
Optimizing Branching Path Expressions�

Jason McHugh, Jennifer Widom
Stanford University

fmchughj,widom g@db.stanford.edu , http://www-db.stanford.edu

Abstract

Path expressionsform the basis of most query languages for semistructured data and XML, specify-
ing traversals through graph-based data. We consider the query optimization problem for path expres-
sions that “branch,” or specify traversals through two or more related subgraphs; such expressions are
common in nontrivial queries over XML data. Searching the entire space of query plans for branch-
ing path expressions is generally infeasible, so we introduce several heuristic algorithms and post-
optimizations that generate query plans for branching path expressions. All of our algorithms have
been implemented in theLore database system for XML, and we report experimental results over a va-
riety of database and query shapes. We compare optimization and execution times across our suite of
algorithms and post-optimizations, and for small queries we compare against the optimal plan produced
by an exhaustive search of the plan space.

1 Introduction

Work in semistructured data[Abi97, Bun97], and more recently indata management for XML[DFF+99,
GMW99], has focused on graph-based data models and on query languages that usepath expressionsto
specify traversals through the data. Path expressions, or equivalent constructs, form the core of the query
languagesLorel [AQM+97], XML-QL [DFF+99], XQL [RLS98],StruQL[FFLS97],UnQL[BDHS96], and
others. Data encoded in XML is specified as a simple nested structure oftagged elements, with special
attributes for cross-element references. For example, an XML data set or document that we shall refer to as
DBmight contain aBooks element, withBook subelements, and furtherAuthor andTitle subelements.
The path expression “DB.Books.Book.Author ” identifies all the authors of books in the database, while
“DB.Books.Book.Title ” identifies all the book titles.

Many common queries in the languages mentioned above containbranching path expressions, which
are path expressions that begin by specifying a single sequence of nested tags, but then specify multiple
subgraphs to be explored from the initial exploration. As a simple example, a query looking for all authors
of books with “Database” in the title contains a branching path expression. In Lorel we would write the
query:

Select a
From DB.Books s, s.Book b, b.Author a, b.Title t
Where t grep "Database"

The branching path expression appears in theFrom clause of the query. Note that linear (orchain) path
expressions, such as the examples in the first paragraph, are a special case of branching path expressions.

The query optimization problem for branching path expressions consists of being able to find a good
query evaluation planfor any given branching path expression, within a reasonable amount of time. In a
true database system for XML (such asLore[MAG+97]) there will be multiple ways toaccess data elements,
and multiple ways to traverse subelement relationships and element references. Thus, in most situations an
exhaustive search of the entire plan space for a branching path expression is impractical. Although certain
heuristics, such as avoiding cross-products, are effective in reducing the search space for relational query

�This work was supported by the National Science Foundation under grant IIS-9811947.

1

optimization (e.g., [OL90, SAC+79, Swa89]), and even for optimizing linear path expressions in object-
oriented databases (e.g., [GGT96, SMY90]), we will see that analagous heuristics are not always a good
idea for branching path expressions. On the other hand, the branching nature of our path expressions gives
us new opportunities for heuristics based on query structure.

The major contributions of this paper are:

� We present six algorithms that effectively reduce the search space of query plans for a branching path
expression in different ways and to different extents.

� We specify four post-optimization transformations that can be applied to a query plan. The post-
optimizations move either entire branches of a path expression or individual components to more
advantageous positions in the plan.

� Each algorithm and post-optimization has been implemented in theLore system [MAG+97], a com-
plete DBMS for XML data, and we present experiments showing their strengths and weaknesses. In
the experiments we compare optimization and execution times across the different algorithms, and for
small queries we compare their times against the optimal plan produced by an exhaustive search of
the plan space.

� Database statistics and cost formulas are key to estimating the cost of a query plan. We introduce
specialized statistics that are useful in optimizing path expressions. Creating the desired statistics
can be prohibitively expensive for large graph-structured databases, especially when the data contains
cycles. We describe how a subset of the statistics can be used to estimate the information provided by
complete statistics.

The problem of optimizing branching path expressions has some obvious ties to the join order, access
method, and join method selection problem in relational systems. We explore this connection in detail in
Section 2, as well as comparing our results to related work in object-oriented and semistructured databases.
We believe that some of the work presented here could be applied to relational or object-oriented databases.
Further, although we have implemented our algorithms in Lore, they could easily be adapted to all of the
semistructured and XML query languages mentioned earlier.

The rest of the paper is organized as follows. Section 2 surveys related work. Preliminary definitions and
the setting for our work are given in Section 3. In Section 4 we describe the desired statistics for optimizing
path expressions, and we show how a subset of these statistics can be used when the full set is too expensive
to create. Section 5 then describes each of our six algorithms for generating query plans for branching path
expressions, and specifies our four post-optimizations. Section 6 reports our experimental results, and we
conclude in Section 7. ent

2 Related Work

Path expression optimization clearly resembles the access method and join optimization problem in rela-
tional databases [SAC+79]. If we view each path expression component (Book , Author , etc.) as a table,
and the dot operator (or variable sharing) as a join condition, then the vast body of research in the rela-
tional model can be applied. There are several reasons why we chose not to simply adapt previous work in
the relational model to the problem of optimizing branching path expressions in semistructured and XML
databases:

� Some of the relational work has focused entirely on optimizing join order, without regard to access
and join methods, e.g., [GLPK94, IK90, PGLK97, Swa89]. In our setting there is a tight coupling

2

between evaluation order and access methods: some orders preclude certain access methods, and
some access methods preclude certain orderings. Details appear in Section 3.

� Since we are considering a graph-based data model, pointer-chasing as an access method is typically
cheap and supported by low-level storage. Lore also supports inverse pointers via a special index
[MWA +98]. These access methods typically are not supported by relational systems (although they
are are similar to join indexes), and have not been considered in relational join order optimization
algorithms.

� Path expression optimization benefits from path statistics that are not normally supported by relational
systems. See Section 4.

� Some of the relational work has focused on specific query “shapes”, e.g.,linear queries, star queries,
andbranching queries[OL90]. By contrast, branching path expressions in semistructured and XML
query languages have an arbitrary tree shape.

In addition to these differences, we also wanted to explore a different general tactic in plan generation.
Relational optimization considers three major styles of plan space search: exhaustive bottom-up (system R
style), e.g., [OL90, PGLK97, SAC+79]; transformation-based search using iterative improvement or simu-
lated annealing, e.g., [IK90, Swa89]; and random search, e.g., [GLPK94]. Our search space is even larger
than the space considered by most relational optimization algorithms, yet our problem has some natural
structure to it. Thus, we propose a suite of algorithms, each of which reduces the plan space in a different
manner and finds the optimal plan within that space. (If we were forced to categorize our algorithms, most
of them would be top-down approaches with very aggressive pruning heuristics.) The general ideas under-
lying most of our algorithms are transferable to the relational setting. Thus, it would be interesting to see
the quality of plans generated by our algorithms (appropriately modified) in contrast to those generated by,
e.g., [GLPK94, IK90, OL90, PGLK97, Swa89].

Now let us consider related work in object-oriented and semistructured databases. The closest work
to ours is [ODE95], which considers optimizing a restricted form of branching path expression. Their ap-
proach handles a set of linear (chain) path expressions where each linear path starts with the same variable,
equivalent to relationalbranching queriesdescribed in [OL90]. [ODE95] compares exhaustive search with
a proposed heuristic search in the context of an object-oriented database system. In both search strategies,
cross-products are not considered, and branches are treated as indivisible units in the plans. Our work ex-
tends the work of [ODE95] by considering a wider range of path expressions, query plans, and optimization
strategies.

