
Hierarchical Placement and Network Design Problems

Sudipto Guha� Adam Meyersony Kamesh Munagalaz

May 13, 2000

Abstract

In this paper, we give the �rst constant-approximations for a number of layered network

design problems. We begin by modeling hierarchical caching, where caches are placed in layers

and each layer satis�es a �xed percentage of the demand (bounded miss rates). We present a

constant approximation to the minimum total cost of placing the caches and routing demand

through the layers. We extend this model to cover more general layered caching scenarios, giving

the �rst constant approximation to the well studied multi-level facility location problem. We

consider a facility location variant, the Load Balanced Facility Location problem in which every

demand is served by a unique facility and each open facility must serve at least a certain amount

of demand. By combining Load Balanced Facility Location with our results on hierarchical

caching, we give the �rst constant approximation for the Access Network Design problem.

�Department of Computer Science, Stanford University CA 94305. Research Supported by IBM Research Fellow-

ship, NSF Grant IIS-9811904 and NSF Award CCR-9357849, with matching funds from IBM, Mitsubishi, Schlum-

berger Foundation, Shell Foundation, and Xerox Corporation. Email: sudipto@cs.stanford.edu.
yDepartment of Computer Science, Stanford University CA 94305. Supported by ARO DAAG-55-97-1-0221.

Email: awm@cs.stanford.edu.
zDepartment of Computer Science, Stanford University CA 94305. Supported by ONR N00014-98-1-0589. Email:

kamesh@cs.stanford.edu.



1 Introduction

In this paper we consider applications requiring layered placement of resources. Examples of such

problems include hierarchical caching on the internet, multi-level facility location problems, and

the Access Network Design problem which is a variant of single-sink buy-at-bulk problem. We

develop techniques to approximate these problems within constant factors. The access network

design problem leads us to formalize Load Balanced Facility Location which we solve as well.

Hierarchical Caching Considerable research has been devoted to optimizing internet access

time through the use of various caching strategies. The central idea is to replicate data to reduce the

access costs of the users. Caching schemes model tradeo�s between the storage and management of

the copies and the average time to access a certain object in a network. The facility location problem

has been used to model such adaptive data replication and placement problems [20]. However in

most caching scenarios the caching is performed hierarchically. Small caches are placed close to the

users while larger ones reside in the backbone of the network [26, 12].

We consider the problem of hierarchical placement of caches, using the web as our example.

We model the caches at each layer of the hierarchy as having a �xed miss rate. Thus we consider

a hierarchical caching scheme as follows: demand locations communicate with caches of type 1,

which in turn communicate with caches of type 2 and so on, until we reach the servers located at

the top-most level. We assume that each cache in level i of the hierarchy has miss rate �i. We refer

to caches in level i of the hierarchy as type{i caches.

The miss rate of each layer is modeled to be an arbitrary �xed constant. Each demand location

in the network could have many users, so it seems natural to model an average user pro�le instead

of considering each user to be distinct. There is also some evidence that the distribution of the

fraction of times di�erent pages are accessed is Zip�an [8, 27]. A natural caching scheme is to

cache the most popular pages [23, 8, 27]. Under this scheme, the miss rate is independent of the

incoming request rate and depends on the Zipf distribution over pages of the incoming request

stream and the size of the cache [8]. Capacitated models are frequently introduced to prevent

cache overload. Constraints in capacities immediately pose questions of \economies of scale" or

\buy at bulk" constraints [21]. We address this issue as well.

The quality of a solution is measured on two axes, the cost of placing the caches and the

average time to serve the requests. A simple formulation is to optimize the sum of the placement

cost and the service cost, as in facility location problems. For most such problems heuristics that try

optimizing both the criterion follow without much diÆculty from those which attempt minimizing

the sum. The access time will be modeled by a metric distance function on the possible locations in

the network. We will de�ne a formal model in Section 2. This problem subsumes facility location

problem and is Max SNP hard. We will obtain a constant factor approximation, with running time

depending polynomially on the number of demand locations and the number of layers.

This problem arises in a variety of other contexts as well. Consider the problem of caching

multimedia clips [13] in a hierarchical fashion. It can be shown analytically that the interval caching

scheme illustrated in [13, 2] is optimal for this application. Assuming a statistical distribution for

the interval between successive requests we can show that the reduction in rate is a function of the

length of the clip, size of the cache and the distribution, but is independent of the actual request

rate itself. This implies that if we place the caches in a hierarchy, so that the caches in the same

layer have the same size, the reduction in request rate due to a cache at level i is a fraction �i that

depends just on the layer. In such a scenario, we can de�ne the problem of Hierarchical Placement

1



just as we did for caching web pages above.

