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Abstract

Semistructured data is not strictly typed like relational or object-oriented data and may be

irregular or incomplete. It often arises in practice, e.g., when heterogeneous data sources are

integrated or data is taken from the World Wide Web. Views over semistructured data can be

used to �lter the data and to restructure (or provide structure to) it. To achieve fast query

response time, these views are often materialized. This paper studies incremental maintenance

techniques for materialized views over semistructured data. We use the graph-based data model

OEM and the query language Lorel, developed at Stanford, as the framework for our work.

We propose a new algorithm that produces a set of queries that compute the changes to the

view based upon a change to the source. We develop an analytic cost model and compare the

cost of executing our incremental maintenance algorithm to that of recomputing the view. We

show that for nearly all types of database updates, it is more e�cient to apply our incremental

maintenance algorithm to the view than to recompute the view from the database, even when

there are thousands of such updates.

1 Introduction

Database views increase the 
exibility of a database system by adapting the data to user or applica-

tion needs [17, 36, 46]. Views are frequently materialized to speed up querying when the underlying

data is remote, e.g., distributed, or query response time is critical [28, 8]. Once a view is material-

ized, however, its contents must be maintained in order to preserve its consistency with the base

data. Maintenance can be achieved either by recomputing the view contents from the database

or by computing the incremental changes to the view based on changes to the database. In this

paper, we study the maintenance of materialized views for a new category of data, semistructured

data. We propose a simple view speci�cation mechanism and an algorithm for incremental main-

tenance. We then demonstrate the algorithm's usefulness (and limitations) with an analysis of the

maintenance cost.

Unlike relational or object-oriented data, semistructured data need not conform to a �xed

schema. The data may be irregular or incomplete, and often arises in practice, e.g., when het-

erogeneous data sources are integrated or data is extracted from the World Wide Web [1, 33, 9].

�
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Views over semistructured data can be used to �lter the data and to restructure (or provide struc-

ture to) it [33]. Filtering is crucial since semistructured data is often encountered by applications

interested in a very small portion of the available data (e.g., some speci�c data from the Web).

Furthermore, semistructured data is often heterogeneous and outside our control, so a view is the

only way in which we can restructure it. By introducing structure to semistructured data, views

can also facilitate query optimization or query formulation.

For performance reasons, views over semistructured data often need to be materialized. Queries

over semistructured data (possibly traversing long paths) are expensive to evaluate, as Mike Carey

argued recently [12]. A materialized view can be used to isolate the data of interest, allowing

subsequent queries to run over a smaller, perhaps more structured, data set. Materialized views

can also be used to rewrite queries applied over the base data to improve the query performance

[35]. Furthermore, subsequent queries over the materialized view may be able to take advantage of

standard query optimization techniques and access methods for structured data, even though the

underlying base data of the view is semistructured.

View mechanisms and algorithms for materialized view maintenance have been studied exten-

sively in the context of the relational model [8, 24, 23, 37, 22]. Incremental maintenance has been

shown to dramatically improve performance for relational views [25]. Views are much richer in

the object world [2] and, subsequently, algorithms for querying materialized views are signi�cantly

more intricate [2, 6, 44, 43, 39].

Previous results on incremental view maintenance for object databases [40, 42, 41] and nested

data [26] are based on the extensive use of type information. Semistructured data provides no type

information, so the same techniques do not apply. In particular, subobject sharing and the absence

of a schema make it di�cult to detect if a particular update a�ects a view. Subobject sharing also

makes it impossible to apply the approach taken by Croque [20], where the (OQL) view de�nitions

are limited to linear functions to avoid accessing the database when constructing the incremental

view maintenance statements.

While Suciu [45] also considers incremental view maintenance for semistructured data, the view

speci�cation language is limited to select-project queries and only considers database insertions.

Our approach allows joins in the view query and handles database insertions, deletions, and updates.

Zhuge and Garcia-Molina [47] also investigate graph structured views and their incremental main-

tenance. However, their views consist of object collections only, while we include edges (structure)

between objects. Also, their maintenance algorithms only work for select-project view speci�cations

over tree-structured databases, while our approach handles joins and arbitrary graph-structured

databases.

Our work is based on the Object Exchange Model (OEM) [34] for semistructured data and on

the Lorel query language for OEM [4]. We propose a view speci�cation extension to Lorel that

introduces two sets of objects in the view: (1) the select-from-where part speci�es the primary

objects imported to the view and (2) the new with part speci�es paths from the primary objects

to adjunct objects. Both the paths and the adjunct objects appear in the view. We exploit this

distinction between the di�erent view objects to propose an algorithm to maintain the materialized
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Figure 1: A Simple OEM Database

views incrementally. Given a view and a database update, the algorithm produces a set of mainte-

nance statements, evaluates them on the database to yield a set of view updates, and installs the

updates in the view.

We demonstrate the advantages of our algorithm with a cost model and a performance eval-

uation. We compare the cost of recomputation to the cost of incrementally computing the new

view. Our results show that the incremental maintenance algorithm is several orders of magnitude

better than recomputing the view for insertion and deletion of edges between objects. In addition,

incremental maintenance is cheaper for small numbers of atomic value changes. However, in some

cases, such as when a substantial portion of the database is updated, it may be cost e�ective to

recompute the view. We implemented view speci�cations in Lore [29] following our early work [3],

which then motivated the present work on incremental maintenance. Since the performance eval-

uation is (as we shall see) quite promising, we next intend to implement the algorithms described

here.

The presented maintenance algorithm can be used both for immediate maintenance [8] and for

deferred maintenance [38, 16] of the views. The general ideas presented here are also applicable to

query languages for semistructured data [11], for the Web [27, 31], and (to some extent) to query

languages for hypertext documents [14, 5].

2 View Speci�cation

We use the Lore system [29] to investigate materialized view maintenance over semistructured data.