Other work on cost-based optimization in object-oriented databases has considered path expressions.
[GGT96] optimizes linear path expressions in a two-step process, first by heuristically choosing components
of the path expression to be bound using a proposed newn-ary operator, then using any classical cost-based
search strategy to assign the remaining access and join methods. In [SMY90], a dynamic programming
algorithm is used to optimize a linear path expression in timeO(n3), wheren is the number of classes
that appear in the query. Cross-products between classes are not considered and no performance results
are reported. The heuristics suggested in both of these papers are not always effective for branching path
expressions, so new heuristics for limiting the search space need to be considered.

A generalized path expression, useful in the context of semistructured databases, allows label wildcards
and regular expression operators [AQM+97, FFLS97, BDHS96]. Generalized path expression optimization
has been studied in [CCM96, FS98, MW99a]. [FS98] and [MW99a] describe query rewrite techniques that
transform generalized path expressions to simpler forms prior to optimization. In [CCM96], an algebraic
optimization framework is proposed specifically to avoid exponential blow-up in the presence of closure

3

DB

Book

Keyword

"Armageddon"

Person

Keyword LastName

"Apocalypse" "King"

AuthorOf

Author

<DB>
 <Book ID="b1" Author="p1">
 <Title>The Stand</Title>
 <Keyword>Apocalypse</Keyword>
 <Keyword>Armageddon</Keyword>
 </Book>
 <Person ID="p1" AuthorOf="b1">
 <LastName>King</LastName>
 <FirstName>Stephen</FirstName>
 <Address>
 <City>Bangor</City>
 <State>Maine</State>
 </Person>
</DB>

FirstName

"Stephen"

Address

City

"Maine"

State

"Bangor"

Title

"The Stand"

Figure 1: A tiny XML document and a graph view of the data

operators. In all three papers, the proposed techniques are complementary to the work in this paper, and
could be incorporated into the algorithms that we propose.

Query optimization for theUnQLsemistructured database query language [BDHS96, FS98] is accom-
plished by translating from UnQL toUnCAL, which provides a formal basis for optimization rewrite rules
such as pushing selections down [BDHS96]. No cost-based search of a plan space is performed. Query
optimization inStruQL[FFK+99] is discussed in [FLS98], where classical top-down and bottom-up opti-
mization search strategies are adopted. Lore's initial cost-based query optimizer is discussed in [MW99c],
with branching path expressions handled by one of the six algorithms presented in this paper.

3 Preliminaries

We adopt the data model, query language, and access methods supported by theLore system as the overall
framework and motivation for this paper. Lore is a full-featured database management system designed
specifically to store and query XML data [MAG+97]. Lore's original data model,OEM (for Object Ex-
change Model), was a simple, self-describing, nested-object model [PGMW95]. We recently migrated and
extended Lore's data model and query language to conform to the XML standard [GMW99]. For clarity in
this paper, we will not digress into issues surrounding XMLattributes,subelements, andIDREFs [BPSM98]
(please see [GMW99]); it suffices to assume that path expressions can be used to navigate all three kinds of
object-subobject relationships. We have purposefully kept our work on optimizing branching path expres-
sions very general, so that it can be applied easily to other semistructured or XML-based data models and
query languages (e.g., XML-QL [DFF+99], XQL [RLS98]), as well as potentially to object-oriented and
relational DBMSs as discussed in Section 2.

To ground our examples, let us illustrate a tiny portion of a simple database. An XML encoding is
shown on the left side of Figure 1, and a graph representation appears on the right side.1 Recall that path
expressions form the basis of most query languages for graph-based data models, including Lore's query
language,Lorel [AQM+97]. We define a path expression formally as a list ofpath expression steps. A step
specifies a single edge-navigation in the database. A step has the form “x:l y”, for source variablex, label
l, anddestination variabley. Its semantics, in the graph-based view of semistructured or XML data, is that

1There are many ways to translate a given XML document into a database graph, as well as different ways to encode the
illustrated database graph in XML. Again, the details are not important given the generality of the results presented in this paper,
and the interested reader is referred to [GMW99].

4

DB.Book b

b.Author a a.LastName l

b.Title t

DB.Book b b.Author a a.LastName l b.Title tDB.Book b

Path Expression Individual Branches

Figure 2: A branching path expression

y ranges over alll-labeled subobjects of the objects assigned tox. A branching path expressionis a list of
steps where:

1. Each source variable except the first appears as a destination variable in an earlier step. The first
source variable is anamethat identifies a distinguished database entry point [AQM+97].

2. A variable may appear as a source variable in more than one step.

3. A variable may not appear as a destination variable in more than one step (discussed below).

For example,hDB.Book b, b.Author a, b.Title t i is a branching path expression whereb ap-
pears twice as a source variable. This path expression finds all authors and titles of all books reachable via
the nameDB.

We will present several algorithms that produce aquery evaluation planfor a given branching path
expression. A list of path expression steps,s, is provided as input to each algorithm, and the output is
the optimal plan within the search space for that algorithm. In all of our algorithms the lists may be an
arbitrarily complex branching path expression. In some situations it is necessary to isolate the individual
“branches” ins. We construct a set,r, containing the individual branches. Specifically,r is a set of lists of
steps created froms such that:

1. Each step ins appears in a single list inr, and each list inr contains steps only found ins.

2. Each list inr specifies alinear path: each step's destination variable appears as the source variable
for the next step in the list (except the last).

3. If a source variable is used in more than one step ins, then each step with that source variable starts a
new list inr.

4. It is not possible to combine two lists ofr without violating (2) or (3).

It is easy to constructr in time linear in the length ofs. As an example of the decomposition, suppose
s = hDB.Book b, b.Author a, a.LastName l, b.Title t i. The setr contains three elements,
one for each branch ins: r = fhDB.Book b i; hb.Author a, a.LastName l i; hb.Title t ig.
For a graphical depiction see Figure 2. Note that our branching path expressions have a strictly tree shape—
in this paper we do not consider graph-shaped path expressions, which would be generated by allowing
repeated destination variables, or in Lorel by equating variables in theWhere clause [AQM+97].

We do need to make some assumptions about the access and “join” methods that are supported by the
underlying database system in order to attack the path expression optimization problem.

Access Methods. Each path expression step must be assigned an access method (or aphysical operator
in the query plan) that is responsible for providing objectbindingsto variables in the step. In this paper we
consider three different access methods for a step “x:l y” as follows:

5

� Extent Scan(ES): The ES access method takes a labell as input and returns allhx, yi object pairs such
that there is anl-labeled edge from objectx to objecty. In Lore, the ES access method is supported
by theBindex[MW99c, MWA+98].

� Forward Scan(FS): The FS access method, orpointer-chase, takes an objectx and labell as input
and returns all objectsy that are reachable fromx via an edge labeledl. Note thatx must be bound
before this access method can be executed. In Lore, the FS access method is supported at the physical
storage layer.

� Backward Scan(BS): The BS operator, orreverse pointer-chase, takes an objecty and labell as
input and returns all objectsx that are parents ofy via an edge labeledl. Note thaty must be bound
before this access method can be executed. In Lore, the BS access method is supported by theLindex
[MW99c, MWA+98].

