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Abstract

We present the Cost-Distance problem: �nding a Steiner tree which optimizes the sum of edge

costs along one metric and the sum of source-sink distances along an unrelated second metric. We give

the �rst known O(log k) randomized approximation scheme for Cost-Distance, where k is the number

of sources. We reduce several common network design problems to Cost-Distance, obtaining (in some

cases) the �rst known logarithmic approximation for them. These problems include single-sink buy-at-

bulk with variable pipe types between di�erent sets of nodes, and facility location with buy-at-bulk type

costs on edges. Our algorithm is also easier to implement and signi�cantly faster than previously known

algorithms for buy-at-bulk design problems.

1 Introduction

Consider designing a network from the ground up. We are given a set of customers, and need to place various

servers and network links in order to cheaply provide suÆcient service. If we only need to place the servers,

this becomes the facility location problem and constant-factor approximations are known [17, 8, 11]. If a

single server handles all customers, and we impose the additional constraint that the set of available network

link types is the same for every pair of nodes (subject to constant scaling factors on cost) then this is the

single sink buy-at-bulk problem [16, 2]. We give the �rst known approximation for the general version of

this problem to optimize both placement of servers and network topology.

We reduce the network design problem to the following theoretical framework, which we call the Cost-

Distance problem. We are given a graph with a single distinguished sink node (server). Every edge in this

graph can be measured along two metrics; the �rst will be called cost and the second will be length. Note

that the two metrics are entirely independent, and that there may be any number of parallel edges in the

graph. We are given a set of sources (customers). Our objective is to construct a Steiner tree connecting

the sources to the sink while minimizing the combined sum of the cost of the edges in the tree and sum

over sources of the weighted length from source to sink. Note that our de�nition is a direct generalization of

both the shortest path tree and the minimum cost Steiner tree. If costs and lengths are proportional, then

constant-factor approximations [12, 3] are known.

We obtain the �rst general approximation algorithm for this problem with unrelated metrics. We prove

an expected competitive ratio of O(log jSj) (where S is the set of sources) for our randomized algorithm.

The algorithm is fairly simple to implement and runs in a relatively fast O(jSj2(m+ n logn)) time bound.

Many standard problems in network design can be reduced to Cost-Distance. In particular, we describe

simple reductions from single source buy-at-bulk and the facility location problem. Besides improving best-

known performance bounds for single-source buy-at-bulk, we demonstrate that a natural combination of
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facility location and buy-at-bulk can be solved by reduction to Cost-Distance. In fact, we can generalize

single-source buy-at-bulk to account for a scenario where not all network link types are available between

every pair of nodes, or where costs do not scale linearly. This better models real-life situations where certain

types of hardware may not be available (or may not be practical to install) in certain locations. Our algorithm

provides the �rst known approximation for this more general problem.

From a more theoretical standpoint, consider routing single-source traÆc through a graph where each

edge has some function relating the total traÆc along the edge to the cost of routing that traÆc. If all

functions are convex increasing (nondecreasing derivative) then exact solutions are known using min-cost


ow techniques. We present the �rst approximations for the case where all functions are concave increasing

(nonincreasing derivative). Previous work on buy-at-bulk [3, 1, 16] required that the concave functions

between each pair of nodes be identical up to a constant scaling factor; we eliminate this requirement.

In addition to generalizing previous results, our algorithm is easy to implement and has a small running

time. This makes it the algorithm of choice for many of the problems we have previously described. For

example, previous algorithms for single-source buy-at-bulk depended on complicated methods of randomly

selecting trees which approximate stretch [4, 5, 6, 7]. The algorithm for Access Network Design [1] depended

on linear programming relaxation. Our algorithm's most time-consuming subroutine is single-pair shortest

path.

Summary of Previous Results

If the cost and delay metrics are proportional, the o�ine version of Cost-Distance has constant factor

approximation [3, 12], and there is an online algorithm performing a small number of rerouting of existing

nodes [9]. If the cost and delay metrics are unrelated, this problem has no previously known approximation

algorithm.

A related problem is to �nd a tree with low cost in the c metric such that the diameter is no more than

L in the l metric. This problem has an O(log jSj; log jSj) approximation on the cost and diameter [14, 13].