Lore implements OEM. We now introduce OEM, the Lorel query language, the view speci�cation

language, and the update operations. [4] and [3] provide further details on Lorel and the view

speci�cation language, respectively.

2.1 Data Model OEM

An OEM database is a labeled, directed graph such as the small example database given in Figure 1.

The vertices in the graph are objects; each object has a unique object identi�er (oid) such as &2.

Atomic objects contain a value from one of the atomic types, e.g., integer, real, string, gif,
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java, audio. All other objects are complex objects and have a set of hlabel; subobjectsi pairs as

their value. In Figure 1, object &5 is atomic and has the value \Thai City". Object &4 is complex

and has as its value fhEntree;&10i; hName;&11i; hRating;&12i; hEntree;&13ig. Names are special

labels that each serve as an alias for a single object, and are used as entry points into the database.

In Figure 1, Guide is a name that denotes object &1.

There is no notion of a schema in an OEM database. Semantic information is included in the

labels, which are part of the data and can change dynamically. In this respect, an OEM database is

self-describing. OEM has been designed to handle incompleteness of data, as well as the structural

and type heterogeneity exhibited in Figure 1. For example, observe that the Restaurant object &2

has no Entree subobjects, while Restaurants &3 and &4 each have two.

2.2 Query Language

Lorel, for Lore Language, uses the familiar select-from-where syntax of SQL, and can be considered

an extension to OQL [13] that provides powerful path expressions for traversing the data and

extensive coercion rules for a more forgiving type system. Both additions are useful when operating

in a semistructured environment. Consider the Lorel query in Example 1.

Example 1 (Lorel Query)

select e

from Guide.Restaurant r, r.Entree e

where r.Name = \Baghdad Cafe" and e.Ingredient = \Mushroom";
2

The query asks for all Entree subobjects of a Restaurant object where the restaurant's name is

\Baghdad Cafe" and one of the ingredients of the entree has the value \Mushroom". The result of

this query over the database in Figure 1 is the set f&9g.

The expression Guide.Restaurant r, r.Entree e is a path expression describing a traversal through

the database. A path expression is composed of one-step paths of the form x:L y, where x is bound

to a set of objects, L is the label for some outgoing edge and y designates the set of objects that

are reached by starting from an object in the set x and traversing an edge labeled L. Each one-step

path describes a single step traversal through the data and can be written hx; L; yi.

While Lorel supports many ways for specifying paths (for example, by combining one-step path

expressions, eliminating variables, or using wild cards), in this paper, we use one-step paths for

clarity. Path expressions appearing in the where clause that are not quanti�ed by the from clause

are implicitly existentially quanti�ed according to Lorel semantics.

2.3 View Speci�cation

A view speci�cation statement in Lorel [3] imports objects and edges from a source database into

a view. In addition, new (virtual) objects and edges can be included in the view. Our view

speci�cation language can: (1) identify objects within a graph; (2) import arbitrary subgraphs; (3)

add or remove objects appearing in the view. To specify views, we use Lorel's query and update

operations and extend the select-from-where statement with a with clause.

The with clause is composed of path expressions where each path begins from an object chosen

by the select clause. Each object in the path, along with its connecting edge, is included in the
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view. The with clause is a compromise between returning everything or nothing reachable from

selected objects.

We call the objects included by the select-from-where part of the view speci�cation the primary

objects and the objects included in the view by the with clause the adjunct objects. An object can

be both a primary and an adjunct object in a view. Although a view de�nition may consist of

several view speci�cation statements, we concentrate on views de�ned by a single statement in this

paper.

The view speci�cation in Example 2 materializes the result of the query in Example 1 (now

written in an OQL-like syntax [4]) along with all Name and Ingredient subobjects of each Entree.

Example 2 (Canonical View Speci�cation in OQL-like Syntax)

de�ne view FavoriteEntrees as

Entrees = select e

from Guide.Restaurant r, r.Entree e

where exists x in r.Name: x = \Baghdad Cafe"

and exists y in e.Ingredient: y = \Mushroom"

with e.Name n, e.Ingredient i;

2

The objects bound to e are primary objects, while all the subobjects speci�ed by the with clause

are adjunct objects. Without the with clause, a view is a simple collection of objects that satisfy

the query, without edges or subobjects.

2.4 Materialized Views

We now explain how views are materialized in Lore, using our top-down query evaluation strategy

[29]. First, the from and where clauses are evaluated to obtain bindings for variables that appear

in the from clause and satisfy the where clause. The select clause is evaluated for these bindings.

Each primary object identi�ed by the select clause is then augmented with the subobjects and

edges in the with clause. In the view, each database object is represented by a new delegate object.

Entrees

Entree

Name Ingredient

"Beef Stew" "Mushroom"
&14’ &15’

&99

&9’

Figure 2: The materialized view de�ned by the view speci�cation in Example 2

Figure 2 shows the materialized view for Example 2 applied to the database in Figure 1. The

objects &9, &14, and &15 in Figure 1 provide bindings for e, n and i; the sole primary object &9'

and the adjunct objects &14' and &15' are the corresponding delegate objects in the view.
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2.5 Update Operations

The Lorel update statements [4] contain three elementary update operations that can a�ect a

materialized view:

� Insertion and deletion of the edge with label L from the object with oid o1 to the object with

oid o2, denoted hIns; o1; L; o2i and hDel; o1; L; o2i.

� Change of value of the atomic object with oid o1 from OldVal to NewVal, denoted

hChg; o1;OldVal;NewVal i.

3 View Maintenance

When an update operation a�ects a materialized view, the view must be maintained to keep it

consistent with the database. A view V is considered consistent with the database DB if the

evaluation of the view speci�cation S over the database yields the view instance (V = S(DB)).

Therefore, when the databaseDB is updated toDB0, we need to update the view V to V 0 = S(DB0)

in order to preserve the consistency.