Lore also supports three additionalaccess methods: a path index (Pindex), value index (Vindex), and text
index (Tindex) [MW99c, MWA+98]. The Pindex is supported by Lore'sDataGuide[GW97]. It is specific
to Lore and not always feasible to build, so we do not consider it in the general work presented in this
paper. The Vindex and Tindex are similar to the ES access method, and can be used when the appropriate
index exists and an appropriate predicate appears in the user's query. Only minor extensions are needed to
incorporate these two access methods into the algorithms presented in this paper.

Join Methods. When two path expression steps are connected via a shared variable, then an opera-
tion similar to a join must be performed. For example, if we have the simple linear path expression
hDB.Book b, b.Author a i, and we choose the ES access method for both steps, then we need to
perform a join on the sharedb variable. Even if we choose the FS access method for both steps, a kind of
join is required to pass theb bindings from theBook step to theAuthor step. In this paper we consider
two join methods,nested-loop join(NLJ) andsort-merge join(SMJ). In many cases NLJ does not contain
an explicit join condition, since we pass bound variables from left to right as in the example just given.

Recall that all path expressions begin with aname, which identifies an entry point and corresponds to
a unique object in the database. In the Lore system, “DB.Book ”, whereDB is a name, is actually treated
as a path expression with two steps. However, this implementation detail has little importance, and in the
remainder of this paper we assume that names are effectively variables whose single matching object is
“prebound” to the variable.

We could use an exhaustivealgorithm to enumerate plans for a given branching path expression: we con-
sider all possible orderings of the steps, all possible access methods, and all possible join methods. The total
number of left-deep plans is thenn!2n�13n, wheren is the number of steps, and there are 3 access methods
and 2 join methods; creating bushy plans of any type [OL90] increases the search space further. Because
of the way our access methods must work together, many of the permutations found in the exhaustive plan
space result in plans that are notvalid. For example, considers = hDB.Book b, b.Author a i. The
plan FS(b.Author a) NLJ BS(DB.Book b) is invalid since the FS access method requiresb to

be bound. The planES(DB.Book b) SMJ FS(b.Author a) does not violate any bound variable
restrictions but is invalid because the SMJ operator does not support passing bindings for variableb from the
ES method to the FS method. However, even when we eliminate the invalid plans, the size of the exhaustive
plan space is prohibitively large forn > 5.

6

4 Database Statistics

A cost-based query optimizer relies on database statistics and cost formulas to estimate the cost, or predicted
running time, of each plan it considers [SAC+79]. The cost formulas themselves are somewhat implemen-
tation dependent, and formulas for Lore's physical operators are given in [MW99b]. Intermediate result size
estimation, however, is a key general factor that depends on statistics gathered about the data. In this section
we briefly discuss statistics and result size estimation for optimizing branching path expressions.

Traditional relational and object-oriented statistics are well-suited for estimating predicate selectivities,
and for estimating the number of tuples one relation (or class) produces when joined with another relation
(or class). (Object-oriented statistics can be somewhat more complicated if the class hierarchy is taken
into account, e.g., [CCY94, RK95, SS94, XH94].) However, these statistics are not well-suited for long
sequences of joins as embodied in path expressions. A cost-based optimizer for path expressions may,
for example, need to accurately estimate the number of “Book.Author.Address.City ” paths in the
database. In Lore we set a thresholdk, and gather statistics for all label sequences (linear paths) in the
database up to lengthk. We have explored several algorithms to efficiently compute these statistics, but
a presentation of the algorithms is outside of the scope of this paper. Obviously for largek the cost of
producing the statistics can be quite high, especially for cyclic data. A clear trade-off exists between the
cost in computation time and storage space for a largerk, and the accuracy of the statistics.

The statistics we maintain, for every label sequencep of length� k appearing in the database, include:

� The total number of instances of sequencep, denotedjpj.

� The total number of distinct objects reachable viap, denotedjpjd.

� For each labell in the database, the total number ofl-labeled subobjects of any object reachable via
p, denotedjplj.

� For each labell in the database, the total number of incomingl-labeled edges to any instance ofp,
denotedjplj.

Consider evaluating the linear path expressionhDB.A a, a.B b i. If we have bindings fora from an
FS(DB.A a) method, for example, then we may next need to estimate the average number ofB subobjects
for thea bindings. Alternatively, if we have bindings fora from anES(a.B b) method, then we may next
need to estimate the average number ofA parents for these bindings. We call these two estimatesfan-out
andfan-in, respectively. The fan-out for a given linear path expressionp and labell is computed from the
statistics byjpj � (jplj=jpjd). Likewise, fan-in isjpj � (jplj=jpjd).

Our statistics are most accurate for estimating result sizes in linear path expressions of length� k + 1:
We store statistics about linear paths of length� k, and these statistics include information about incoming
and outgoing edges to the paths—effectively giving us information about all linear paths of length� k+ 1.
When we need statistics for linear paths of length> k + 1, we can estimate the statistics by combining
statistics of progressively smaller paths until we reach paths of sizek + 1. For example, given a path
expressionp of lengthk+2, we combine statistics for two overlapping pathsp1 andp2 each of lengthk+1:
p1 is the path expressionp with the last step removed, andp2 is the path expressionp with the first step
removed. We combine the statistics of the two paths using the formulajpj = jp2j � jp1j=jp1 \ p2j, where
p1 \ p2 is a third path expression containing all steps common top1 andp2.

Note that at this time we are not gathering statistics about branching path expressions, which would be
extremely expensive in the general case, even given a thresholdk. Instead, at “branch points” we combine
statistics for individual branches using standard formulas similar to [SAC+79].

7

Procedure Exhaustive(s)!Plan
1 CostleastCost= COSTMAX;
2 PlanbestPlan;
3 foreach s0 possible ordering ofs do
4 foreach assignmenta of access methods steps ins0 do
5 foreach assignmentj of join methods to adjacent steps ins0do
6 Plancurrent= BuildPlan(s',a, j); // Build the actual plan
7 Costc = GetCost(current);
8 if (c < leastCost)
9 leastCost= c;
10 bestPlan= current;
11 return bestPlan;

Figure 3: Pseudocode for the exhaustive algorithm

5 Plan Selection Algorithms

Assuming left-deep query plans only, a plan is characterized by the order of the steps, the assignment of
an access method to each step, and the assignment of join methods connecting the access methods. An
exhaustive algorithm searches the entire space, estimates the cost of each plan, and returns the predicated
optimal plan. In this section we present six additional algorithms that heuristically reduce the search space
in a variety of ways. The running time for each algorithm is dominated by the size of the plan space that
is searched. We present the algorithms roughly in decreasing order of running time, and thus in decreasing
amount of plan space explored. However, the search space is pruned in different ways for each algorithm,
and usually the search space for an algorithm is not a subset of the search space for the previous algorithm.
We also present four post-optimizations that can be applied to a plan generated by any of our algorithms,
although we focus on their effectiveness when applied after two of our six algorithms.

Most of our algorithms generate left-deep plans only, and we are not searching the plan space for al-
ternative plan shapes. The exceptions are Algorithm 2, which may swap left and right subplans in some
situations, and Algorithm 5 which, although it searches a relatively small amount of the plan space, can
produce some bushy plans.

The algorithms we have designed and the plan spaces they explore were inspired by our observation of
queries posed to the Lore system. There are many other ways to reduce the search space and many ways to
combine our algorithms. We believe the algorithms and post-optimizations presented here are an interesting
representative sample, as confirmed by our experiments presented in Section 6.

