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Abstract

Semistructured graph-based databases have been proposed
as well-suited stores for World-Wide Web data. Yet so far,
languages for querying such data are too complex for ca-
sual Web users. Further, proposed query approaches do
not take advantage of the interactive nature of typical Web
sessions—users are proficient at iteratively refining their
Web explorations. In this paper we propose a new model
for interactively querying and searching semistructured
databases. Users can begin with a simple keyword search,
dynamically browse the structure of the result, and then
submit further refining queries. Enabling this model ex-
poses new requirements of a semistructured database man-
agement system that are not apparent under traditional
database uses. We demonstrate the importance of efficient
keyword search, structural summaries of query results,
and support for inverse pointers. We also describe some
preliminary solutions to these technical issues.

1 Introduction

Querying the Web has understandably gathered much at-
tention from both research and industry. For searching the
entire Web, search engines are a well-proven, successful
technology [Dig97, Ink96]. Search engines assume little
about the semantics of a document, which works well for
the conglomeration of disparate data sources that make up
the Web. But for searching within a single Web site, a
search engine may be too blunt a tool. Large Web sites,
with thousands of pages, are attracting millions of users.
The ESPN Sports site (espn.com), for example, has over
90,000 pages [Sta96] and several million page views a day
[Sta97]. As large as some sites may be, they are funda-
mentally different from the Web as a whole since a single
site usually has a controlled point of administration. Thus,
it becomes possible to consistently assign and expose the
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site’s semantic data relationships and thereby enable more
expressive searches.

Consider any of the large commercial news Web sites,
such as CNN (cnn.com), ABC News (abcnews.com), etc.
Currently, users have very limited querying ability over
the large amounts of data at these sites. A user can browse
the hard-coded menu system, examine a hand-made sub-
ject index, or use a keyword-based search engine. When
looking for specific data, traversing the menus may be far
too time consuming, and of course a hand-made subject
index will be of limited scope. Finally, while a keyword
search engine may help locate relevant data, it doesn’t take
advantage of the conceptual data relationships known and
maintained at the site. For example, at any such Web site
today there is no convenient way to find:

� All photos of Bill Clinton in 1997
� All articles about snow written during the summer
� All basketball teams that won last night by more

than 10 points

Such queries become possible if most or all of the site’s
data is stored in a database system. Recently, researchers
have proposed semistructured data models, databases, and
languages for modeling, storing, and querying World-
Wide Web data [AQM+97, BDHS96, BDS95, FFLS97,
MAG+97]. Such proposals argue that a graph-based semi-
structured database, without the requirement of an explicit
schema, is better suited than traditional database systems
for storing the varied, dynamic data of the Web. So far,
however, there has been little discussion of who will query
such data and what typical queries will look like. Given
the domain, we believe that a large and important group
of clients will be casual Web users, who will want to pose
interesting queries over a site’s data.

How would a typical Web user pose such queries?
Asking casual users to type a query in any database lan-
guage is unrealistic. It is possible to handle certain queries
by having users fill in hard-coded forms, but this approach
by nature limits query flexibility. Our previous work on
DataGuides [GW97] has proposed an interactive query
tool that presents a dynamic structural summary of semi-
structured data and allows users to specify queries “by
example.” (Pesto [CHMW96] and QBE [Zlo77], designed
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for object-relational and relational databases, respectively,
enable users to specify queries in a similar manner.) A
DataGuide summarizes all paths through a database, start-
ing from its root. While such dynamic summaries are an
important basic technology for several reasons [GW97],
presenting the user with a complete summary of paths
may still force him to explore much unnecessary database
structure.