Multi-Level Facility Location The Multi-Level facility location problem was previously stud-

ied in [24, 16, 1, 25]. In a typical application, we have to route material produced at factories to

consumers through a hierarchy of warehouses. We place large warehouses close to the factories,

and smaller ones close to the consumers. The cost of placing a warehouse depends on the level

the warehouse is to function in, its size, and its location. This problem closely resembles the web

caching problems discussed above, except that there is no reduction in the demand from one layer to

the next. We provide a constant factor combinatorial approximation for this problem with running

time polynomial in the size of the input and the number of levels. Previously known algorithms

depended on rounding a linear program with size exponential in the number of levels.

Access Network Design The problem of designing networks using trunks to route demands

has received considerable attention. In this problem, commonly known as Buy-at-Bulk Network

Design [21, 4, 3, 19], we are given demands at nodes in a network which have to be routed to their

respective destinations using pipes of certain capacities and costs per unit length. The costs obey

economies of scale, in the sense that it is cheaper to buy a pipe of larger capacity than many pipes

(which sum to the same capacity) of a smaller capacity. The goal is to optimize the total cost of the

pipes we buy to route the demands. Andrews and Zhang [3] de�ne a special case of this problem

called the Access Network Design problem, where all demands need to be routed to a central core

network and the costs and capacities of the pipes obey certain common constraints. They show

applications of this problem in designing telephone networks.

Load Balanced Facility LocationWe provide the �rst constant factor approximation for the

Access Network Design problem by showing its connection to hierarchical placement through the

problem of Load Balanced Facility Location. This problem di�ers from standard facility location in

that we must route at least L units of demand to each open facility. Load Balanced Facility Location

has direct applications; consider a franchise which must open stores to minimize the average distance

from customer to store, but which must also guarantee a minimum number of customers to each

store so the individual stores remain pro�table. We present a constant approximation to this

problem, losing a constant factor against the lower bound on demand.

1.1 Previous Results

Classical facility location and its variants have several constant factor approximations [11, 15, 22].

The algorithms in [11, 15] run in O(n2 log n) time, while the algorithm in [22] solves an LP and

rounds the fractional solution. Jain and Vazirani [15] also give a 4-approximation to the capacitated

facility location problem, under the relaxation that more than one facility can be placed at a

location. This is a theme running through almost all capacitated facility location problems, since

such a relaxation makes it easier to extend a partial assignment of facilities.

A constant factor approximation for the buy at bulk facility location problem follows from [15].

Although not explicitly stated, the only observation one requires is that the algorithm of [15] carries

through for capacities which are dependent on location only. Simply making copies of a facility

(as many copies as supported by the buy at bulk constraints at this location) solves this problem.

Although this is a trivial extension of the result in [15], it will be central in handling capacities and

buy at bulk constraints in the context of Hierarchical Placement.

The Multi Level facility location problem has a constant factor approximation [22] when the

number of levels is constant, but the algorithm involves solving an LP whose size grows exponentially

2



in the number of levels.

The problem of buy-at-bulk network design was �rst de�ned in [21]. Awerbuch and Azar [4]

obtain an O(log2 n) approximation to this problem even when all demands have di�erent sinks.

Their work is based on techniques to approximate any metric by tree metrics [6]. The approximation

factor can be improved to O(logn log logn) using Bartal's result in [7] and derandomized using the

results of single sink buy-at-bulk, Salman et al [21] show a constant approximation when there is

only a single pipe type. Their method is based on the technique of balancing Steiner and shortest

path trees [5, 17]. Andrews and Zhang [3] de�ne the Access Network Design problem, which is a

special case of single sink buy-at-bulk where the pipe costs and capacities obey certain common

constraints, and provide an O(K) approximation, where K is the number of pipe types. Meyerson

et al [19] provide an O(log n) approximation to single sink network design where the costs on the

edges are arbitrary non-decreasing concave functions of demand.

1.2 Organization of the Paper

In the next section, we present a formal model of hierarchical placement problems. In Section 3,

we present a constant factor approximation for the simplest problem, where the cache cost depends

just on the type (level) of the cache and not on the location. This will illustrate our basic techniques

for layered facility location. We generalize the technique in Sections 4 and 5.

We show that the Hierarchical Placement Problem is not diÆcult to approximate if the miss

rates of caches are small. This hinges on the idea that since the demands of the requests decrease,

the contribution from the higher levels to the service cost decrease. However, as we proceed with

a level by level assignment, we may be moving away from the optimal solution in each successive

level. We need to modify the problem into suitable facility location problems to re
ect the cost of

building caches and �nding an allocation path at the same time.

We subsequently show that the general problem in which the miss rate of level i is less than

or equal to one (�i need not be monotonic in i) can be reduced in an approximation preserving

fashion to a problem where the miss rates of caches in every level are small. We believe this two step

approach of solving hierarchical problems is helpful in terms of clarity and simplicity of algorithms.

In Section 6, we de�ne the Access Network Design problem, and exhibit its connection to the

small miss rate idea from Section 3. We then reduce this problem to the Load Balanced Facility

Location problem. In Section 7, we provide constant factor approximation to the load balanced

facility location problem. In Section 8, we show how to combine the ideas from Section 3 and

Section 7. The main idea is to solve load balanced facility location layer-by-layer, and use the proof

technique from Section 3 to bound the cost at each layer. We also show how to extend the result

when the demands are arbitrarily small compared to the capacity of the smallest pipe type.