5.1 Algorithm 0: Exhaustive

As a measure against which we can compare plans produced by the other algorithms, we consider an exhaus-
tive search of the plan space (Figure 3). Recall that the total number of plans considered by the exhaustive
algorithm isn!mnjn�1, for n steps,m access methods, andj join methods. However, some of these plans
are not valid since they violate constraints imposed by the selected access or join methods and the step order
(Section 3). Although not shown explicitly,each of our algorithms checks the validity of each plan consid-
ered (e.g., within procedureBuildPlans in Figure 3). Recall that all algorithms take as input a branching
path expression expressed as a lists of steps.

5.2 Algorithm 1: Semi-exhaustive

The motivation for our “semi-exhaustive” algorithm is to continue generating all possible step orderings,
but reduce the number of access method permutations. The algorithm considers all possible step orderings
and combinations of join methods, but assigns access methods greedily for each ordering and join method

8

Procedure Exponential(s)!Plan
1 // Create a structure to track the bound variables, initially empty
2 Bindingsb;
3 return RecOpt(s, b);

Procedure RecOpt(s, Bindingsb)!Plan
1 // If s has a single step then choose the bestaccess method
2 int l = lengthof(s);
3 if (l==1)
4 return OptimalAccessMethod(s[1],b); // Modifies bindings inb
5 // Otherwise, create a plan for the left-then-right order by optimizings[1..l-1] and thens[l]
6 Bindingsb1= b;
7 Planp1LHS= RecOpt(s[1..l-1], b1); // Modifies bindings inb1
8 Planp1RHS= RecOpt(s[l], b1); // Modifies bindings inb1
9 Planp1= OptimalJoin(p1LHS,p1RHS);
10 // Create a plan for the right-then-left order by optimizings[l] thens[1..l-1]
11 Bindingsb2= b;
12 Planp2LHS= RecOpt(s[l], b2); // Modifies bindings inb2
13 Planp2RHS= RecOpt(s[1..l-1], b2); // Modifies bindings inb2
14 Planp2= OptimalJoin(p2LHS,p2RHS);
15 if (GetCost(p1) < GetCost(p2)) return p1else return p2;

Figure 4: Pseudocode for the exponential algorithm

permutation. This approach replaces themn term in the exhaustive search with 1, resulting inn!jn�1 plans.
The algorithm chooses access methods by performing a single scan of the steps, in order, assigning to each
the best access method given the bindings of variables that came before it. The pseudocode is obtained
by replacing line #4 in Figure 3 with a procedure that performs a linear scan ofs0, keeping track of bound
variables and assigning the least-cost access methods.

While a significant portion of the plan space is pruned in the semi-exhaustive algorithm, the running
time may still be prohibitively large due to then! term. Also, the locally optimal access method decisions
are not always globally optimal. For example, the cost of a single step in isolation is never lower for ES
than for FS or BS (when FS or BS can be used). However, there are situations where a more expensive ES
followed by SMJ with the rest of the plan has lower overall cost than using a FS or BS as the first access
method.

5.3 Algorithm 2: Exponential

In this algorithm we reduce then! term by considering a subset of the possible step orderings. Algorithm
2 generates different step orderings by swapping the order between the firstn � 1 steps and the last step,
recursively over the input lists. This approach reduces the step ordering term to2n�1 [MW99b]. Figure 4
shows precisely how the search space is reduced. ProcedureRecOpt accepts a list of steps and a list of
variables currently bound. Two plans are produced.p1 is the plan wheres without its last step is optimized
via a recursive call, then joined with the best access method for the last step.p2 is the converse: an access
method for the last step ins is chosen, then joined with the selected plan for the remainder ofs. Key to
constructing the subplans recursively is the bound variable structureb, which tracks the variables that are
currently bound and has a strong influence over the selected access methods for later steps. Besides reducing
the number of orderings considered, this algorithm also reduces the permutations of join and access methods
considered by making locally optimal decisions with respect to a given set of bound variables. Note that
when planp2 is chosen overp1, then a non-left-deep plan is constructed. This algorithm is similar in spirit
to the original Lore cost-based optimizer. The full technique as applied over the entire Lore language is
described in [MW99c].

9

Procedure Polynomial(s)!Plan
1 Bindingsb;
2 PlanfinalPlan;
3 while (!empty(s)) do
4 CostleastCost= COSTMAX;
5 StepbestStep;
6 PlanbestPlan;
7 // Find the step currently ins with the least-cost access method
8 foreach e in s do
9 BindingsbTemp= b;
10 Planp = OptimalAccessMethod(e,bTemp); // Modifies bindings inbTemp
11 Costc = GetCost(p);
12 if (c < leastCost)
13 bestStep= e;
14 bestPlan= p;
15 leastCost= c;
16 // Remove the chosen step
17 s�= bestStep;
18 // Add the bindings and add the chosen step to the final plan using the best join method
19 AddBindings(b,bestStep);
20 finalPlan= OptimalJoin(finalPlan, bestPlan);
21 return finalPlan;

Figure 5: Pseudocode for the polynomial algorithm

Note that this algorithm is sensitive to the order that the steps appear in input lists. The post-optimizations
described in Section 5.8 specifically address this issue.

5.4 Algorithm 3: Polynomial

Our next algorithm reduces the plan space even more aggressively than Algorithms 1 and 2. It combines
step order, access method, and join method selection into anO(n2) operation. The algorithm, shown in
Figure 5, makes a greedy decision about which step is next and which access and join methods are chosen
through each iteration of thewhile loop. The innerforeach loop finds the cheapest access method for
each remaining step, based on the current bound variables. The step with the least cost is then added to the
plan, its variables are marked as bound, and the step is removed from further consideration. For example,
givens = hDB.Book b, b.Author a, a.LastName l, : : : i, the step with the least cost access
method may be an ES overLastName . In the next iterationa andl are bound. At that point a BS over
Author might have least cost; if so,b becomes bound, and a join method for variablea is selected.

Obviously, this very greedy approach can produce nonoptimal plans in some situations. For example,
considerh: : :, x.Author a, a.PhoneNumber p, : : :i. Suppose there are manyPhoneNumber ' s
andAuthor ' s in the database, but very few authors have given their phone numbers. The optimal plan may
include an ES forPhoneNumber and then a BS forAuthor , but the polynomial algorithm probably would
not consider this plan since the BS cannot be chosen before the ES (due to the bound variable restriction),
and the ES is unlikely to be cheapest at any point during the iteration.

5.5 Algorithm 4: ES-Start

Because the ES access method requires no bound variables, it is possible to use an ES to “start” the evalua-
tion of a path expression at any point, then use the FS and BS access methods to “spread out” and bind the
remaining steps. The heuristic behind our next algorithm is to first identify those steps ins that make good
ES starting points. Let us defer for a moment the definition of “good” starting points and the mechanism

10

Procedure ES-start(s)!Plan
1 PlanfinalPlan;
2 SethStepi p;
3 SortBasedOnSize(s);
4 p = ChooseStartingPoints(s);
5 // Connect each adjacent pair via all FS or all BS methods (depending on cost).
6 foreach adjacent pairhe1; e2i in p do
7 Planp1= AssignFSandJoin(s,p,e1,e2);
8 Planp2= AssignBSandJoin(s,p,e1,e2);
9 if (GetCost(p1) < GetCost(p2))
10 finalPlan= OptimalJoin(finalPlan, p1);
11 else
12 finalPlan= OptimalJoin(finalPlan, p2);
13 // Assign FS to remaining steps
14 foreach e in s but not in finalPlando
15 Plantemp= AssignFS(e);
16 finalPlan= OptimalJoin(finalPlan, temp);
17 return finalPlan;

Figure 6: Pseudocode for the ES-start algorithm

by which we choose them. Once we have the ES starting points, we make a simple linear-time decision
for each pair of starting points of whether to use a complete FS-based or complete BS-based plan between
them.