In this paper, targeting casual users, our strategy is to
model and exploit two key techniques that Web users are
intimately familiar with:

1. specifying a simple query to begin a search, usually
with keywords

2. further exploring and refining the results

For the first technique, we want to support very simple
queries that help “focus” the user on relevant data. The
many search engines on the Web have shown that keyword
search is an easy and effective technique for beginning a
search. To enable the second technique, we want to expose
and summarize the structure of the database “surround-
ing” any query result. To do this, we dynamically build
and present a DataGuide that summarizes paths not from
the database root, but instead from the objects returned
in the query result. A user can then repeat the process
by submitting a query from this “focused” DataGuide or
specifying additional keywords, ultimately locating the
desired results.

Our discussions are in the context of the Lore project
[MAG+97], which uses the OEM graph-based data model
[PGMW95] and the Lorel query language [AQM+97].
Our results are applicable to other similar graph-based data
models, as well as the emerging XML standard for defining
the semantic structure of Web documents [Con97].

In the rest of the paper, we first provide background
and context in Section 2. In Section 3, we present a simple
motivating example to illustrate why new functionality is
needed in a semistructured database system to support in-
teractive query and search. Our session model is described
in Section 4, followed by three sections covering the new
required technology:

� Keyword search (Section 5): Efficient data struc-
tures and indexing techniques are needed for quickly
finding objects that match keyword search criteria.
While we may borrow heavily from well-proven in-
formation retrieval (IR) technology, the new context
of a graph database is sufficiently different from a
simple set of documents to warrant investigation.

� DataGuide enhancements (Section 6): Computing
a DataGuide over each query result can be very
expensive, so we have developed new algorithms for
computing and presenting DataGuides piecewise,
computing more on demand.

� Inverse pointers (Section 7): To fully expose the
structural context of a query result, it is crucial
to exploit inverse pointers when creating the Data-
Guide for the result, browsing the data, and sub-
mitting refining queries. While support for in-
verse pointers may seem straightforward, the major
proposed models for semistructured data are based
on directed graphs, and inverse pointers have not
been considered in the proposed query languages
[AQM+97, BDHS96, FFLS97].

2 Background

To set the stage for the rest of the paper, we briefly describe
the OEM data model, introduce the Lorel query language,
and summarize DataGuides. In OEM, each object contains
an object identifier (oid) and a value. A value may be
atomic or complex. Atomic values may be integers, reals,
strings, images, or any other indivisible data. A complex
OEM value is a collection of OEM subobjects, each linked
to the parent via a descriptive textual label. An OEM
database can be thought of as a rooted, directed graph.
The left side of Figure 1 is a tiny fictional portion of
an OEM database describing a research group, rooted at
object r.

The Lorel query language, derived from OQL [Cat94],
evaluates queries based on path expressions describing
traversals through the database. Special edges coming
from the root are designated as names, which serve as
entry points into the database. In Figure 1, DBGroup is
the only name. As a very simple example, the Lorel query
“Select DBGroup.Member.Publication.Title” returns a set
containing object 11, with value “OLTP.” More specifically,
when a query returns a result, a new named Answer object
is created in the database, and all objects in the result
are made children of the Answer.1 The Answer edge is
available as a name for successive queries.

A DataGuide is a dynamic structural summary of an
OEM database. It is an OEM object G that summarizes
the OEM database (object) D, such that every distinct la-
bel path from the root of D appears exactly once as a path
from the root of G. Further, every path from the root
of G corresponds to a path that exists in D. We have
carefully chosen Figure 1 to be a DataGuide of itself (ig-
noring atomic values). For any given sequence of labels,
there is only one corresponding path in the database. (In

1Identifying labels are assigned to the edges connecting the
Answer object to each query result object, based on the last
edge traversed to reach the result object during query evaluation.
In this example, the label is Title. Also, Lorel queries may
create more complicated object structures as query results, but
for simplicity we do not consider such queries in this paper; our
work can easily be generalized.
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Figure 1: A sample OEM database and its Java DataGuide

a real database, there may be many Member objects un-
der DBGroup, several Publication objects per Project, etc.)
Through a Web-accessible Java interface, a DataGuide is
presented as a hierarchical structure, and a user can in-
teractively explore it. The right side of Figure 1 shows
the Java DataGuide for our sample database. Clicking on
an arrow expands or collapses complex objects. We have
expanded most of the links, but because of the cycle we
have not expanded the deepest Project or Member arrows.