2 Hierarchical Placement

We are given an undirected network G(V;E) with a distance function on the edges, a set of demand

points, and a set of possible locations and caches of types 1; : : : ; k with miss rates �1; : : : ; �k. Each

cache is speci�ed by the tuple hu; y; ii, where u denotes the location of the cache, y its capacity

and i its type (level). The cost of such a cache is denoted by f
y
u;i.

We have to place the caches satisfying the following constraints:

3



1. Each of the demand points are served by type 1 caches.Each of the type 1 caches placed

behave as demand points that need to be served by type 2 caches. We can consider the

demand points to be level 0 caches.

2. The demand of a type 1 cache is �1 times the amount of the demand served by the type 1

cache. The caches of type 2 onwards behave similarly as the caches of type 1, with miss rates

�i for level i.

3. The cost of the solution is the cost of placing all the caches and the cost of servicing all the

demands. The latter is the sum of the distance times the demand of the demand points, the

type 1 caches, and caches of higher types.1

We present three versions of this problem in increasing order of diÆculty2: the �rst shows the

general geometric property we would consider to solve this problem, the second problem shows how

to deal with costs which are dependent on location. The third combines those techniques in their

generality, with capacities and buy at bulk thrown in.

Simple-Placement: In this version, the cost of a cache is independent of the location and just

depends on the type of the cache. The caches have no capacity in terms of the amount of

incoming demand.

Multi-Level: Here, all the �i are 1, but the cost of a facility depends on the location as well as

the type of the cache. This is the classic multi-level facility location problem.

General-Placement: Cache of type i now has have capacity Mi in terms of the amount of

incoming demand. We are allowed to place multiple caches at a location. The cost of a cache

depends both on the location and the type of the cache.

It is straightforward that these problems extend the facility location problem, and therefore are

NP{Hard. In fact these problems cannot be approximated within factor 1:47 unless P = NP , [14].

In the next sections, we will present constant factor approximations for these problems.

3 The Simple-Placement Problem

Recall that in this version of the problem, the cost of a cache of type i is fi and is independent

of the location of the cache. Each cache can support in�nite user demand, we will address this

restriction in the later sections. We �rst present a small miss rate theorem, which is crucial to our

algorithm.

1It is also conceivable that the cost of an access is accounted by the distance to the type (level) 1 cache, and in

case of a miss, �1 times the distance back to the original demand node and then to the type (level) 2 cache. In this

case the demand node is aware of the miss and �nding the next level cache itself. This objective function decomposes

into several applications of the facility location problem, one for each level. In this model we are assuming that

the demand node is not aware of a cache miss and the redirection is performed by the caches, as in most caching

scenarios.
2There are other intermediate versions, but we omit discussion as the techniques used will be similar.

4



3.1 Small Miss Rate Theorem

We reduce the problem to a new instance where the miss rates are small. We will used primed

quantities to distinguish the variables of new instance from the original one.

Theorem 3.1 Given an instance of the Simple-Placement problem with parameters �1; : : : ; �k,

the problem can be reduced to a di�erent caching problem with k0 � k types of caches and a di�erent

set of parameters �0
1; : : : ; �

0
k0, such that each �0

` is a constant less than � where 0 < � < 1, and at

most a 1
�
blowup in service cost.

Proof: We show this by providing a new instance in which the �0
i are at most �, and any solution

in the newer instance can be realized in the older instance at the same cost. We will also show that

the optimal solution in the older instance can be modi�ed to give a feasible solution in the newer

instance of cost at most 1
�
times.

We �rst �nd a j such that
Qj1

i=1 �j < �. We will pretend that the caches of types 1 through j

form a single cache in the new instance.

We repeat the above for caches of type i for i > j1, that is we �nd j2 such that
Qj2

i=j1+1
�i < �.

Thus the number k0 will be the number of times this step can be performed. The new �0
1 will beQj1

i=1 �i and �0
2 will be

Qj2
i=j1+1

�i and so on.

In the new instance the cost of a cache of type 1 will be the sum of the costs of caches of types

1 through j1 in the original instance. Similarly the cost of a cache of type 2 in the new instance

will be the sum of the costs of the caches of types j1 + 1 through j2.

The demand points remain the same.

It is easy to see that a solution in the new instance gives a solution of the old instance by

simply placing caches of types 1 through j1 in the locations where a type 1 cache is placed in the

new instance. And similarly for caches of type 2 and onwards in the new instance are replaced by

(possibly) sets of caches of the old instance. It is easy to see that the cost remains unchanged in

this process.

Thus we showed that a solution of a certain cost in the new instance can be realized in the

older instance at the same cost. We will now show that the optimal solution of the older instance

can be modi�ed into a feasible solution of the newer instance by at most a constant factor blowup

in the cost.