Our incremental maintenance algorithm computes the new state of the materialized view from

the current state of the database, the view, and the database updates. Similar to relational view

maintenance algorithms, the incremental maintenance algorithm uses the database updates to

minimize the portion of the database examined when computing the view updates [23].

The algorithm applies to an important subset of Lorel [3]. More speci�cally, it handles every

view speci�cation statement without wild cards, subqueries, or negation (except on atomic objects,

e.g., x 6= 5 is permitted). To simplify the presentation, we also assume in the examples that the

select clause is of the form \select y" (although generalizing for any select clause is straightforward).

3.1 Overview of the Incremental Maintenance Algorithm

We treat the primary and adjunct objects (Vprim and Vadj) separately during maintenance. The

algorithm's input is shown in Figure 3.

1. View speci�cation statement S:

select vi

from v0:L1 v1, . . . , vj :Lk vk, . . . , vn�1:Ln vn

// where vj could be any variable which already appeared in the sequence

where conditions(v1; : : : ; vn)

with vi:LW11 w11, w11:LW12 w12, . . . , w1(p1�1):LW1p1 w1p1 ,

uj:LWj1 wj1, . . . , wj(k�1):LWjk wjk, . . . , wj(pj�1):LWjpj wjpj , . . . ,

// where uj is vi or wkl (2 � j, 1 � k � (j � 1), 1 � l)

2. Update U : hIns; o1; L; o2i, hDel; o1; L; o2i, or hChg; o1; OldV al;NewV ali

3. New database state DB0

4. View instance V

Figure 3: Input to the incremental maintenance algorithm

The view speci�cation S, the database update U , and the database state DB0 after the update
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1. Check for relevance of update U to the view instance V de�ned by the view speci�cation S.

Generate a set of relevant variables R. If R is empty, stop.

2. Generate maintenance statements and create ADDprim and DELprim using U , S, and R.

3. Generate maintenance statements and create ADDadj and DELadj using U , S, R, and ADDprim

or DELprim .

4. Install ADDprim, DELprim, ADDadj , and DELadj in V .

Figure 4: Basic structure of the incremental maintenance algorithm

are used to compute the view maintenance statements in Lorel syntax.1 These statements generate

the sets ADDprim, DELprim, ADDadj , and DELadj of objects and edges to add to and remove from

the view. In Figure 3, we abbreviate the where clause with \conditions(v1; : : : ; vn)." Conditions

are written in disjunctive normal form using boolean expressions, such as: exists y in e.Ingredient:

y = \Mushroom".

Figure 4 outlines the steps of the view maintenance algorithm. For simplicity, we describe the

algorithm as it operates on a single update. First, it checks whether the update is relevant to the

view, that is, if update U could cause a change to the view instance V . If so, the algorithm creates

the Lorel statements that generate ADDprim and DELprim. ADDprim and DELprim identify

the primary objects to add and remove by explicitly binding the objects in the update to the view

speci�cation. The algorithm then creates the sets of maintenance statements that generate ADDx
adj

and DELx
adj. ADD

x
adj and DELx

adj contain the adjunct objects and edges to add and remove for

each with clause variable x. Adjunct objects may be a�ected in three ways: (1) by newly inserted

or deleted primary objects; (2) by current adjunct objects that are the source of an inserted or

deleted edge; and (3) by atomic value changes.

3.2 Relevance of an Update

To avoid generating (and evaluating!) unnecessary maintenance statements, we �rst perform some

simple relevance checks. We use an auxiliary data structure, RelevantOids, to keep information

that would be inferred from the schema in a structured database. RelevantOids contains the object

identi�er of every object touched during the evaluation of a particular view, paired with the variable

to which it was bound, whether or not the object eventually appears in the view. It is used to check

quickly whether a database update could possibly a�ect the view. For example, if object o1 in a

Chg update does not appear in RelevantOids, then it was not examined during view evaluation,

its value is not relevant, and the update can be ignored. Note that we need to use our top-down

evaluation strategy to compute RelevantOids.

We also use syntactic checks that indicate whether speci�c atomic value changes could a�ect

the view. For each comparison in the view speci�cation where clause that involves a constant value,

we compare the constant to the update's OldVal and NewVal. If both or neither of OldVal and

NewVal satisfy the comparison, then the change cannot a�ect the view.

Figure 5 presents the procedure RelevantVars, which determines the set of relevant variables

1
We extend Lorel to allow the use of explicit object identi�ers wherever names are allowed within a statement.
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for the given update and view speci�cation.

procedure RelevantVars(Update U , View speci�cation S)

// If updated object is not in RelevantOids, then it's not relevant

if ho1(U ); �i =2 RelevantOids then return ;;

// Find out which variables are relevant

vars  ;; relvars  ;;

foreach v 2 variables(S) do

// If updated object is not in RelevantOids, then it's not relevant

if ho1(U ); vi 2 RelevantOids then vars  vars [ fvg;

// If update is an atomic change, do syntactic check

if type(U ) = Chg then

foreach v 2 vars do

foreach c 2 constants(S, v) do

// See if there's a constant in the view spec whose value may have changed

if (OldVal(U ) 6= c and NewVal(U ) = c) or (OldVal(U ) = c and NewVal(U ) 6= c) then

relvars  relvars [ fvg;

else relvars  vars;

return relvars;

Figure 5: RelevantVars(U , S, R) returns the set of view speci�cation variables for which

the update U is relevant.

For example, suppose that object &5's value in Figure 1 is changed from \Thai City" to \Hunan

Wok". Then we can infer that this update does not a�ect the view in Example 2, because the view

speci�cation mentions neither \Thai City" nor \Hunan Wok". On the other hand, if the value of &5

is changed to \Baghdad Cafe", which is the constant used in the comparison x.Name = \Baghdad

Cafe", then the update may be relevant.

We do not attempt to quantify the savings achieved by using RelevantOids in this paper.