Our algorithm for Cost-Distance has the same basic structure and proof idea as the algorithm in [14].

Previous results for related network design problems are discussed in detail in Section 5.

2 The Cost-Distance Problem

We are given a graph G = (E; V ) along with a set of source vertices S � V which need to be connected

to a single sink vertex t 2 V . We have two metrics along this graph. We will call the �rst metric cost,

c : E 7! <+ and the second metric length l : E 7! <+. We are also given a weighting function w : S 7! <+

on the sources. We denote the two metrics on an edge e as (c(e); l(e)).

We are asked to �nd a connected subgraph G0 = (E0; V 0) � G which contains all sources (S � V 0) and

the sink (t 2 V 0) such that the following sum is minimized:

X

e2E0

c(e) +
X

s2S

w(s)L0(s; t)

Here L0(s; t) is the total length of the min-length path from s to t along the edges of G0.

Our algorithm will give an O(log jSj) approximation to this sum. It is important to notice that our

approximation ratio does not depend on the number of edges, since there may potentially be a large number

of edges connecting the same pair of nodes (m� n2).
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3 The Algorithm

The algorithm works by pairing up sources (or pairing sources with sink) until only the sink remains. At

each stage we �nd a matching on the nodes, then choose one node from each matched pair to be \center."

We transport the weight from the non-center node to the center, paying the appropriate edge costs and

weight times distance costs. We then repeat this process on the centers until the sink is the only remaining

node. The details of the algorithm follow.

1. De�ne S0 = S [ ftg and w0 = w. Create empty set E0.

2. Set i = 0.

3. For every pair of non-sink nodes (u; v) 2 Si:

� Find the shortest u� v path in G according to the metric M(e) = c(e) +
2wi(u)wi(v)

wi(u)+wi(v)
l(e)

� De�ne Ki(u; v) to be the length under metric M(e) of this path.

4. For every non-sink node u 2 Si:

� Find the shortest u� t path in G according to the metric M(e) = c(e) + wi(u)l(e)

� De�ne Ki(u; t) to be the length under metric M(e) of this path.

5. Find a matching between nodes in Si such that the number of unmatched nodes plus half the number

of matched nodes is at most Si=� and the value of
P

(u;v)matchedKi(u; v) is at most � times the value

of the minimum Ki-cost perfect matching. We assume � and � are known constants.

6. For each matched pair (u; v) add the edges on the path de�ning Ki(u; v) to the set E0.

7. Create an empty set Si+1

8. For each pair of non-sink matched nodes (u; v):

� Choose u to be the center with probability wi(u)=(wi(u)+wi(v)). Otherwise v will be the center.

� Add the chosen center to Si+1 and assign the center a weight wi+1(center) = wi(u) + wi(v).

9. Add all unmatched nodes u 2 Si to Si+1 and de�ne wi+1(u) = wi(u).

10. Add the sink to Si+1.

11. If Si+1 contains only the sink, we are done. Otherwise increment i and return to step 3.

12. We return G0 = (E0; V 0) where E0 is the set of edges we constructed and V 0 is the set of adjacent

nodes.

Each time through the steps, the size of our set Si is reduced by �. Thus the process terminates after

log� jSj iterations.

A little more detail is needed in step 5. We could �nd the minimum cost perfect matching on the set

in polynomial time, obtaining � = 2 and � = 1. Polynomial-time algorithms are known for minimum-cost

perfect matching on non-bipartite graphs [15]. However, these algorithms tend to be impractical1. The

following simpler procedure will work for us, causing only a small constant loss in our approximation ratio.

We will �nd the cheapest pair of nodes to connect (minimum Ki(u; v)) and match them. We then remove

these two nodes from consideration and repeat. We continue this process until half the nodes have been

matched. The jth pair which we choose to match must have had matching cost at most equal to the (2j�1)st

1We could use the O(n2 log n) approximation algorithm in [10] to get � = 2 and � = 2. Here, n is the total number of nodes

in the graph.
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cheapest edge in the perfect matching, according to the Ki metric. It follows that our total Ki-cost is at

most half the Ki-cost of the perfect matching, guaranteeing � = 4=3 and � = 1=2.