Users can also specify queries directly from the Java
DataGuide with two simple steps: 1) selecting paths for
the query result, and 2) adding filtering conditions. Each
diamond in the DataGuide corresponds to a label path
through the database. By clicking on a diamond, a user
can specify a condition for the path or select the path
for the query result. Filtering conditions are rendered
next to the label, and the diamonds for selected paths are
highlighted. The Java DataGuide in Figure 1 shows the
query to select all project publications from 1997. The
DataGuide generates Lorel queries, which are sent to the
Lore server to be evaluated. In our Web user interface, we
format the query results hierarchically in HTML for easy
browsing.

3 Motivating Example

In this section we trace a motivating example, using the
sample database presented in Figure 1. Suppose a user
wishes to find all publications from 1997, a seemingly
simple query. (In the previous section, our sample query
only found publications of projects.) It is possible to write
a Lorel query to find this result, but a casual user will not
want to enter a textual Lorel query. This example also il-
lustrates some limitations of using the DataGuide to locate

information. Even in this simple case, there are numerous
paths to all of the publications; in a larger database the sit-
uation may be much worse. In short, while the DataGuide
does a good job of summarizing paths from the root, a
user may be interested in certain data independent of the
particular topology of a database.

In this situation, a typical Web user would be comfort-
able entering keywords: “Publication,” “1997,” or both.
Suppose for now the user types “Publication” to get started.
(We will address the case where the user types “1997” mo-
mentarily, and we discuss the issue of multiple keywords
in Section 5.) If the system generates a collection of all
Publication objects, the answer is f2, 8, 10g, identified by
the name Answer. While this initial result has helped fo-
cus our search, we really only wanted the Publications in
1997. One approach would be to browse all of the objects
in the result, but again in a larger database this may be
difficult. Rather, we dynamically generate a DataGuide
over the answer, as shown in Figure 2. Notice now that
even though Title and Year objects were reachable along
numerous paths in the original DataGuide, they are con-
solidated in Figure 2. As shown in the Java DataGuide,
the user can mark Publication for selection and enter a fil-
tering condition for Year to retrieve all 1997 publications.
Getting the same result in the original DataGuide would
have required three selection/filtering condition pairs, one
for each possible path to a Publication.

The above scenario motivates the need for efficient
keyword search and efficient DataGuide creation over
query results. Next, we show how these features essen-
tially force a system to support inverse pointers as well.
Suppose the user had typed “1997” rather than “Publica-
tion.” This time, the answer in our sample database is the
singleton set f14g, and the DataGuide over the result is
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Figure 2: DataGuide constructed over result of finding all
publications

empty since the result is just an atomic object. This exam-
ple illustrates that what the user needs to see in general is
the area “surrounding” the result objects, not just their sub-
object structure as encapsulated by the DataGuide. Pre-
senting the “surrounding area” to the user clearly requires
us to consider inverse pointers, such as a pointer from a
year to its parent publication. We can then create a more
descriptive DataGuide over our results.

4 Query and Search Session Model

We define a Lore session over an initial database D0, with
root r and initial DataGuide G0(r), as a sequence of queries
q1, q2, ... qn. A query can be a “by example” Data-
Guide query, a list of keywords, or, for advanced users,
an arbitrary Lorel query. The objects returned by each
query qi are accessible via a complex object ai with name
Answeri. After each query, we generate and present a
DataGuide Gi(ai) over the result, and users can also browse
the objects in each query result. Perhaps counterintuitive
to the notion of narrowing a search, we do not restrict the
database after each query. In fact, the database D will
grow monotonically after each query qi. After qi, Di =
Di�1 [ ai. Essentially, each DataGuide helps focus the
user’s next query without restricting the available data. In
the following three sections, we discuss three technologies
that enable efficient realization of this model of interaction.