However, we note that for views de�ned over a small portion of the database, most updates are

irrelevant.

3.3 Generating View Maintenance Statements

We now describe how to generate the maintenance statements for each type of update: edge

insertion, edge deletion, or atomic value change. For each one-step path in the view speci�cation,

we generate a maintenance statement that checks whether the updated edge binds to it. If so,

the statement produces updates to the view. We use auxiliary data structures to represent the

one-step paths. OneStepPathfrom, OneStepPathprim , and OneStepPathadjcontain all the one-

step paths that appear in the from clause; from and where clauses; and with clause; respectively.

For example, OneStepPathprim for the view speci�cation in Example 2 is fGuide.Restaurant r,

r.Entree e, r.Name x, e.Ingredient yg. Note that each OneStepPath is small since it depends on

the query and not on the database.
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3.3.1 Edge Insertion

For edge insertion, let the update be hIns; o1; L; o2i. We generate a primary object maintenance

statement for every possible pair of bindings of o1 and o2 using the procedure GenAddPrim in

Figure 6.

procedure GenAddPrim(Update U = hIns; o1; L; o2i, View speci�cation S, RelevantVars R)

// For each relevant variable

foreach a 2 R do

// For each place where the update can be substituted in the view spec

foreach ha, L, bi 2 OneStepPathprim do

// Write a maintenance stmt based on the view speci�cation:

ADDprim+= copy S except for the with clause and

replace \a:Li" with \o1:Li" 8Li and \b:Lj" with \o2:Lj" 8Lj in from clause,

replace \a" with \o1" and \b" with \o2" in where clause,

add \and a = o1" to each disjunct in where clause,

add \and b = o2" to each disjunct in where clause if ha, L, bi 2 OneStepPathfrom

Figure 6: GenAddPrim generates the ADDprim maintenance statements.

Example 3 (Inserting an Edge: Generating ADDprim)

Suppose that update hIns;&10; Ingredient;&15i is performed on the database in Figure 1. The

Baghdad Cafe restaurant now has two entrees with the ingredient \Mushroom". Given the view

speci�cation, RelevantVars returns the set feg. GenAddPrim then generates one statement.

ADDprim += select e

from Guide.Restaurant r, r.Entree e

where exists x in r.Name: x = \Baghdad Cafe"

and exists &15 in &10.Ingredient: &15 = \Mushroom"

and e = &10;
2

We then generate the maintenance statements for the adjunct objects. There are two cases to

consider: (1) adjunct objects attached to the new primary objects in ADDprim and (2) adjunct

objects that are newly connected to the view by the inserted edge from o1 to o2 (when o1 is an

adjunct object).

For the �rst case, we generate maintenance statements starting from the set ADDprim. For the

second case, we �rst test whether the inserted edge matches a relevant (adjunct object) variable

and has a matching label. If so, then we generate a set of maintenance statements that add the

inserted edge and all subsequent paths in OneStepPathadj . Both cases are handled by procedure

GenAddAdj in Figure 7.

Example 4 (Inserting an Edge: Generating ADDadj)

GenAddAdj generates the following maintenance statements for the update hIns;&10; Ingredient;&15i.

ADDn
adj += select he, Name, ni from ADDprim e, e.Name n;

ADDi
adj += select he, Ingredient, ii from ADDprim e, e.Ingredient i;

Since the inserted edge is not connected to an existing adjunct object (&10 is not currently an

adjunct object in the view), no statements are generated by the second half of GenAddAdj. 2
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procedure GenAddAdj(Update U = hIns; o1; L; o2i, View speci�cation S, RelevantVars R)

// (1) If primary objects were added, need to add adjunct objects from them

if ADDprim 6= ; then

// For each adjunct edge and object

foreach hwj(k�1), LWjk, wjki 2 OneStepPathadj do

// Write a maintenance statement based on the view speci�cation (no where or with clause):

ADD
wjk

adj += select hwj(k�1), LWjk, wjki

from ADDprim vi, vi:LWj1wj1, . . . , wj(k�1):LWjk wjk;

// (2) For each place that edge could be adjunct edge

foreach v 2 R do

foreach hv, L, wjki 2 OneStepPathadj do

// Write a set of maintenance statements starting from added edge:

// Add inserted edge to the view

ADD
wjk

adj += select ho1, L, o2i;

// From o2, add any necessary edges

ADD
wj(k+1)

adj += select ho2, LWj(k+1), wj(k+1)i from o2:LWj(k+1)wj(k+1);

// In a similar fashion, include all paths

foreach hwj(k+n�1), LWj(k+n), wj(k+n)i 2 O do

ADD
wj(k+n)

adj += select hwj(k+n�1), LWj(k+n), wj(k+n)i

from o2:LWj(k+1)wj(k+1), . . . , wj(k+n�1):LWj(k+n) wj(k+n);

Figure 7: GenAddAdj generates the ADDadj maintenance statements.

Because the addition of an edge in the absence of negation cannot cause a deletion, we do not

have to generate DELprim or DELadj.

3.3.2 Edge Deletion

Let the update be hDel; o1; L; o2i. A deleted edge may: (1) be irrelevant and not a�ect the view;

(2) cause a primary object to be deleted; (3) appear directly in the (adjunct) view and need to be

removed. Either (2) or (3) could cause additional adjunct edges to be removed from the view. In

principle, a delete edge update generates maintenance statements similar to an insert edge update.

However, the delete edge statements must simulate the now deleted edge in the view to determine

whether it originally contributed to the appearance of objects or edges in the view. Also, the delete

edge statements must check (using a subquery) whether a potentially deleted object or edge should

remain in the view due to paths not involving the deleted edge. For example, if the Entree object &9

in Figure 1 had two \Mushroom" ingredients then applying the update hDel;&9; Ingredient;&15i

should not remove the Entree object &9 from the view.