Each iteration of this algorithm �nds shortest paths between all pairs in Si. Since the metric is di�erent for

each pair, we cannot use all-pairs shortest path computations. Instead we perform jSij
2 single pair shortest

paths. We �rst take O(m) time to compute the metric on every edge. Using Dijkstra's Algorithm, we can

compute the shortest path between a single pair of nodes in O(m+ n logn) time. The matching step (stage

5) can be performed in O(jSij
2 log jSij) time. It follows that iteration i takes at most O(jSij

2(m+ n logn))

time. Since the size of Si reduces by constant � each iteration, when we sum over iterations the total running

time looks like O(jSj2(m+ n logn)).

4 Analysis

The optimal solution will be a tree, which we will call T �. To see this, notice that we can take any graph

and produce the shortest-path (according to the length metric) tree connecting the sink to all sources. This

shortest-path tree will have total cost at most the total cost of the graph and a distance-to-sink from every

source node equal to the distance-to-sink from the graph. It follows that the optimal solution must be a

tree, since a non-tree solution immediately gives rise to a tree solution with equal or superior total value.

We de�ne the following quantities:

C� =
P

e2T� c(e).

L�(v) = Total length of edges along the path from v to the sink in T �.

D� =
P

v2S w(v)L
�(v).

The total \value" of the optimal solution which we will need to approximate is C� +D�. At each stage

in our algorithm, we have some set of nodes Si which we are trying to connect. We de�ne the following

potential function:

D�

i =
X

v2Si

wi(v)L
�(v)

Notice that D�

0 = D�.

Since our algorithm is randomized, we need to analyze the expected performance. Each stage of the

algorithm transports some weight from matched nodes to chosen centers. We can de�ne the value of stage

i to be the total cost of the edges used in stage i matching plus the cost to transport the weight across the

appropriate edges to the center. The total value of our solution will then be the sum of the values of the

stages.

We �rst prove a lemma bounding the expected potential function at each stage.

Lemma 4.1 For every stage i, E[D�

i ] � D�.

Proof: The proof will be by induction. For i = 0 we know D�

0 = D�. Consider stage i > 0. Suppose

we matched u and v in our previous matching. The contribution of u and v to D�

i�1 was wi�1(u)L
�(u) +

wi�1(v)L
�(v). We choose a random center. The expected distance from center to sink is now:

wi�1(u)L
�(u) + wi�1(v)L

�(v)

wi�1(u) + wi�1(v)

The weight of the new center is wi�1(u)+wi�1(v). It follows that the new center's expected contribution

to D�

i is also wi�1(u)L
�(u) + wi�1(v)L

�(v). Of course, unmatched nodes contribute equally much to both

potentials, and nodes matched with the source contribute less to D�

i since their weight will disappear. Thus

the expected value of D�

i is at most D�

i�1. It follows that E[D�

i ] � E[D�

i�1] and the inductive hypothesis

implies E[D�

i ] � D�.
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We will now relate the value of a stage to the metric Ki on which we approximated a min-cost perfect

matching. This will allow us to bound the expected value of each stage.

Lemma 4.2 Given a tree T = (E; V ) and a set of nodes S � V , there exists a perfect matching of the nodes

in S which uses each edge of the tree at most once.

Proof: The proof will be by induction on the number of edges in the tree. If the tree includes zero edges,

then jV j = 1 and the result is trivially true. Consider a larger tree. Suppose v 2 V is a leaf of this tree. If v

is not included in S, then we can remove v and the edge connecting it to its parent from the tree to produce

a smaller tree, T 0. We inductively produce a perfect matching of the nodes in S on T 0 and use the same

matching for T . If v is included in S, then we consider v's parent node. If the parent node is also in S, then

we match v with its parent. We then remove v and it's edge from the tree to produce T 0 and inductively

match the rest of S on T 0. If the parent node is not in S, we produce S0 by removing v from S and adding

v's parent. We again produce T 0 and match the nodes. Some node u is matched to v's parent. We will use

the identical matching to the one on T 0 except that we will match v with u by adding the edge from v to its

parent to the relevent path. This produces the desired matching.

This result previously appeared in [14].

Lemma 4.3 The expected value of stage i at most �(2D� + C�).