Consider the optimal solution. Consider the level j1 at which the product of the parametersQj1
i=1 �i < � for the �rst time. If we were to short-circuit all the paths from the demand points to

the type j1 caches, the cost of service will be at most 1
�
times original.

This is because the product of the �i values of levels 1 through j1 � 1 in the original instance

is greater than �. Notice that since every demand point is assigned to an unique type 1 cache and

each such to an unique type 2 cache and so on, each demand can be associated with an unique

cache of type j.

We can now place caches of type 1 through j1� 1 at the same location u where a type j1 cache

is placed, and since every cache of type i is assigned to an unique cache of type i+ 1, the optimal

assignment had also built at least these many caches for this cache of type j1. Thus the cost of

caches does not go up in this process. Thus we only increased the service cost by a factor of 1
�
.

This completes the reduction.

5



This tells us that any instance of Simple-Placement can be reduced to the case where the

miss rate �i is less than �.

3.2 Solving for small miss rate

The algorithm is natural and simple. We repeatedly solve an uncapacitated facility location problem

for each of the levels. The reason why such a solution works is that since the miss rate is suÆciently

bounded away from one, the secondary demands introduced at the facilities and their contributions

decrease fast and geometrically. Recall that each �i for each level is at most �.

We solve the uncapacitated facility location for level i by scaling the distances by �i�1, and the

demands in their original locations. We continue the process till we have considered all the levels.

Let us call the set of facilities opened in level i by Pi. Each demand is assigned to one facility in

each of the Pi. Let the routing cost of the level i solution be Xi.

Now, for each demand, we send it to its assigned facility in P1, and from there to its assigned

facility in P2, and so on till its assigned facility in PK . This solution is not a tree, but it can be

converted to a tree of no greater cost.

We denote the best known approximation ratio for the facility location problem by r. For level

i, let the total cost of the caches placed by our solution be Fi and that placed by the optimum

solution on the new cache types be F �
i . Also, let the service cost be Si and S�

i respectively at level

i.

Let X =
P

iXi, S
� =

P
i S

�
i , F

� =
P

i F
�
i , S =

P
i Si and F =

P
i Fi. Note that the optimum

cost is S� + F �, while our cost is S + F .

We �rst show a bound of our routing cost Si in terms of Xi (our facility location routing cost

of demands at layer 1 to the facilities Pi). We next show how Xi is related to S�
i .

Lemma 3.1 Si � Xi + �Xi�1.

Proof: One feasible way of routing the demand at layer i � 1 to layer i is to send it back to the

original demand points along the level i� 1 facility location solution, at cost �Xi�1 (note that we

scaled the metric by another factor �), and send it back along the level i solution at cost Xi. Since

we use the shortest paths to route the demand between the same starting and ending points, our

cost can be no more than this.

Lemma 3.2 Xi + Fi � r(
Pi�1

j=0 �
jS�

i�j + F �
i ).

Proof: One feasible way of constructing the level i facility location solution (i.e., route the demands

to the set Pi) is to route them along the optimum solution to layer i. Since we have scaled the

metric by �i�1, the optimum routing cost is at most
Pi�1

j=0 �
jS�

i�j.

These lemmas immediately give the following theorem:

Theorem 3.2 S + F � r(1+�
1��S

� + F �).

Theorem 3.3 The above algorithm is a constant approximation for the Simple-Placement Prob-

lem.

6



Proof: First, note that we lost a factor � in the routing cost because of the short-circuiting step in

Theorem 3.1. Therefore, we have a r 1+�
�(1��) approximation on the routing cost, and r approximation

on the facility cost. Setting � =
p
2�1, we have a (5:828r; r) bicriteria approximation on the routing

and facility costs, which gives a 10 approximation. We can use the (1+ 
; 1+ ln 2


) facility location

trade-o� from [11] to get a 6 approximation to this problem.

4 Multi-Level Facility Location

In this version, there is no reduction in demand from one layer to the next, i.e., all the � are 1.

Let fji be the cost of placing a facility of layer i at location j. This problem has been studied in

[24, 16, 1, 25, 22]. In [22] a factor 4 approximation was given for this problem, with a �xed number

of layers. However, the algorithm requires nk variables and equations for k levels for running time

exponential in the number of layers. We show how to reduce this problem to repeated solving of

the facility location problem, providing an O(1) approximation whose running time depends only

polynomially on k. Note that the size of the output for this problem also depends polynomially on

k.

We introduce a technique for handling location dependent costs in placement problems. The

next section will further generalize our algorithms to handle capacitated facilities as well. We can

show the following.

Theorem 4.1 The Multi-Level facility location problem has a 9:2(1+ �)-approximation running in

time polynomial in the size of the input, k, and 1
�
.

Proof: We will show that we can construct a new problem instance which is just capacitated

facility location with the freedom to place multiple facilities(caches) at a location, with just a

constant factor loss in cost.