Figure 8 shows the procedure GenDelPrim, used to generate the maintenance statements for

the primary objects.

Example 5 (Deleting an Edge: Generating DELprim)

Suppose the update U = hDel;&3; Entree;&9i is applied to the database of Figure 1. The object

&9 must be removed from the view. GenDelPrim generates one statement.
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procedure GenDelPrim(Update U = hDel; o1; L; o2i, View speci�cation S, RelevantVars R)

// For each relevant variable

foreach a 2 R do

// For each place where the update can be substituted in the view spec

foreach ha, L, bi 2 OneStepPathprim do

// Write a maintenance statement based on the view speci�cation:

DELprim+= copy S except for the with clause and

// The �rst two replacements reconstruct the before state

replace \a:L b" with \(o1:L [ fo2g) b" in from clause.

replace \exists b in a:L" with \exists b in (o1:L [ fo2g)" in where clause.

// The remaining replacements handle normal appearance of bound variables

replace \a:Li" with \o1:Li" 8Li in from clause

replace \b:Lj" with \o2:Lj" 8Lj in from clause

replace \a" with \o1" in where clause

replace \b" with \o2" in where clause

add \and a = o1" to each disjunct in where clause

add \and b = o2" to each disjunct in where clause if ha, L, bi 2 OneStepPathfrom

// The duplicate test is a subquery that ensures that the object bound

// to vi is not in the view for another reason

add to where clause \and not exists (S0)" where S0 is

S without with clause and new variables v0j for each v0j

and an additional where condition: \v0i = vi" (vi is the selected variable in S)

Figure 8: Generating maintenance statements for DELprim

DELprim += select e

from Guide.Restaurant r, (&3.Entree [f&9g) e

where exists x in &3.Name: x = \Baghdad Cafe"

and exists y in &9.Ingredient: y = \Mushroom"

and r = &3 and e = &9

and not exists ( select e0

from Guide.Restaurant r0, r0.Entree e0

where exists x0 in r0.Name: x0 = \Baghdad Cafe"

and exists y0 in e0.Ingredient: y0 = \Mushroom"

and e0 = e);

This statement adds bindings for r and r.Entree to the view speci�cation S and reconstructs the

before state by binding e to &9. The transformations to the original query are summarized in the

table shown in Figure 9. 2

We then generate the maintenance statements for the adjunct objects and edges. However, like

the objects in the primary zone, an adjunct object or edge can be included in the view due to

multiple paths. Reachability via a deleted edge is not a su�cient condition for deleting an adjunct

object or edge, as we explain further in Appendix A. Instead, a subquery of the where clause looks

for other variable bindings for the edge to be removed. If another binding is found, then the edge

is not deleted. Procedure GenDelAdj in Figure 10 generates the maintenance statements for the
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Clause Original Incremental Statement General Rule

From Guide.Restaurant r Guide.Restaurant r vj :Lk vk s.t.

(vj and vk) 6= (a or b) ! No Change

From r.Entree e (&3.Entree [f&9g)e a:L b! (o1:L[ fo2g) b

Where 9x in r.Name: x = \Baghdad Cafe" 9x in &3.Name: x = \Baghdad Cafe" a:Lj vj s.t. vj 6= b! o1:Lj vj

Where 9y in e.Ingredient: y = \Mushroom" 9y in &9.Ingredient: y = \Mushroom" b:Lj vj ! o2:Lj vj

Figure 9: Transformations for incremental maintenance statements for Example 5

adjunct objects and edges.

Example 6 (Deleting an Edge: Generating DELadj)

For the update hDel;&3; Entree;&9i, procedure GenDelAdj creates one maintenance statement

for the paths in OneStepPathadj .

DELn
adj += select he, Name, ni from DELprim e, e.Name n;

DELi
adj += select he, Ingredient, ii from DELprim e, e.Ingredient i;

Neither statement in our simple example includes a where subclause. More complex cases, however,

do require the full generality of GenDelAdj. 2

3.3.3 Atomic Value Change

Let the update U be hChg; o1;OldVal;NewVal i. This value change may cause both deletions

and insertions in the view or there might be no change at all, e.g., if the change is irrelevant to

the view. Given the value update information, we have no way of knowing the incoming labels to

object o1. Due to object sharing, an object may have many incoming labels and knowing those that

were traversed in the original view evaluation does not su�ce. Therefore, we consider all possible

variable bindings for the value change. Note that the predicate relevance test in RelevantVars in

Figure 5 may be omitted when testing the values is expensive. RelevantVars can also simplify

matters by tracking whether the changed value could potentially cause the addition versus the

removal of objects.

Example 7 (Atomic Value Change)

Suppose the update U is hUpd;&7; \Baghdad Cafe", \Wendy's"i. We identify x as the only relevant

variable for Example 2. This atomic value change cannot result in adding new objects to the

materialized view, because the new value \Wendy's" does not satisfy any condition on x. However,

the old value \Baghdad Cafe" does. If x is bound to &7 then the condition's value changes from

true to false and some objects may no longer be in the view. We therefore generate DELprim for

the deletion of hr, Name, &7i since Name is the label associated with x.

DELprim += select e

from Guide.Restaurant r, r.Entree e

where exists &7 in r.Name : (OldVal(&7) = \Baghdad Cafe")

and exists y in e.Ingredient: y = \Mushroom"

and not exists ( select e0

from Guide.Restaurant r0, r0.Entree e0

where exists x0 in r0.Name: x0 = \Baghdad Cafe"

and exists y0 in e0.Ingredient: y0 = \Mushroom"

and e0 = e);

12



procedure GenDelAdj(Update U = hDel; o1; L; o2i, View Speci�cation S, RelevantVars R)

if DELprim 6= ; then

// Deletion of primary objects could a�ect every one-step path in the adjunct.

// Identify edges that need to be deleted because of primary object deletions:

foreach hwj(k�1), LWjk, wjki 2 OneStepPathadj do

// Write one maintenance statement for each one-step path in the with clause.