5 Keyword Search

In the IR arena, a keyword search typically returns a ranked
list of documents containing the specified keywords. In
a semistructured database, pertinent information is found
both in atomic values and in labels on edges. Thus, it
makes sense to identify both atomic objects matching the
specified word(s) and objects with matching incoming la-
bels. For example, if a user enters “Publication,” we would
like to return all objects pointed to by a “Publication” edge,
along with all atomic objects with the word “Publication”
in their data. This approach is similar in spirit to the way
keyword searches are handled by Yahoo! (yahoo.com).

There, search results contain both the category and site
matches for the specified keywords.

While a keyword search over values and labels is ex-
pressible as a query in Lorel (and also in UnQl [BDHS96]),
the issue of how to efficiently execute this particular type
of query has not been addressed. In Lore, we have built
two inverted-list indexes to handle this type of query. The
first index maps words to atomic objects containing those
words, with some limited IR capabilities such as and, or,
near, etc. The second index maps words to edges with
matching labels. Our keyword search indexes currently
range over the entire database, though query results can
be filtered using Lorel.

An interesting issue is how to handle multiple key-
words. It is limiting to restrict our searches to finding mul-
tiple keywords within a single OEM object or label, since
our model encourages decomposition into many small ob-
jects. Hence, we would like to efficiently identify objects
and/or edges that contain the specified keywords and are
also near each other in terms of link distance. Further, we
must decide how to group or rank the results of a keyword
search, an essential aspect of any search engine that may
return large answer sets. We are currently investigating
these issues [GSVGM98].

6 DataGuide Enhancements

As described in the motivating example, we wish to build
DataGuides over query results. For this section, let us
ignore the issue of inverse pointers. As shown in [GW97],
computing a DataGuide can be expensive: the worst case
running time is exponential in the size of the database,
and for a large database even linear running time would
be too slow for an interactive session. We thus introduce
two techniques to improve the running time.

First, we can exploit certain auxiliary data structures
that are built to provide incremental DataGuide mainte-
nance [GW97]. These structures guarantee that we never
need to recompute a “sub-DataGuide” that has previously
been constructed. In Figure 1, suppose a user searches
for all “Projects,” a query that would return the singleton
set f4g. In this case, the DataGuide over f4g is the same
as the sub-DataGuide reachable along DBGroup.Project in
the original DataGuide. We can dynamically determine
this fact with a single hash table lookup, and no additional
computation is needed.

Second, we observe that an interactive user will rarely
need to explore the entire DataGuide. Our experience
shows that even in the initial DataGuide, users rarely ex-
plore more than a few levels. Most likely, after a rea-
sonable “focusing” query, users will want to browse the
structure of objects near the objects in the query result.
Hence, we have modified the original depth-first Data-
Guide construction algorithm to instead work breadth-first,
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Figure 3: An OEM query result and two potential DataGuides

and we have changed the algorithm to build the DataGuide
“lazily,” i.e., a piece at a time. From the user’s perspective,
the difference is transparent except with respect to speed.
When a user clicks on an arrow for a region that hasn’t yet
been computed, behind the scenes we send a request to
Lore to generate and return more of the DataGuide. Our
maintenance structures make it easy to interrupt Data-
Guide computation and continue later with no redundant
work.

7 Inverse Pointers

Directed graphs are a popular choice for modeling semi-
structured data, and the proposed query languages are
closely tied to this model. While powerful regular expres-
sions have been proposed for traversing forward links,
essentially no language support has been given to the
problem of directly traversing inverse pointers. As our
motivating example demonstrates, a parent may be just as
important as a child for locating relevant data.

Adding inverse pointers affects many levels of a semi-
structured database system, including object storage, cre-
ation of DataGuides (or any other summarizing technique),
query language design, and query execution. Physically,
inverse pointers may be clustered with each object’s data
or stored in a separate index. Logically, we try to make
access to inverse pointers as seamless as possible: for an
object O with an incoming label “X” from another ob-
ject P, we conceptually make P a child of O via the label
“XOf.” With this approach, inverse edges can be treated
for the most part as additional forward edges. Next, we fo-
cus on how exposing inverse pointers affects DataGuides,
graph query languages, and query execution.