Proof: Consider the tree T �. By matching the nodes in Si in the proper way, we can guarantee that we

use only edges in T � and no edge more than once as in lemma 4.2. This matching has edges with total cost

at most C�. The fraction 2wi(u)wi(v)=(wi(u) + wi(v)) is at most twice the minimum of the two weights.

Each edge in our matching would have to be along the path-to-source in the optimal tree for one of the two

matched nodes. It follows that:

X

(u;v)matched

Ki(u; v) � C� + 2D�

i

The minimum-cost perfect matching along metric Ki must do at least this well. Since the matching

we actually use has cost at most � times the minimum-cost perfect matching, we guarantee a matching of

Ki-cost at most �(C
� + 2D�

i ). We need to relate this cost to the value of the stage.

The value of the stage is the total cost to transfer weight from matched nodes to their centers. Suppose

we match u and v. If we choose v as the center, then we need to transport u's weight over to v. This induces

a value of wi(u)l(u; v) in addition to the value induced by the cost of edges used. On the other hand, if we

choose u as center then we pay wi(v)l(u; v) plus edge costs. The expected value is thus

wi(v)wi(u)l(u; v) + wi(u)wi(v)l(u; v)

wi(u) + wi(v)
+ c(u; v)

Notice that this expected value is exactly Ki(u; v). It follows that the expected value of the stage is equal

to the total Ki-cost of the matching found; at most �(C
� +2D�

i ). This of course depends on D�

i , a random

variable with expected value at most D� (as per lemma 4.1). It follows that the expected value of stage i is

at most �(2D� + C�) as desired.

Theorem 4.1 We obtain approximation ratio 2� log� jSj = O(log jSj) to the optimal.

Proof: The expected value of our solution is equal to the sum of expected value of stages. This gives us

total value E[V ] �
P

iE[Vi]. Using lemma 4.3 and our bound on the total number of stages, we can bound

this by E[V ] � �(log� jSj)(2D
�+C�). Since the optimal solution has value D�+C�, this proves the desired

approximation ratio.
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Using the described greedy algorithm to �nd a matching, we will attain expected approximation ratio

log4=3 jSj; exact perfect matchings would improve this to 2 log2 jSj. There will be a small additional loss

in the last stages where an uneven number of nodes could cause a few additional steps, however our total

approximation will remain bounded by an expected O(log jSj).

We note that since the algorithm can optimize any linear combination of cost and distance, we can use

the technique in [14] to obtain a (O(log jSj); O(log jSj)) approximation to the bicriteria problem of optimizing

the cost given total distance and vice versa.

5 Relation to Network Design Problems

We will demonstrate approximation-preserving reductions from many commonly encountered network design

probems to special cases of Cost-Distance. We emphasize that for all these problems, our algorithm

produces a logarithmic approximation ratio, while being (in general) simpler to implement and faster to run

than previously known algorithms.

5.1 Facility Location

We are given a weighted undirected graph G(V;E) with a cost per unit demand c : E ! < on the edges.

We have a set of demand points D � V with demands di, and a set of facility locations F � V with facility

costs fi. The goal is to open a subset of the facilities and assign demands to the open facilities so that the

sum of cost of opening the facilities and the cost of routing the demand to the facilities is minimized.

For edge e in the graph, the bicriteria cost function is (0; c(e)). We add a dummy sink and connect it to

all the facilities. For facility i, the cost of the edge is (fi; 0). The demand points will be our source vertices

(S = D) and their weights will be equal to the demands (w(v) = dv). The cost of a Cost-Distance solution

on this modi�ed graph is identical to the cost of its corresponding facility-location solution, so it follows that

the reduction is approximation-preserving.

We can also consider the capacitated version of this problem, where facility i has capacity ui. We can

open multiple copies of a facility, but each copy opened at location i costs fi. Again, we modify the graph

exactly as before, but assign cost (fi;
fi
ui
) on the edge connecting the sink to facility i. This causes the loss

of an additional factor of two (at most) in the approximation ratio.

We have therefore obtained a O(log(jDj)) approximation to these problems. Note that constant factor

approximations are known for this problem [8, 11, 17].