The pseudocode for this algorithm appears in Figure 6. The starting points are selected (discussed
below) and the chosen steps are copied into the setp. The firstforeach loop in Figure 6 considers each
adjacent pair of starting points inp, where stepse1 ande2 in p are considered adjacent if there is a sequence
of steps ins that leads from the destination variable ofe1 to the source variable ofe2 without using another
step inp (i.e., without going through another starting point). Forhe1; e2i we generate two subplans: the first
assigns FS to every step connectinge1 ande2, and the second assigns BS to every connecting step. The
best join methods are selected, and the subplan with the lower cost is added to the final plan. Note that if a
step is shared by multiple connecting paths then it keeps the firstaccess method selected. Finally, remaining
unassigned steps are assigned the FS access method in sorted order according to extent size, respecting
bound variable restrictions.

Key to the success of this algorithm is identifying those steps that make good ES starting points. Proce-
dureChooseStartingPoints is shown in Figure 7. Recall from Figure 6 that when this procedure is
called, the steps ins have been sorted by the size of their extents. The procedure selects ak, 0 � k � n,
such that the firstk steps ins are the starting points. It does so by incrementingk until the ratio between
the sizes of thekth and (k � 1)st extents is below some threshold. That is, we accept thekth step as a
good starting point as long as the increase from the size of the previous extent isn' t too large. We denote
the size of thekth extent aszk, and setz0 = 1. The procedure is complicated by three details. First, the
initial increase fromz0 = 1 to azi > 1 can be very large, so we define a special threshold for this case.
Second, if the extents grow at a steady rate below our ratio threshold, thenChooseStartingPoints
will determine that all steps should be assigned the ES access method. Thus, we set an absolute maximum
on starting point extent size based on the firstzi > 1. Third, recall that names are variables “prebound” to a
single object. For the ES-start algorithm, all names are automatically assigned as starting points, although in
the actual Lore implementation it isn' t necessary to use an ES method to find the named objects since they
are handled in a special manner. Note that the ES-start algorithm will always choose at least one starting
point, since all path expressions begin with a name.

Again, choosing a good set of ES starting points is crucial. Note that the constants in Figure 7,INI-
TIAL CUTOFF, RATIO CUTOFF, andTOTAL CUTOFFare “tuning knobs”, and they required some ad-

11

Procedure ChooseStartingPoints(s)!SethStepi
1 int k = 0;
2 Booleanfirst = TRUE;
3 int nontrivial;
4 for (i = 1; i <lengthof(s); i++)
5 if (first)
6 if (zi!=1)
7 first = FALSE;
8 nontrivial = zi;
9 if (zi > INITIAL CUTOFF)break;
10 else
11 if (zi / zi�1 > RATIO CUTOFF)break;
12 if (zi > TOTAL CUTOFF *nontrivial) break;
13 k++;
14 // Copy the firstk steps into the result
15 SethStepi result;
16 for (i = 1; i � k; i ++)
17 result.Add(s[i]);
18 return result;

Figure 7: ChooseStartingPoints used by the ES-start algorithm

justing before appropriate settings were obtained. However, our current settings result in good performance
for a wide variety of database shapes and queries.

The complexity of the ES-start algorithm isO(n logn), and as we will see in Section 6 it tends to
perform well in overall (optimization plus execution) time.

5.6 Algorithm 5: Branches

Our next algorithm optimizes each branch ins in isolation. Optimal subplans for each branch are then
combined into a final plan in order of subplan costs, using the cheapest join method between subplans.
Pseudocode is shown in Figure 8.Decompose identifies the individual branches ins, as described in
Section 3. We have chosen our polynomial algorithm (Algorithm 3, Section 5.4) to optimize the individual
branches, although any of the other algorithms could be used. Note that we are not concerned about one
branch relying on bindings passed from another, since each branch is optimized separately. A disadvantage
to this approach is an overreliance on the ES access method, since at least one ES must appear in the subplan
for each branch except the first.

5.7 Algorithm 6: Simple

Finally, we consider for comparison purposes a very simpleO(n logn) algorithm that searches only a tiny
fraction of the plan space. The algorithm, shown in Figure 9, first sorts the steps ins by the size of their
extents, and this becomes the join order. A single pass through the sorted list assigns the best access and
join methods, in a greedy fashion, based on the current bound variables.

5.8 Post-Optimizations

We now introduce four post-optimizations that transform complete plans into equivalent plans with the same
or lower cost by moving access methods to more advantageous positions within the plan, and reassigning
join methods as appropriate. The four post-optimizations are divided into two pairs based on the granularity
at which they operate.Branch post-optimizationsmove entire subplans that correspond to complete branches
in the original path expression.Step post-optimizationsmove individual access methods.

12

Procedure Branches(s)!Plan
1 PlanfinalPlan;
2 int numBranches;
3 r = Decompose(s, numBranches);
4 // One subplan foreach branch optimized using Algorithm 3
5 PlansubPlan[numBranches];
7 int count= 0;
8 foreach l in r do
9 subPlan[count] = Polynomial(l);
10 count++;
11 // Sort the array of subplans based on their costs
12 SortBasedOnCost(subPlan);
13 // Join the subplans together
14 for i = 1 to numBranches
15 finalPlan= OptimalJoin(finalPlan,subPlan[i]);
16 return finalPlan;

Figure 8: Pseudocode for the branches algorithm

Procedure Simple(s)!Plan
1 PlanfinalPlan;
2 Bindingsb;
3 SortBasedOnSize(s);
4 // Assign access and join methods in single scan
5 foreach e in s do
6 PlantempPlan= OptimalAccessMethod(e,b); // Modifies bindings inb
6 finalPlan= OptimalJoin(finalPlan, tempPlan);
8 return finalPlan;

Figure 9: Pseudocode for the Simple algorithm

5.8.1 Branch Post-optimizations

Let us assume that we have our setr of branches ofs (computed as described in Section 3), and letl be the
size ofr, i.e., l is the number of branches ins. Note that the access methods corresponding to the steps of
a given branch may not be adjacent in the plan we start with, but we can collect the access methods for a
branch and place them elsewhere in the plan as long as bound variable restrictions are met. When bound
variable restrictions are not met, the corresponding reorderings are not considered.

Post-optimization A. A simple greedy heuristic, running inO(l2), reorders the branches in the plan. The
heuristic estimates the cost of the subplan for each branch inr, and appends to a new final plan the cheapest
subplan that does not rely on a branch not yet in the new final plan. This procedure repeats until all branches
are in the final plan.

Post-optimization B. This post-optimization is more thorough and therefore more expensive. It constructs
and costs all possible reorderings of the branches. There areO(l!) such orderings, butl is usually small in
comparison ton (the number of steps), and many of the reorderings may be invalid since the subplan for a
branch may depend on other branches being executed before it.

5.8.2 Step Post-optimizations

As with the branch post-optimizations, there are two ways to search the additional plan space.