// The path in the from clause has to match some path, starting at the selected

// variable vi, in the with clause of the view speci�cation (see Figure 3).

DEL
wjk

adj += select hwj(k�1), LWjk, wjki

from DELprimvi, vi:LWj1 wj1, . . . , wj(k�1):LWjk wjk

where not exists (

select true

// the where clause contains one subclause for each path in the with clause

// of the view speci�cation that leads to a variable that uses label LWjk

where (Vprimvi, vi:LWj1 w
0

j1, . . . , w
0

j(k�1)
:LWjk w0

jk,

and w0

j(k�1) = wj(k�1) and w0

jk = wjk)

or . . . );

// The adjunct zone could be a�ected if the label of the deleted edge appears in the with clause

foreach u 2 R do

foreach hu, L, uii 2 OneStepPathadj do

// Ensure that ui is relevant with respect to o2

if ho2; uii 2 RelevantOids then

// Must remove the edge from the view since it is deleted from the database

DELui
adj += select ho1, L, o2i;

// Write a set of maintenance statements \starting" from the deleted edge to delete

// all the edges in the view along paths that start from variable ui for ui = o2

foreach hwj(k�1), LWjk, wjki 2 OneStepPathadj do

// The path in the from clause has to match some path starting at ui in the with clause

// of the view speci�cation statement (see Figure 3)

DEL
wjk

adj += select hwj(k�1), LWjk, wjki

from o2:LWj1 wj1, . . . , wj(k�1):LWjk wjk

// Same subquery as above

where not exists (

select true

where (Vprimvi, vi:LWj1 w
0

j1, . . . , w
0

j(k�1)
:LWjk w0

jk,

and w0

j(k�1) = wj(k�1) and w0

jk = wjk)

or . . . );

Figure 10: Generating maintenance statements for DELadj
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Based on DELprim, DEL
n
adj and DELi

adj are calculated as shown in Example 6. 2

3.4 Installing the Maintenance Changes

Finally, the changes represented by ADDprim, ADDadj , DELprim, and DELadj are installed in the

materialized view. Since there is no duplication of objects in the view, deletions need to be installed

in the view before insertions. If a view object ceases to be a primary object, it may still remain

in the view as an adjunct object and vice versa. Then, if the update is an atomic value change of

an object in the view, the new value is installed in the delegate object. Given ADDprim, ADDadj,

DELprim, and DELadj , the installation process can use indices to identify the objects and edges

that are already in the view.

4 Cost Model

In this section, we present an analytic model that evaluates the cost of both view recomputation

and incremental maintenance for a given update. A more detailed cost model that follows a similar

approach for an object-oriented system is presented in [7], and [30] presents a more complex cost

model for Lore. The cost model can be used by the query optimizer to choose dynamically, for a

given set of updates, whether to recompute or to incrementally maintain the view.

The cost assigned to a plan is the estimated number of object fetches during query processing.

While more complex cost models have been proposed for object oriented systems, e.g., [19], they

rely heavily on the object clustering guaranteed by the system. In the absence of clustering, we

count the number of object fetches, since we cannot accurately determine whether two objects will

be on the same page.

B

C

B

B &1

A

&7&6&5

&4&3&2

C C

Figure 11: Path expression evaluation and statistics (path expression: A.B b, b.C c)

The cost formulas rely on our top-down query execution strategy, described in Section 2.4.

This strategy results in a depth �rst traversal of the data starting from a named object [29]. Other

query execution strategies for semistructured databases are investigated in [30, 15]. The following

de�nitions are based on statistics kept by the system.

� Fanout(x; L): the estimated average number of children with the label L that are descendants

of some object in the set x. The variable x must already be bound using a path expression.

In Figure 11, Fanout(b; C) is 1 since (on average) each of the objects in the set b has a single

C child.
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� jxj: the estimated number of objects in the set corresponding to a variable x. In Figure 11,

jcj = 3.

� Cost(x; L; y): the estimated cost, i.e., the number of objects fetched in order to get all of the

subobjects with edge labeled L originating from any object in x, where each resulting object

is placed into set y. This cost is computed by Cost(x; L; y) = jxj � Fanout(x; L).

For example, given the path expression b.C c of Figure 11, the evaluation cost for b.C c is

Cost(b; C; c) = jbj � Fanout(b; C) = jAj � Fanout(A;B) � Fanout(b; C) = 1 � 3 � 1 = 3.

Without any bindings, the cost for evaluating a path expression P is

Cost(total) =
X

hx;L;yi2P

Cost(x; L; y)

The incremental maintenance statements bind variables to the objects contained in the update

and use the bindings to prune the search space. The execution proceeds until a variable x bound by

the update is encountered. If the object bound to x is not the updated object, then the evaluation

short circuits and goes on to the next binding for x. A bound variable lowers the cost of the

computation for the rest of the path expression, since it limits the remaining portion of a path to

objects reachable from the bound variable. Insertions and deletions provide two object bindings,

while an atomic value change provides only one. Both the cost model and the formulas ignore

object sharing, which can reduce the actual cost.

We now apply our cost formula to the view speci�cation of Example 2.

Example 8 (Cost of Full Recomputation)

The cost for the complete recomputation of the view is:

X

hx;L;yi2OneStepPathprim[OneStepPathadj

Cost(x; L; y)

= Cost(Guide; Restaurant; r) + Cost(r; Entree; e) + Cost(r;Name; x) + Cost(e; Ingredient; y)

+Cost(e;Name; n) + Cost(e; Ingredient; i)

= jGuidej � Fanout(Guide; Restaurant) + jrj � Fanout(r; Entree) + jrj � Fanout(r;Name) +

jej � Fanout(e; Ingredient) + jej � Fanout(e;Name) + jej � Fanout(e; Ingredient)

= jGuidej � Fanout(Guide; Restaurant) + jGuidej � Fanout(Guide; Restaurant) � Fanout(r; Entree) +

jGuidej � Fanout(Guide; Restaurant) � Fanout(r;Name) +

jGuidej � Fanout(Guide; Restaurant) � Fanout(r; Entree) � Fanout(e;Name) +

2 � jGuidej �Fanout(Guide; Restaurant) �Fanout(r; Entree) � Fanout(e; Ingredient)

2

We now show how our cost formula applies to the maintenance statements in Example 3 for

update hIns;&10; Ingredient;&15i.