In the new instance, let hv; yi denote a cache of capacity y at location v. Noticed we are not

using the third parameter since all �i = 1 except the level k facilities (caches).

Let us consider the cost of cache hu; yi, we will compute these for all v, all y in powers of 1 + �

in the new instance.

1. Construct a labeled directed graph with K+1 copies of the original graph. Let the copies be

G(0) to G(K). From a node v in G(i� 1) (for 1 � i � j) draw an arc of cost y � cvw + fwi to

w in G(i).

2. For each node v �nd the shortest path from the copy of v in G(0) to the copy of v in G(K).

Denote the cost of this path by Ry
v .

3. The cost of hu; yi is set to be Ry
u.

We can convince ourselves that a solution of this new instance can be achieved in the older

instance with at most the same cost. Consider a location v with cache in the new instance with

capacity x. If in the older instance, we �rst bring all this demand to location v, and then send it on

the round trip denoted by Rx
v . Notice that on this round trip, the demand will be routed through

locations and caches of type 1 type 2, and so forth up to type K (corresponding to older instance)

7



before reaching v. Thus we can short circuit using triangle inequality and achieve a routing of cost

at most denoted by the cost of the newer instance.

We will now show that the optimal solution of the older instance can be modi�ed into a feasible

solution at most a constant factor blowup in cost. Consider all the demand at a cache of type K

in the older solution. We can short circuit the demand from points to this cache, say at v, directly.

That does not change the service cost. However the cache now costs more, but by not too much.

Consider the closest demand point p from this location v, if we send the entire demand at location

v to p and back through the path by which demand point p is connected to v, the cost will be at

most two times the service cost. Thus if the demand, say y was a power of 1+�, then we can choose

x = y and Rx
v would have been at most this round trip cost plus the costs of the caches of type 1

through K, (of the original instance) along the path from p to v. However we have to account for

the fact that y may not be a power of 1 + � and we may end up choosing an x which is at most

(1 + �)y. Thus the cost of routing the demand may lose another factor of 1 + �. Thus the cost of

the new solution is at most 3(1 + �) of the original.

We now use the a constant factor approximation for capacitated facility location in [15] to

obtain a 12(1 + �) approximation.

However we are going to use the following two observations: the transformation shows that the

optimum solution of the older instance (with facility cost F � and service cost S�) provides a feasible

solution with the facility cost at most (1+�)(F �+2S�) and service cost S�. Now the second step of

reducing this capacitated problem following [15] introduces the following transformation (see [11]);

that a solution to the capacitated problem with facility and service costs F 0 and S0 reduce to an

uncapacitated problem with facility cost F 0 and service cost F 0 + S0. Using these inequalities, and

the tradeo� result used in Simple-Placement we can improve the factor to 9:2.

5 The General-Placement Problem

We will now combine the ideas in the previous two sections to solve the most general case. Each

cache is denoted by hu; y; ii where the location is u, capacity restriction y, and type i. Multiple

caches can be placed at the same location (of identical or di�erent types) in order to accommodate

large demands.

Reduction to Small Miss Rate We show how to reduce the problem with arbitrary �i to the

case where all �0
i are below �. The following theorem applies:

Theorem 5.1 Given an instance of theGeneral-Placement problem with parameters �1; : : : ; �k,

the problem can be reduced to a di�erent caching problem with k0 � k types of caches and a di�erent

set of parameters �0
1; : : : ; �

0
k0, such that each �0

` is a constant less than � where 0 < � < 1, in time

polynomial in input size and 1
�
, and at most a

3(1+�)

�
blowup in cost.

Proof: As before, we will identify again types 1 through k0 of the caches in the new instance. That

is �0
1 will be

Qj
i=1 �i for the �rst j when

Qj
i=1 �i � �. The parameter �0

2 will be
Qj0

i=j+1 �i for the

�rst j0 for which the quantity
Qj0

i=j+1 �i � �.

The caches in the new instance will be denoted by triples, hv; y; 1i0 denoting a cache at v of

type 1 in the new instance having capacity y (allowing copies to be placed simultaneously). The

8



primed triples will indicate caches in the new instance.

Let us consider how to assign the cost of cache hu; y; 1i0. We will compute these for all v, all y

in powers of 2 and all types 1 through k0 in the new instance. (The type 10 in the new instance is

corresponding to types 1 through j1 in the old instance). We will use ideas from the Multi{Level

Facility Location Problem. The idea is that although the demands decrease, we can approximate

the sub-levels in the original problem (1 through j for example) by a Multi{Level facility location

problem, appropriately modi�ed to account for capacities.

1. Construct a labeled directed graph with j + 1 copies of the original graph. Let the copies

be G(0) to G(j). From a node v in G(i � 1) (for 1 � i � j) draw an arc of cost y � cvw +

minhu;x;ii
�d y

x
efxwi

	
to w in G(i). If there are no hu; x; ii, we will not introduce the arc or

introduce an arc of cost inf (very large positive value). The expression reads complicated,

but encodes the best way of routing demand y from v to w under restriction that w has a

cache of type i, and hw; x; ii are the possible caches that can be used.