Post-optimization C. Analogous to post-optimization A but operating at the step level, inO(n2) time we
repeatedly find the step with the smallest cost that does not rely on a step not yet in the new final plan, and

13

append the access method associated with that step to the new final plan. The process repeats, with new cost
estimates for the remaining steps, until all steps have been placed.

Post-optimization D. Analogous to post-optimization B but operating at the step level, all possible valid
reorderings of the steps are considered. In general this can add an additionaln! to the running time, but in
practice, since access methods have already been assigned to the steps, the number of valid reorderings is
limited.

We will evaluate the effectiveness of these post-optimizations when applied to plans generated by Algo-
rithms 2 and 3. Algorithm 2 (the exponential algorithm) can benefit greatly from these post-optimizations,
because the quality of the initial plan produced is sensitive to the order of the steps in inputs. Since Algo-
rithm 3 combines step order and access method selection into a single pass, the post-optimizations provide
a “second chance” to reorder the steps without also deciding the best access methods.

6 Performance Results

We implemented the six algorithms and four post-optimizations presented in Section 5 in the Lore system,
and we performed a variety of experiments over data and path expressions of varying shapes. We report on
the times required to construct query plans along with query execution times. The setting for our experi-
ments is described in Section 6.1. A summary of results for Algorithms 1–6 and Post-optimizations A–D is
provided in Section 6.2. We examine specific results in more detail in Section 6.3. In Section 6.4, we focus
on the improvement that the post-optimizations produce when applied to plans produced by Algorithms 2
and 3. Finally, in Section 6.5 we compare some results against optimal plans generated by exhaustive search.

6.1 Setting

We used a syntheticXML database containing information about movies, stores that rent and sell the movies,
companies that own the stores, and people that work for the companies or have participated in making the
movies.

There are over 12,000 movies in the database. Each movie has as subobjects (among other things) people
who acted in the movie, locations where the movie was shot, and stores where the movie is available for
rent. Each of the 256 store objects has as subobjects (among other things) store location and the company
that owns the store. There are only 13 companies that own stores, although the database contains more than
150 companies (companies that don' t own stores are assumed to relate to the movie industry in other ways).
Companies contain as subobjects (among other things) the people who work for that company. Each person
has a subtree containing personal information, including things that they like and dislike.

The shape of the data is very important. It is is highly graph-structured, with a unique entry point
namedDB. There is a very small first-level fan-out to distinguish between different categories in the data
(e.g., all movies in the database are reachable via “DB.Movies ”, and all companies are reachable via
“DB.Companies ”). The data then fans out rapidly since there are thousands of movies, hundreds of
companies, thousands of people, etc. The data then gets even wider or narrows substantially, depending on
the path taken. For example, the data narrows when we look for all the stores that rent movies because there
are only 256 of them, although note that the number of “DB.Movies.Movie.AvailableAt ” paths is
huge. The data narrows even further if we consider “DB.Movies.Movie.AvailableAt.OwnedBy ”,
since franchises own many stores. However, the data fans out again if we explore the franchise employees
via the path “DB.Movies.Movie.AvailableAt. OwnedBy.Employee ”. Our experience is that
this “narrow-wide-narrow” pattern appears commonly in nested data.

14

1. DB.Movies x, x.Movie m, m.Actor a, m.AvailableAt t
2. DB.People x, x.Person p, p.Name n, p.Phone z, p.Likes l, l.Thing t
3. DB.People x, x.Person p, p.Likes l, l.Thing t2, p.Dislikes d, d.Thing t1
4. DB.Stores x, x.Store s, s.Name n, s.Location l, l.City c
5. DB.Movies x, x.Movie m, m.Sequel s, s.AvailableAt a, a.OwnedBy o, o.Affiliated f, f.Phone p
6. DB.Movies x, x.Movie m, m.Sequel s, s.AvailableAt a, a.OwnedBy o, o.Affiliated f, f.Name n
7. DB.Movies x, x.Movie m, m.Actor a, a.Likes l, l.Thing t, a.Address d, m.Title z
8. DB.Companies x, x.Company c, c.Affiliated a, x.Name n

Figure 10: Sample set of 8 branching path expressions

Algorithm 1 2 2A 2B 2C 2D * 3 3A 3B 3C 3D 4 ** 5 6

Execution Time Rank 11 14 9 10 3 1 6 8 7 5 3 2 13 12
Total Time Rank 14 13 9 11 5 11 2 4 6 2 9 1 7 8

Table 1: Overall results

All experiments were conducted using Lore on an Intel Pentium II 333 mhz machine running Linux.
The database size was 12 megabytes, and the buffer size was set to 40 pages of 8K each, or about 2% of the
size of the database.

6.2 Overall Results

We ran each algorithm except the exhaustive one, including Algorithms 2 and 3 augmented with Post-
optimizations A–D (denoted 2A, 2B, etc.), on the sample set of 8 branching path expressions shown in
Figure 10. For each of the 8 experiments, we ranked the algorithms based on the time to execute the chosen
plan, and also the total time to both select and execute the plan. We then added together the ranks for
each algorithm across all 8 experiments, treating each query as equally important. The results are shown in
Table 1.

Algorithm 4, the ES-start algorithm (marked by ** in Table 1), performs the best. In terms of plan
execution speed it ranks second, just behind Algorithm 2D (marked by *). Algorithm 4 ranks first for total
time, which includes the time required for optimization. Note that Algorithm 2D is ranked eleventh in total
time: Algorithm 2 (the exponential algorithm) explores a fairly large portion of the search space, and Post-
optimization D is the most expensive post-optimization. (Further experimental results for Post-optimization
D are reported in Section 6.4.)

In two experiments Algorithm 4 created the fastest plan, but in other instances it ranked in the top three
or four. Its strength is that it consistently selected good plans in a reasonable amount of time. Overall the
plans produced by Algorithms 5 and 6 (the branches and simple algorithms) performed poorly, as shown in
the last two columns of Table 1. Although both algorithms did produce very good plans for a small number
of queries, the results were inconsistent. Unfortunately, we have not been able to characterize the situations
in which these algorithms perform well—it appears to depend on complex interactions between query shape
and detailed statistics about the data.

Another interesting result from Table 1 is the poor overall performance of Algorithm 2, the exponential
algorithm, without post-optimizations. Recall from Section 5.3 that this algorithm reduces the step orderings
considered fromn! to 2n�1, and is similar to Lore's cost-based optimization strategy for the full Lorel
language [MW99c].

The high overall times for Algorithm 1 were expected since optimization time is prohibitively large.

15

Rank Algorithm Optimization time Execution Time Total Time
1 5 0.445 41.770 42.215
2 3 0.099 48.573 48.672
3 4 0.145 48.573 48.718
4 1 1.180 48.573 49.753
5 2 0.108 60.643 60.751
6 6 0.318 108.600 108.918

Table 2: Experiment 1 – simple branching path

However, the slow plans produced by Algorithm 1 were unexpected. Apparently making a local access
method decision for a given step order ignores the global situation too often.

Note the anomaly in the results of Table 1 for the execution times of Algorithms 2A and 2B, reported
as 9th and 10th respectively. Since 2B explores a strictly larger plan space than 2A we would expect it to
produce strictly better plans. We attribute this slight inconsistency to somewhat imperfect statistics and/or
cost estimates, although our costing is quite accurate in general as shown in [MW99b].