Example 9 (Maintenance Cost of Inserting an Edge)

P = fhGuide, Restaurant, ri; hr, Entree, ei; hr, Name, xi; he, Ingredient, yig is the set of one-step

path expressions in the maintenance statement of Example 3 and P 0 = fhADDprim, Name, ni;
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hADDprim, Ingredient, iig is the set of one-step path expressions in the maintenance statement of

Example 4. The bindings e = &10 and y = &15 is provided.

X

(x;L;y)2P

Cost(x; L; y) +
X

(x;L;y)2P 0

Cost(x; L; y)

= Cost(Guide; Restaurant; r) + Cost(r; Entree; e) + Cost(r;Name; x) + Cost(e; Ingredient; y)

+Cost(ADDprim; Name; n) + Cost(ADDprim; Ingredient; i)

= jGuidej � Fanout(Guide; Restaurant) + jrj � Fanout(r; Entree) +

jrj � Fanout(r;Name) + jej � Fanout(e; Ingredient) +

jADDprimj � Fanout(ADDprim; Name) + jADDprimj � Fanout(ADDprim; Ingredient)

= jGuidej � Fanout(Guide; Restaurant) + 1 +

jGuidej � Fanout(Guide; Restaurant) � Fanout(r;Name) + 1 �Fanout(e; Ingredient) +

jADDprimj � Fanout(ADDprim; Name) + jADDprimj � Fanout(ADDprim; Ingredient)

jADDprimj depends upon the number of possible bindings for e and the selectivity of the where

clause, as follows:

jADDprimj = jej � Selectivity(where) = 1 � Selectivity(where) � 1. 2

If the selectivity of the where clause of a query is a%, then only a% of all the objects that

satisfy the view speci�cation before applying the where clause are actually in the view. In order

for an atomic value change from OldVal to NewVal to be relevant, the truth value of the where

clause needs to change when OldVal is substituted by NewVal. As the 2 � 2 matrix in Figure 12

shows, an atomic change causes insertions to the view a(1� a)% of the time and deletions to the

view a(1�a)% of the time. When computing the average cost of incremental maintenance after an

atomic value change, we multiply the costs of updating the view by a(1� a) to take the relevance

of the update into account.

OldVal

true false

true a � a a(1� a)
NewVal

false a(1� a) (1� a)(1� a)

Figure 12: Truth value of the where clause for OldVal and NewVal

5 Evaluation

Our evaluator program accepts a single view speci�cation statement, a database, and a single

change, and computes the cost for both recomputation and incremental maintenance using our

cost model. In this section, we present the costs for a variety of view speci�cations, databases, and

updates. We did not use the auxiliary structure RelevantOids in the cost model, so the actual costs

for incremental maintenance will be lower in many cases. In all our graphs, the cost is shown on

the y axis in a logarithmic scale.
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Figure 13: Base costs for update operations
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Figure 14: Varying the position of the bound

variable in the from clause

5.1 Base Costs for Update Operations

In the �rst experiment, shown in Figure 13, we looked at the costs of di�erent update operations

for the view speci�cation of Example 2. The database contained one Guide, 1000 restaurants, 100

entrees and 1 name per restaurant, and 10 ingredients and 2 names per entree, and possibly other

portions of the database that were not traversed when computing or maintaining the view. We

assumed a �xed selectivity for the where clause of 50%. Each bar shows the cost of maintaining

the view after a single update for a di�erent update operation.

Recomputation is over 100 times more expensive than incremental maintenance for insert or

delete edge operations. These savings are due to binding the variables associated with the inserted

or deleted edge. A much smaller portion of the database is traversed during execution of the incre-

mental view maintenance statements compared to the view speci�cation statement. Maintaining

a view for edge insertions was signi�cantly cheaper than for edge deletions due to the subquery in

delete edge maintenance statements.

The maintenance cost for an atomic value change varies widely. Without conditional relevance

tests, the incremental algorithm will generate a maintenance statement for each condition in the

where clause. Although each statement will incorporate a variable binding for the changed object,

there is only one such binding. Depending on where the binding occurs, the maintenance statement

cost may vary from much to only slightly cheaper than the cost of recomputation. Given several

where conditions, recomputation may be more cost e�ective. For example, for the view in Exam-

ple 2, testing a single atomic change against both conditions in the where clause cost is almost as

much as recomputation, as shown in Figure 13. However, relevance tests using RelevantOids can

often determine that a single or none of the conditions in the where clause are relevant. For the

same example, evaluating the maintenance statement for only one condition is always cheaper than

recomputation.