5.2 Extended Single Sink Buy-at-bulk

In this problem [16], we are given a weighted graph G(V;E) with length function l : E ! <. A subset S � V

of nodes have demands di. We have a special sink node t to which all this demand must be routed. The

demand must be routed by choosing a tree and buying pipes along this tree. There are K types of pipes.

The type i pipe has cost ci per unit length and capacity ui. We assume K is O(poly(jV j)). The goal is to

minimize the total cost of pipe bought.

We modify the graph as follows. Replace every edge e in the graph with K parallel edges e1; e2; : : : ; eK .

The edge ei has bicriteria cost (l(e)ci; l(e)
ci
ui

). The weight of a node is its demand. This new graph is the

instance of Cost-Distance that we solve. Intuitively, l(e)ci is the �xed cost of using pipe i, and l(e) ci
ui

is

the incremental cost of routing demand.

It is implicit in the work of [2, 16] that the optimum tree with the modi�ed cost function is no more than

a factor 2 away from the optimum tree for the original problem.

The best previously known approximation for this problem is O(log jSj log log jSj) which follows by ap-

plying the techniques in [7] to the algorithm in [2]. These algorithms are based on the work in [4, 5, 6, 7]
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which show how to approximate any �nite metric by a tree metric so that the distance between any two

nodes in the graph is approximated well. For the special case of K = 1, Salman et al [16] showed a constant

factor approximation by using previous results [3, 12] on balancing Steiner trees with shortest path trees.

All previous approximations assumed that all the K pipes are available between all pairs of nodes; it is

straightforward to see that we can do away with this restriction. This problem arises naturally in network

design. There may be a �xed cost of laying cables which depends on the location but is independent of

the type of cable being laid (perhaps the cost of installing the cable outweighs the cost of the cable itself).

Alternatively, certain types of services might not be available in certain locations. Our algorithm is the �rst

to handle these sorts of situations.

5.3 Combining Facility Location with Buy-at-Bulk

We can de�ne a combination of the previous problems as follows. We are given the same graph as in the

(capacitated) facility location problem, and also a set of K pipe types just as in the buy-at-bulk problem.

We wish to open facilities and construct a forest routing the demands to the facilities. The demands must

be routed by buying pipes along the edges of the forest. We wish to optimize the sum of the cost of laying

out the pipes and the cost of opening the facilities.

This problem arises, for example, in placing caches over the web and connecting the demand points to

the caches by laying out links of some �xed types (like T1, OC10, etc.) We wish to optimize the total cost

of placing the caches and buying the links to route the demands.

It should be clear that the combination of the modi�cations we made in the previous problems gives an

instance of Cost-Distance. The approximation ratio is therefore O(log jDj). This holds even if the set of

available pipes di�ers for di�erent pairs of nodes. As far as we are aware, this is the �rst approximation

algorithm for this problem.

5.4 Access Network Design

We note that the access network design problem [1] is a special case of the facility location with buy-at-bulk

problem mentioned above. We therefore have a O(log jSj) approximation for this problem.

5.5 Concave Functions

Suppose we are given a graph and a set of sources and demands, and we wish to route all the demand to a

single sink node. For every pair of nodes in the graph, we are given a concave function which determines the

cost of routing between those nodes given the amount of demand to be transported. We can compute a tight

approximation of such a concave function by viewing it as the minimum (at any demand value) of a series of

lines of decreasing slope and increasing y-intercept. The bicriteria cost in the Cost-Distance problem can

be seen to represent the y-intercept (cost) and the slope (length) of lines relating expenditure for an edge

to amount of traÆc routed. We can thus simulate the concave function by providing many parallel edges of

di�erent bicriteria cost.

6 Conclusions

We conclude by mentioning some open problems. First, we have no lower bounds on the approximability of

Cost-Distance. We strongly suspect that the lower bound in the most general case is 
(log jSj). Second,

it would be interesting to see if the algorithm provides better approximation guarantees for speci�c types of

cost function, speci�cally those arising from facility location. Third, derandomizing the algorithm poses an

interesting problem.
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Finally, we are curious as to whether any approximations can be given for the more general case where

the cost-demand relationship for a pair of nodes in the graph follows an arbitrary nondecreasing function

(neither convex nor concave).
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