2. For each node v �nd the shortest path from the copy of v in G(0) to the copy of v in G(j).

Denote the cost of this path by R
y
vj .

3. The cost of hu; y; 1i0 is set to be R
y
uj.

4. Likewise we set the costs hu; y; 2i0 etc.

As in the proofs of Theorem 4.1 and Theorem 3.1, we can show that converting the optimal

solution of the old problem to a feasible instance of the new problem causes us to lose a small factor.

It is not hard to see for a solution of cost �C corresponds to a solution of same cost in the original

solution. This is because the way the costs of the new facilities are constructed, the demand at

a node where the new solution places a hu; y; ii0 cache; there will be only one cache placed with

demand D satisfying y � D(1 + �) � y(1 + �)2. Otherwise we can choose a facility of smaller cost.

The way R
y
ui is ascertained, we can clearly rout along the round trip path in the calculation of R

y
ui.

However the more interesting part is to show that there exists a feasible solution to the new

problem which is bounded in terms of the cost of any feasible solution with facility cost F and

service cost S. Consider the routing along the levels 1 through j in this solution (later levels

handled analogously). First we will ignore the decrease in demands, this makes the service cost

S=�. (Once again, we only need to ignore decrease from levels 1 through j � 1 whose product of

�-values is at least �.) The facility cost increases due to the excess demand 
owing. However at

each of these places there already is one facility built, to handle at most 1=� times the demand the

facility cost is at most F=�. (Since dx=�e � dxe=�.)
At this point for this modi�ed solution which is a collection of trees, for each tree we can �nd

out the cost per unit demand along the path. (We divide the cost of the copies of the facilities in

proportion to the demands served, notice it helps that the demands remains same over the levels.)

Along with this add the distance from the root to the leaf node. Pick the leaf node which minimizes

the sum. The cost of sending the entire demand served by the tree, from the root to this leaf node

and back over this path the cost is at most the service cost plus the cost of the tree. (Summing

over the two parts we added up.)

Therefore up to (1 + �) factors we have a feasible solution of the new problem with facility cost

(F + 2S)=�, and service cost S=�. Thus the cost of the new problem is bounded by 3 �C.

9



Solving Small Miss rate Case The algorithm is the same as in Section 3. We solve capacitated

facility location [15] at each of the new levels in turn, using hu; y; ii0 as the facilities. The proof of
the following theorem proceeds along the same lines as the proof of Theorem 3.3.

Theorem 5.2 Given an instance of General-Placement where the �i are bounded by �, we can

approximate the problem within O(1).

Combining Theorem 5.1 and Theorem 5.2 gives anO(1) approximation forGeneral-Placement.

6 Access Network Design { Preliminaries

We apply the hierarchical placement technique of the previous section to construct a constant factor

approximation for Access Network Design problem [3].

6.1 The Model

Consider a service provider or utility company trying to design a network to provide service. The

agency can use the economies of scale in designing the network, that the cost per unit traÆc

decreases when routing larger amounts. This is modeled by \buy at bulk" network design problems.

The Access Network Design Problem [3] is a special case of single sink buy-at-bulk [21].

In single sink buy-at-bulk, we are given a network G(V;E) with a length function on the edges,

and a sink node s 2 V . We have a set R � V of demand points which we have to route to the sink

by buying pipes and laying them along the edges in the network. We are given K types of pipes. A

pipe of type k has capacity uk and cost per unit length ck. We can assume that it is always cheaper

to buy a single copy of a pipe then to buy other pipes which have equal or greater total capacity.

The goal is to minimize the cost of buying the pipes along the edges to route all demand to

the sink. Since the cost per unit demand goes down with the capacity of the pipes, there exists a

near-optimum solution (within a factor of two) which always buys edges along a tree [4].

Andrews and Zhang proposed the following alternate formulation, and proved it equivalent to

within a factor of two [3]. The pipe of type k has a �xed cost �k = ck, and an incremental cost per

unit demand of Æk =
ck
uk
. The cost per unit length of routing a demand of d using a pipe of type k

is therefore �k + d � Æk.
Numbering the pipes in increasing order of capacity, we immediately have the conditions that

�1 < �2 < � � � < �K , and Æ1 > Æ2 > � � � > ÆK .

The Access Network Design problem is a special case of Single Sink buy-at-bulk with additional

restrictions on the costs of the pipe types. The main restriction is that a type k pipe is cheaper

only when it routes signi�cant demand. Formally, the restrictions can be stated as follows:

1. For 2 � k � K, if d < �k
Æk
, then dÆk�1+�k�1 < dÆk+�k. For this to make any physical sense,

we would actually require d < � �k
Æk

for some � < 1. Since it will not e�ect our proofs, we will

simplify our notation by assuming � = 1.