6.3 More Detailed Results

In this section we look in more detail at some of the experiments from Section 6.2, focusing on Algorithms
1–6 without considering post-optimizations.

6.3.1 Experiment 1: Simple Branching Path

In our first experiments = hDB.Movies x, x.Movie m, m.Actor a, m.AvailableAt v i. This
expression contains three branches, similar to the example shown in Figure 2. In our database, on average
there are more actors that acted in a movie than stores that carry that movie. Thus, it is usually beneficial for
a plan to evaluate the branch “m.AvailableAt v ” before “m.Actor a ” (to keep intermediate results
smaller). Table 2 shows the optimization, execution, and total time (in seconds) for each of the algorithms,
ranked by total time.

Algorithm 5, the branches algorithm, generates the best plan and does so quickly. This plan uses ES
for AvailableAt , then SMJ with an FS-based plan forDB.Movies.Movie . A final SMJ with an ES
for Actor completes the plan. This plan performs well in this particular case because most of the data
discovered by each branch independently actually contributes to the final result. Thus, optimizing branches
independently does not cause significant irrelevant portions of the database to be explored. Algorithm 6,
the simple algorithm, does very poorly. It first selects ES forAvailableAt , then BS forMovie and
Movies , then FS forActor . The better plans verify that an object has bothAvailableAt andActor
subobjects before working backwards to matchDB.Movies.Movie . Algorithms 1, 3, and 4 all produced
the same plan for this experiment, so here and in subsequent results where the plans were the same, we
averaged their slightly deviating execution times.

6.3.2 Experiment 2: More Branches

In our second experiments = hDB.People x, x.Person p, p.Name n, p.Phone h, p.Likes
l, l.Thing t i. In our database each person has a single name, and roughly half of the people have
things that they like. On average, those with likes have four of them. Most people in the database do not
have a phone number. The results of this experiment are shown in Table 3.

16

Rank Algorithm Optimization time Execution Time Total Time
1 6 0.0741 0.0729 0.147
2 4 0.104 0.127 0.231
3 3 0.1108 0.136 0.247
4 5 0.085 1.241 1.326
5 2 0.26 1.996 2.256
6 1 174.749 1.38 176.129

Table 3: Experiment 2 – more branches

Rank Algorithm Optimization Time Execution Time Total Time
1 6 0.07 2.117 2.1875
2 4 0.085 6.932 7.017
3 2 0.264 6.932 7.196
4 5 0.143 7.098 7.241
5 3 0.096 19.551 19.647
6 1 161.274 5.354 166.628

Table 4: Experiment 3 – longer branches

Algorithm 6 happened to do well in this case, in contrast to the first experiment where it had the worst
execution time. It first chose ES forPhone (because there aren' t many in the database), then FS forLikes
which immediately narrows the search to people that have both a phone number and some likes. Other
algorithms did not find this plan for various reasons. Algorithm 4, the ES-start algorithm, also did well. It
choseDBandPhone as starting points (recall from Section 5.5 that names are always chosen as starting
points) with a BS-based plan between them, and FS's forNameandLikes .

6.3.3 Experiment 3: Longer Branches

In our third experiments = hDB.People x, x.Person p, p.Likes l, l.Thing t1, p.Dis-
likes d, d.Thing t2 i. Most people in the database have either likes or dislikes, but few have both,
so this is a situation in which treating branches as indivisible units results in poor plans. Results are shown
in Table 4.

Algorithm 6 again produces a good plan (the same plan is produced by Algorithm 3C, not shown in
the table). In this plan, an ES forDislikes followed by an FS forLikes narrows the search to people
that have both likes and dislikes, without bothering yet with the actual things that they like/dislike. It is the
interleaving of the execution of branches in the plan that results in good execution times. Poor decisions are
made by Algorithms 2 and 3, which choose FS-based plans. Algorithm 5 does poorly because it requires
branches to be executed indivisably.

6.3.4 Experiment 4: Weakness of ES

Our fourth experiment illustrates the weakness inherent in overusing the ESaccess method. While several
ES operators joined using SMJ's can be competitive against multiple FS operators with NLJ's, a major
drawback is that ES always considers the entire extent for a given label. Considers = hDB.Stores x,
x.Store s, s.Name n, s.Location l, l.City c i. An ES forLocation fetches not only the
locations for stores, but also locations where movies were filmed. By contrast an FS forLocation using

17

Rank Algorithm Optimization Time Execution Time Total Time
1 3 0.071 0.312 0.389
2 2 0.144 0.312 0.456
6 5 0.111 7.122 7.232

Table 5: Experiment 4 – weakness of ES

Post-optimization Optimization Time Execution Time Total Time
None 0.26 1.996 2.256
A 0.342 0.623 0.965
B 0.364 0.62 0.984
C 0.311 0.24 0.551
D 2.383 0.229 2.612

Table 6: Post-optimizations for Algorithm 2 on Experiment 2

bindings for stores does well, since the number of stores in comparison to the number of locations in the
database is small. Table 5 presents a few results for this experiment.

The best plan in this situation happens to be one with all FS access methods, and all of the algorithms ex-
cept Algorithm 5 generate this plan. Since Algorithm 5 must optimize each branch separately, it is forced to
use ES forLocation . Notice that the query shape is actually very similar to Experiment 1 (Section 6.3.1),
where Algorithm 5 produced the optimal plan, but the shape and distribution of the data being accessed is
very different.

6.4 Post-Optimizations

In general, the post-optimizations improve query execution time at the expense of increased optimization
time. As we saw in Section 6.2 (Table 1) with the good performance of the plans produced by Algorithm
2D, the net effect can be a win.

Recall that Post-optimization D is the most thorough, since it operates at the step granularity and doesn' t
apply any heuristics in its search. It is also the most expensive: it can add a second or even more to the
optimization time. In our experiments, it decreased query execution time by an average of 22%, ranging
from 0% faster (no change to the plan) to 88.5% faster. Obviously the benefit of post-optimization thus
depends on whether the query itself is expected to be expensive.

To be more concrete, let us consider as an example the impact of each of our four post-optimizations on
the plan produced by Algorithm 2 for Experiment 2 (see Section 6.3.2). Results are shown in Table 6. Algo-
rithm 2 without post-optimization does very poorly in this experiment, and after applying Post-optimization
D the new plan is almost an order of magnitude faster. However, the trade-off between better query perfor-
mance and longer optimization time is evident with an increase in total time after post-optimization. In this
situation, and in many others, we found that Post-optimizations B and C produce tangible improvements at
a reasonable cost.

6.5 Comparison Against Exhaustive Search

We implemented the exhaustive search strategy described in Section 5.1 in order to compare the true lowest
(predicted) cost plan against plans chosen by our six algorithms. Since exhaustive search is so expensive,

18

Algorithm 1 2A 2B 2C 2D 3A 3B 3C 3D 4 5 6

Average Times Optimal 1.23 1.35 1.12 2.38 1.08 2.19 1.26 2.30 1.29 2.05 2.25 2.60

Table 7: Summary of the average times worse than optimal

we were limited to considering path expressions with fewer than 6 steps, and even 5-step expressions were
very slow to optimize. Overall our algorithms produced plans that were competitive with the optimal plan.
We ran four representative experiments and calculated how much slower each plan was when compared to
the plan selected by the exhaustive algorithm. Table 7 shows the average multiplicative increase in query
execution time over all experiments when compared with the optimal plan.