7.1 DataGuide Creation

We wish to extend DataGuides to summarize a database in
all directions, rather than only by following forward links.
If the “Of” links described above are simply added to the
database graph, then we need not even modify our Data-
Guide algorithms. Unfortunately, this approach can yield
some unintuitive results. In OEM and most graph-based
database models, objects are identified by their incoming
labels. A “Publication,” for example, is an object with
an incoming Publication edge. This basic assumption is
used by the DataGuide, which summarizes a database by
grouping together objects with identical incoming labels.
An “Of” link, however, does a poor job of identifying an
object. For example, given an object O with an incoming
TitleOf link, we have no way of knowing whether O is a
publication, book, play, or song. Therefore, a DataGuide
may group unrelated objects together. For example, sup-
pose a user’s initial search over a library database finds
some Title objects. Figure 3(a) shows three atomic objects
in the result (shaded in the figure), with dashed “Of” links
to show their surrounding structure. Figure 3(b) shows
the standard DataGuide over this Answer. The problems
with 3(b) should be clear: the labels shown under TitleOf
are confusing, since the algorithm has grouped unrelated
objects together. Further, the labels directly under TitleOf
do not clearly indicate that our result includes titles of
books, plays, and songs. To address the problem, we
have modified the DataGuide algorithm slightly to fur-
ther decompose all objects reachable along an “Of” link
based on the non-“Of” links to those objects. Figure 3(c)
shows the more intuitive result, which we refer to as a
Panoramic DataGuide. Of course, since OEM databases
can have arbitrary labels and topologies, we have no guar-
antees that a Panoramic DataGuide will be the ideal sum-
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mary; still, in practice it seems appropriate for many OEM
databases. Note that adding inverse pointers to DataGuide
creation adds many more edges and objects than in the
original DataGuide, making our new support for “lazy”
DataGuides (Seciton 6) even more important.

7.2 Query Language & Execution

Just as users can specify queries “by example” with the
original DataGuide,we would like to allow users to specify
queries with Panoramic DataGuides as well. Suppose in
Figure 3(c) a user selects Author to find the authors of all
books having titles in the initial result. In Lorel, which
currently does not support direct access to inverse pointers,
the generated query is:

Select A
From Answer.Title T1, #.Book B, B.Title T2, B.Author A
Where T1 = T2

This query essentially performs a join between the titles
in our answer and all book titles in the entire database,
returning the authors of each such book. The # is a “wild-
card” representing any path, and because of this wildcard
a naive execution strategy could be very expensive. Effi-
cient execution based on forward pointers alone depends
on having an index that quickly returns all Book objects
in the database, and we do support such an index in Lore.
If we store inverse pointers in the system, we might be
able to train the optimizer to exploit them for such queries
[MW97]; rather than finding all Book objects and perform-
ing the join, the system could simply follow inverse and
then forward pointers from each Title in the initial result.
However, it could be difficult to recognize and optimize
these cases. Another approach is to allow inverse links to
be specified directly in path expressions in the language.

As an alternative to storing inverse pointers, the query
processor could “remember” the (forward) path traversed
to evaluate a query. The user could then explore this path
to see some of the result’s context. Lore can in fact provide
such a matched path for each query result. However, when
an execution strategy does not involve navigating paths
from the root, generating a matched path from the root
would drastically increase query execution time. Further,
a matched path still does not allow a user to arbitrarily
explore the database after a query result.

8 Implementation Status

Our interactive query and search model, along with the
necessary supporting features discussed in this paper, are
under development within the Lore project. We keep our
online Lore demo up-to-date, reflecting new designs as
they are completed. Please visit www-db.stanford.edu/lore.
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