2. The smallest demand looks like the smallest pipe capacity3, or more precisely, d � Æ1 > �1.

3We later show how to remove this restriction with a constant factor loss.

10



3.
P

�<k �� = O(�k).

Under these restrictions, Andrews and Zhang [3] showed that there exists a near-optimal (within

a constant multiplier on the cost) solution which is a tree satisfying the following properties:

1. Each demand is routed through pipes of consecutive types, i.e. types 1; 2; : : : ; �. (� � k).

2. For all pipe types k, any pipe of that type has at least uk = �k
Æk

amount of demand 
owing

through it.

We can therefore compare ourselves against the optimal solution that satis�es the above men-

tioned properties. We can assume every pipe type is used for routing all demands by placing self

loops of increasing types at the sink, provided the self loops of type k we insert at the sink are not

required to have uk amount of demand in them.

6.2 Relationship with Hierarchical Placement

The Access Network Design problem seems unrelated to the hierarchical placement problems we

have de�ned. However, in each case we have a layered solution with a reduction in cost at each

layer. We can prove the following theorem:

Theorem 6.1 There exists a solution to the Access Network Design problem in which we only use

pipe types satisfying the condition �i =
Æi+1
Æi

� �, and in which any pipe of type i has at least ui
amount of demand 
owing through it. The �xed and incremental costs of this solution are each

within 1
�
of the original optimum which used all pipe types and which had at least uk demand in

any pipe of type k.

Proof: Note that since we are using pipes of larger types in increasing layers, the incremental cost

Æ per unit of traÆc keeps decreasing. In fact, we can make sure that Æ goes down by a constant

fraction � < 1 with a 1
�
increase in cost. The way we do this is the following:

Consider pipes of increasing types starting at type 1. Let �i =
Æi+1
Æi

. Let k0 be the largest

number such that
Qk0

i=1 �i � �. We remove all pipe types 2; : : : ; k0 + 1 and use only pipe of type 1

instead of all these pipes. We next consider pipes starting at type k0 + 2 and repeat this �ltering

process. This is the same as in hierarchical placement problems.

When the above is completed, we are left with a set of pipe types satisfying the following

properties:

� For consecutive pipe types i and i+ 1,
Æi+1
Æi

� �.

� If we used a pipe of type i instead of a pipe of type j, then Æj > �Æi and �j > �i.

The problem reduces to layered facility location, just as in hierarchical placement, except that

we need to meet the lower bound of uk at each layer.

With this in mind, we de�ne the Load Balanced Facility Location problem, where we have lower

bounds on the demand any open facility must satisfy.

11



7 Load Balanced Facility Location

This problem is a variant of the classical facility location problem. We are given a network G(V;E)

with a distance function d(�) on the edges and a set of demand points. The cost of opening a facility

at location i is fi. In addition, there is a lower bound of Li on the demand a facility opened at i

must satisfy. The goal is to open facilities and allocate the demands to the open facilities so that

an open facility at i has at least Li demand routed to it. The cost of our solution is the sum of the

average distance traveled by the demands and the cost of the open facilities. We wish to minimize

this cost.

De�nition 7.1 An approximation algorithm for load balanced facility location is a (�; �) approxi-

mation for some � � 1 and � � 1 if the cost of the solution is within � times the optimal cost and

facility i, if opened, serves at least Li

�
demand.

Let us denote by r the best known approximation ratio for classical facility location. We present

a (2r; 3) approximation to this problem. This generalizes to a (1+�
1��r;

1
�
) approximation for � < 1.

Minimize
X

i

X

j

djcijxij +
X

i

fiyi

P
i xij � 1 8j
xij � yi 8i; jP

j djxij � Liyi 8i
xij; yi 2 f0; 1g 8i; j

We can write an integer program for this problem. Unlike facility location [22, 11, 15], the

lower bound makes it hard to round the linear relaxation directly. This arises from the fact that

the �ltering steps of Lin and Vitter in [18] do not work. Thus fractional solutions cannot be rounded

by previous approaches.

7.1 The Algorithm

The algorithm proceeds in two basic steps. Our transformations work for the fractional solution ob-

tained from the linear relaxation of the integer program discussed above, so our �nal approximation

guarantee is against the fractional solution.

Facility Location: For facility i, we add the cheapest way to route at least Li units of demand to i

to the facility cost fi. We next solve regular facility location with these facility costs. Finally,

we show that the optimum solution to this problem is within a factor 2 of the optimum to

the original problem.

Rounding to Remove Facilities: Consider any open facility i that serves less than Li

3
amount of

demand. We close the facility and route the demands it serves to their closest open facilities.

This transformation does not increase the cost of our solution.

12



7.2 Analysis

We now describe the two steps of the algorithm in detail.

Firstly, we construct a regular facility location instance from this problem. Each potential

facility location i is now assigned a new cost f 0
i , which is the sum of fi and the minimum cost of

routing exactly Li amount of demand to that location. For doing this, we take demand points in

increasing order of distance to i till we have collected Li amount of demand.