We also considered some extreme points. For simple linear path expressions our algorithms did very
well. In one case, all of our algorithms except Algorithms 4 and 6 produced the same plan as the exhaustive
algorithm, and Algorithms 4 and 6 produced plans that were only 1.05 times slower. In the worst experiment,
none of the algorithms generated the same plan as the exhaustive algorithm, some of the plans were 2 to 3
times slower than the optimal, and Algorithm 5 produced a plan that was nearly 6 times slower. However,
as can be seen in Table 7, overall our algorithms do produce competitive plans. Furthermore, they do so in
a small fraction of the optimization time.

7 Conclusions and Future Work

We investigated the query optimization problem for branching path expressions in semistructured and XML
query languages. We introduced six algorithms that reduce the large search space of plans in a variety of
ways, and four post-optimizations that transform complete plans into better ones at the expense of further
optimization time. We implemented all of the algorithms and post-optimizations in the Lore system, and
experimentally confirmed their strengths and weakness. Overall, we found that the best results were obtained
by Algorithm 4 (ES-start), which generates plans inO(n logn) time.

Although we have considered a wide variety of algorithms already, based on the initial results reported
here we plan to investigate some additional algorithms and combinations of techniques. We also would like
to compare our algorithms against more traditional search strategies, such as top-down, dynamic program-
ming style, or transformation-based search (e.g., simulated annealing or iterative improvement). Finally,
since the algorithms were designed for branching path expressions in isolation, there is further work to be
done to fold the techniques into a complete optimizer for Lorel queries.

References

[Abi97] S. Abiteboul. Querying semistructured data. InProceedings of the InternationalConference on Database
Theory, pages 1–18, Delphi, Greece, January1997.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for semistruc-
tured data.Journal of Digital Libraries, 1(1):68–88, April 1997.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimization techniques
for unstructured data. InProceedings of the ACM SIGMOD International Conference on Management
of Data, pages 505–516, Montreal, Canada, June 1996.

[BPSM98] Editors: T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language (XML) 1.0, February
1998. W3C Recommendation available at http://www.w3.org/TR/1998/REC-xml-19980210.

[Bun97] P. Buneman. Semistructured data. InProceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pages 117–121, Tucson, Arizona, May 1997. Tutorial.

19

[CCM96] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with generalized path expressions. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 413–422,
Montreal, Canada, June 1996.

[CCY94] S. Chawathe, M. Chen, and P. Yu. On index selection schemes for nested object hierarchies. InPro-
ceedings of the Twentieth International Conference on Very Large Data Bases, pages 331–341, Santiago,
Chile, September 1994.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A query language for XML.
In Proceedings of the Eight International World-Wide Web Conference, Toronto, Canada, May 1999.

[FFK+99] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat with Strudel: Experiences
with a web-site management system. InProceedings of the ACM SIGMOD International Conference on
Management of Data, pages 414–425, Seattle, Washington, June 1999.

[FFLS97] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a web-site management system.
SIGMOD Record, 26(3):4–11, September 1997.

[FLS98] D. Florescu, A. Levy, and D. Suciu. Query optimization algorithm for semistructured data. Technical
report, AT&T Laboratories, June 1998.

[FS98] M. Fernandez and D. Suciu. Optimizing regular path expressions using graph schemas. InProceedings of
the Fourteenth International Conference on Data Engineering, pages 14–23, Orlando, Florida, February
1998.

[GGT96] G. Gardarin, J. Gruser, and Z. Tang. Cost-based selection of path expression processing algorithms in
object-oriented databases. InProceedings of the Twenty-Second International Conference on Very Large
Data Bases, pages 390–401, Bombay, India, 1996.

[GLPK94] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fast, randomized join-order selection – why use
transformations? InProceedings of the Twentieth International Conference on Very Large Data Bases,
pages 85–95, Santiago, Chile, September 1994.

[GMW99] R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML: Migrating the Lore data
model and query language. InProceedings of the 2nd InternationalWorkshop on the Web and Databases
(WebDB '99), Philadelphia, Pennsylvania, June 1999.

[GW97] R. Goldman and J. Widom. DataGuides: Enabling query formulation and optimization in semistructured
databases. InProceedings of the Twenty-Third International Conference on Very Large Data Bases,
pages 436–445, Athens, Greece, August 1997.

[IK90] Y. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join queries. InProceedings
of the ACM SIGMOD International Conference on Management of Data, pages 312–321, Atlantic City,
New Jersey, May 1990.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database management system
for semistructured data.SIGMOD Record, 26(3):54–66, September 1997.

[MW99a] J. McHugh and J. Widom. Compile-time path expansion in Lore. InProceedings of the Workshop on
Query Processing for Semistructured Data and Non-Standard Data Formats, Jerusalem, Isreal, January
1999.

[MW99b] J. McHugh and J. Widom. Query optimization for semistructured data. Technical report, Stan-
ford University Database Group, September 1999. Extended version of [MW99c], available at
ftp://db.stanford.edu/pub/papers/qo.ps.

[MW99c] J. McHugh and J. Widom. Query optimization for XML. InProceedings of the Twenty-Fifth International
Conference on Very Large Data Bases, Edinburgh, Scotland, September 1999.

[MWA +98] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman. Indexing semistruc-
tured data. Technical report, Stanford University Database Group, 1998. Available at
ftp://db.stanford.edu/pub/papers/semiindexing98.ps.

[ODE95] C. Ozkan, A. Dogac, and C. Evrendilek. A heuristic approach for optimization of path expressions.
In Proceedings of the International Conference on Database and Expert Systems Applications, pages
522–534, London, United Kingdom, September 1995.

20

[OL90] K. Ono and G. Lohman. Measuring the complexity of join enumeration in query optimization. InPro-
ceedings of the Sixteenth International Conference on Very Large Data Bases, pages 314–325, Brisbane,
Australia, August 1990.

[PGLK97] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. The complexity of transformation-based join enu-
meration. InProceedings of the Twenty-Third InternationalConference on Very Large Data Bases, pages
306–315, Athens, Greece, August 1997.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous infor-
mation sources. InProceedings of the Eleventh International Conference on Data Engineering, pages
251–260, Taipei, Taiwan, March 1995.

[RK95] S. Ramaswamy and P. Kanellakis. OODB indexing by class-division. InProceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 139–150, San Jose, California, May
1995.

[RLS98] J. Robie, J. Lapp, and D. Schach. XML query language (XQL). InQL '98 – The Query Languages Work-
shop, Boston, MA, December1998. Papers available online at http://www.w3.org/TandS/QL/QL98/.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection in a relational
database management system. InProceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 23–34, Boston, MA, June 1979.

[SMY90] W. Sun, W. Meng, and C. T. Yu. Query optimization in object-oriented database systems. InProceedings
of the International Conference on Database and Expert Systems Applications, pages 215–222, Vienna,
Austria, August 1990.

[SS94] B. Sreenath and S. Seshadi. The hcC-tree: An efficient index structure for object oriented databases.
In Proceedings of the Twentieth International Conference on Very Large Data Bases, pages 203–213,
Santiago, Chile, September 1994.

[Swa89] A. Swami. Optimization of large join queries: Combining heuristics and combinatorial techniques. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 367–376,
Portland, Oregon, May 1989.

[XH94] Z. Xie and J. Han. Join index hierarchies for supporting efficient navigations in object-oriented databases.
In Proceedings of the Twentieth International Conference on Very Large Data Bases, pages 522–533,
Santiago, Chile, September 1994.

21

