root until it can determine whether or not the
object is indeed reachable via the label path DBGroup.GroupMember.Publication.Year.  To begin processing our
example, we first examine all 10,000 objects returned by the Vindex to find the 11,000 Publications with links
to those objects.  Next, we must find the parents of all 11,000 Publication objects as well.  Hence, processing the
query “bottom-up” requires at least 21,000 objects to be examined. ❏

Example 6.3.  Suppose we now wish to find the actual older publications:

Select DB_Group.Group_Member.Publication

Where  DB_Group.Group_Member.Publication.Year < 1975

Let P denote the target set of the “select” path and Y the target set of the “where” path, both found by traversing
a single data path in the DataGuide.  As mentioned in Example 6.1, if either path does not exist then the query
result is empty.  Otherwise, we proceed as in Example 6.2 to intersect oids in Y with the set of oids returned by
the Vindex to identify candidate Year objects, Y*.  Next, we examine all objects in Y* to find the set P* of
(parent) objects that have Year links to objects in Y*.  Since P* may include objects not in the query result, we
intersect the oids of P* and P to compute the final result R.

As before, Y has 20,000 objects.  We assume each Publication has a single Year, so P has 20,000 objects as
well.  Y*, essentially the query result from the previous example, has 1,000 objects.  Because of data-sharing,
P* contains 2,000 objects.  In addition to the work required from the previous example to compute Y*, we need
to examine the 1,000 objects in Y* to find the parent objects in P*, and we must intersect P and P* to find R.
Hence, the total cost using the DataGuide is 1,000 expensive object examinations, plus the relatively small costs
involved in retrieving 10,000 oids from the Vindex and performing two oid set intersections: one between the
10,000 oids returned by the Vindex and the 20,000 oids in Y, and the other between the 20,000 oids in P and
the 2,000 oids in P*.  In comparison, a top-down approach without the Vindex or DataGuide would again have
to examine at least 20,000 objects.  Similarly, as in the previous example, combining the Vindex with parent
traversal would retrieve 10,000 oids from the Vindex and then examine at least 21,000 objects. ❏

The three examples illustrate how the DataGuide can be used to significantly speed up common queries.
These techniques can be generalized to many other queries as well.  Since DataGuides are stored as OEM
objects we can also optimize queries with more sophisticated path expressions: Lorel supports “wildcards” and
regular expressions in path specifications [AQM+96].  For example,

Select DB_Group(.Group_Member | .Project).Publication

selects Publications of either GroupMembers or Projects.  Because the DataGuide is an OEM object, we can
reuse the same code that handles such constructs over data to find target sets of such paths in the DataGuide.

 In practice, the impact of the DataGuide on query processing certainly depends on the structure of the
database.  Even so, direct access to target sets always enables the query processor to prevent the search space
from growing needlessly large.  As follow-on work, we plan to run benchmarks to carefully compare the
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performance of the different query processing approaches described in this section.  Ultimately, we hope to
build an optimizer that uses statistical knowledge of a database and detailed performance characteristics to
combine DataGuides, Vindexes, and child/parent link traversal into efficient query plans.

7. Conclusion and Future Work

We have presented DataGuides, a novel feature designed to support various aspects of managing and querying
semistructured data.  Rather than require an explicit schema that all data must follow, a DBMS can support
free-form data, dynamically generating and maintaining a DataGuide that summarizes the structure of the data.
DataGuides provide key benefits afforded by a schema, such as guidance to the user for query formulation and
guidance to the query processor for query optimization.  After setting the stage with formalization and
algorithms, we focused on experimental and practical application of DataGuide technology in Lore, a DBMS
for semistructured data.  We have found that for typical databases DataGuides are easy and fast to create.
DataGuides were shown to be an important part of Lore’s user interface, and we also explained how a
DataGuide can be used to significantly speed up query processing.

We are considering the following areas for future research.

• From a theoretical standpoint, we would like to investigate the possibility of performance guarantees
for DataGuide creation over certain classes of databases.  Ideally, we could formalize database
characteristics that guarantee good performance.  Heuristics that quickly identify databases that may
result in poor DataGuide performance would also be helpful.  Strategies for dealing with such cases
are also important.

• As mentioned in Section 5, we plan to continue to exploit DataGuides to enhance our user interface to
Lore.  In addition to allowing more expressive queries to be specified directly from the DataGuide, we
plan to work towards blurring the distinctions between metadata and data (or alternatively, query
formulation and result browsing).  This process will demand considerable cooperation between the
query processor and DataGuide management, in addition to quickly and repeatedly updating a
(potentially remote) user’s view of the database.

• With regard to query optimization, we plan to run extensive benchmarks comparing query processing
in Lore with and without DataGuides.  In the process, we seek to classify the queries and database
characteristics for which DataGuides improve performance.
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