5.2 Varying the Position of the Bound Variable in the from Clause

The position of the bound variable a�ects the cost of incremental maintenance. For this experiment,

we used a view speci�cation containing a chain of eight one-step paths in the from clause:
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de�ne view VaryingFrom as

VF = select z2 from A.L1 z1, z1.L2 z2, . . . , z7.L8 z8;

The database contained a single named object A, 1000 L1 subobjects of A, 100 L2 subobjects

per z1, and ten Li subobjects per zi�1 for 3 � i � 8. We deleted the edge hoi�1, Li, oii, for all

values of 3 � i � 8 in turn. Figure 14 shows that recomputation is 10{500 times more expensive

than incremental maintenance. When the bound variable is in the middle of a path expression,

it e�ectively divides the path into two shorter paths whose costs are added rather than multi-

plied. Therefore, the variable binding provided by the newly inserted or deleted edge has the most

bene�cial e�ect when it occurs in the middle of the path expression.
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Figure 15: Varying the length of the from

clause
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Figure 16: Varying the database size

5.3 Varying the Length of the from Clause

The number of variables in the from clause also a�ects the cost of incremental maintenance. For

this experiment, we used view speci�cations of the following pattern and varied the length of the

path expression in the from clause from three to eight one-step paths.

de�ne view VaryingFrom2 as

VF2 = select z2 from A.L1 z1, z1.L2 z2, . . . , zn�1.Ln zn;

The database was the same as in Section 5.2. For each view speci�cation, we inserted the

edge ho1, Lbn=2c+1, o2i, which bound the middle variable in the path. Figure 15 shows that as

the number of variables increased, the recomputation cost also increased. Each additional edge in

the from clause caused the relevant portion of the database to expand by ten. The incremental

maintenance costs are much lower and increase much more slowly due to the bound variables. The

insert edge cost decreases when n = 4 because the bound variable appears in a more advantageous

position in the path expression.

5.4 Varying the Database Size

For the fourth experiment, we used the view speci�cation in Section 5.1, but varied the size of the

database. We increased the number of restaurants in the database from 1000 to 5000, and kept

the same average number of entrees per restaurant, ingredients per entree, etc. Therefore, when

the number of restaurants doubled, for example, the size of the relevant portion of the database
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doubled. The maintenance costs after various edge insertions are shown in Figure 16. The cost of

recomputation is consistently 100{100,000 times higher than the cost of incrementally maintaining

the view.

The size of the database had negligible e�ect on inserting an Entree and Name edge, since the

inserted edge provided a binding to a speci�c restaurant. When inserting an Ingredient edge the

placement of the bound variable was not as fortunate, and the size of the database a�ected the

execution cost of the maintenance statements. The recomputation cost grew linearly with the size

of the relevant portion of the database, since it traversed the entire database.
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Figure 17: Varying the selectivity of the where

clause
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Figure 18: Varying the number of occurrences

of a label in the view speci�cation

5.5 Varying the Selectivity of the where Clause

Figure 17 shows the results of the �fth experiment. We kept the same view de�nition and database

structure as in Section 5.1, but varied the selectivity of the where clause by changing the atomic val-

ues in the database. As the selectivity increases, more objects are included in the view. Therefore,

the recomputation cost went up to �nd the increased number of adjunct objects. The incremental

maintenance cost for atomic value changes is in
uenced signi�cantly by the selectivity of the where

clause. When the selectivity is low, most atomic value changes can be screened out by tge syntactic

relevance test before running any queries. When the selectivity is high, most objects are already

included in the view, so very few new objects need to be added to the view because of the change.

Since syntactic relevance tests only apply to atomic value changes (and a�ect their cost!), the cost

for an insert edge update does not change based on the atomic values and the selectivity.

5.6 Varying the Number of Occurrences of a Label in the View Speci�cation

For the �nal experiment, we varied the number of times the label of the inserted or deleted edge

matched a label in the view speci�cation. We used view speci�cation statements of the following

form:

de�ne view VarLabel as

VL = select x

from A.L1 x, x.L2 y, y.L3 z

where y:L4 < 10 and z:L5 > 7

with x.L6;
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We inserted or deleted the edge ho1, L, o2i. For each test, we changed some of the labels in the

view speci�cation (as well as the corresponding labels in the source database) to \L", as indicated

by the legend for the results, shown in Figure 18. The database contained 100 subobjects of an

object for each distinct label. The recomputation cost was una�ected by the speci�c labels, since the

structure of the database remained the same. The incremental maintenance costs varied, however,

since each appearance of the label L required an additional maintenance statement. However, even

when the label L appeared three times in the view speci�cation, incremental maintenance was still

20 times cheaper than recomputation.

6 Conclusion

Most approaches for incremental view maintenance rely on the database schema to generate main-

tenance statements. We described an incremental maintenance algorithm for views over semi-

structured, or schemaless, data. Our algorithm identi�es the needed view changes based on the

information available from the view speci�cation, the update operation, the database state after

the update, and some auxiliary data structures that are generated when populating the view.

Our evaluation results show that our incremental maintenance algorithm outperforms recom-

putation, even for large numbers of insert and delete edge updates. However, in some situations,

incremental maintenance can be as expensive as full recomputation of the view for a single atomic

value change, due to the simple query execution strategy in our cost model. These numbers re
ect

only the portion of the database traversed during view evaluation, not the total size of the database.

Furthermore, our algorithm scales well with increasing database size.

We have implemented view materialization within Lore [29]. We plan to implement the in-

cremental maintenance algorithm as well. Several optimizations to our incremental maintenance

algorithm are possible. First, we plan to extend the algorithm to handle sets of updates together.

Second, if the data has a tree structure, then the maintenance statements can be simpli�ed, e.g.,

by eliminating the subqueries when deleting objects or edges. Third, we would like to incorporate

query rewriting and query optimization techniques [30] for semistructured data and provide more

query execution choices to the query optimizer. Finally, we would like to consider using inferred

schematic information such as DataGuides [32, 21] or graph schemas [10, 18] to optimize view

maintenance.
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A Maintenance Statement Subquery

Consider Figure 19(a) where object o is reached via path expressions p and q. Suppose that o has

a single child with label L which appears within the view only because the path q:L appears in the

with clause. Figure 19(b) shows the state of the database after some update has invalidated the

path q. If we destroy objects and removed edges within the adjunct based soley on reachability

then the L subchild of o would remain, as shown in (b). However, since the path expression in

the with does not contain p:L then recomputation of the view, shown in (c), illustrates that (b) is

inconsistent.
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Figure 19: Motivation for subquery in maintenance statement
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