Lemma 7.1 Consider any feasible fractional solution to the load balanced facility location problem

of cost C. We can construct a feasible instance of the regular facility location problem of cost at

most 2C.

Proof: Look at any fractional facility i. Since the feasible solution is routing at least Li amount of

demand to any open facility, the facility cost we assign in the new problem is at most the routing

cost of the demand connected to that facility. Thus the total additional facility cost is at most C.

We now solve the facility location instance mentioned above. The cost of the solution we obtain

is within a factor of r = 1:728 to the optimal solution for that instance.

Therefore the total cost in the solution we compute is bounded in terms of the routing cost of

the original fractional solution to within a factor of 2r. Also note that facility location guarantees

that each demand point goes to the closest open facility.

We now consider the open facilities in arbitrary order. Suppose facility i serves less than Li

3

amount of demand, we close the facility and route the demands it serves to their closest open

facilities. At the end of this process, we are guaranteed that each open facility i serves at least Li

3

amount of demand, and each demand goes to the closest open facility.

We have to show that removing a facility does not increase the total facility plus routing cost

of the solution. For this, we show a feasible way to route the demands it serves so that the cost

does not increase.

Lemma 7.2 Removing a facility i serving less than Li

3
amount of demand cannot increase the cost

of our solution.

Proof: Suppose we are closing facility i. Consider the closest demand point j which does not send

demand to this facility. Suppose d(i; j) = D, where d is the distance metric. If j is being served

by i0, d(i0; j) < D, as each demand point goes to the closest open facility.

Also, the facility cost f 0
i � 2Li

3
D. This follows because the facility serves only Li

3
amount of

demand, while the facility cost f 0
i is fi plus the cost of serving at least Li units of demand.

When we close the facility, we can a�ord to use f 0
i towards re-routing the demand it serves. We

send the demand to i0, the facility serving j. The extra cost for doing this is at most the cost of

taking the demand from i to j and from there to i0. This distance is at most 2D, and the demand

is at most Li

3
, and so the total re-routing cost is at most 2Li

3
D.

The above can be summarized in the following theorem,

Theorem 7.1 The load balanced facility location problem has a (2r; 3) approximation where each

demand is served by its closest open facility.

13



We can scale the facility costs to improve the lower bounds. We will state the following tradeo�

theorem.

Theorem 7.2 The load balanced facility location problem has a (1+�
1��r;

1
�
) approximation for � < 1

where each demand is served by its closest open facility.

Proof: We start o� by adding � times the cheapest way to serve Li units of demand to facility i

to its cost. It is immediate that the approximation is ((�+ 1)r; 1
�
), where � = 2�

1�� .

8 Access Network Design { The Algorithm

We combine the constant approximation for load balanced facility location with the hierarchical

placement arguments from Section 3 to derive a constant factor approximation.

8.1 The Algorithm

Let �k = Æk
Æk�1

. We can assume with a loss of 1
�
in the approximation ratio that all �k � � < 1.

Our algorithm will lay pipes in increasing order of types.

We use the layered facility location technique discussed in Section 3 to decide the routing with

layer k pipes. Lemma 3.2 will apply in our case because the incremental cost of routing drops by

at least � from one layer to the next.

We de�ne Ii to be the incremental cost of the ith pipe and Si to be the �xed cost. We suppose

that pipe i becomes pro�table only when ui =
�1
Æi

demand is being routed, where Si = ui � Ii.
We solve Load Balanced Facility Location from the original demand points, using lower bound

zero on the sink and ui on all other nodes. We assume the approximation ratio for Load Balanced

Facility location is (r; 
).

The cost along an edge is Ii�1 times its length. Suppose the cost of the approximate solution

is Ci and we gather at least ui=
 
ow at all the non-sink facility nodes. We also de�ne a solution

for i = k + 1 which has in�nite lower bound everywhere but at the sink.

We de�ne C�
i to be the total incremental cost incurred by the optimal solution using pipes of

type i. Note that the total cost of the optimal solution is C� >
P

iC
�
i .

Lemma 8.1 Ci � r(
Pj=i�1

j=1 �i�j�1C�
i )

Proof: Consider the part of the optimal solution which uses pipes of type 1 through i� 1. At the

end of this solution, every node but the sink has either zero or at least ui 
ow, because pipe type i

must become pro�table. By copying this solution, but using incremental cost Ii�1 everywhere, we

obtain a solution to Load Balanced Facility Location with cost
Pj=i�1

j=1 �i�j�1C�
i . The inequality

claimed follows.

It is now easy to see the following.

Lemma 8.2
P

i Ci � r 1
1��C

�

14



We will now construct our solution. We route from each demand point to the closest facility

in the i = 2 solution as per our i = 2 solution, using pipe type one. We then route from each of

these facilities to the closest facility of the i = 3 solution using pipe type two. We continue until

we �nally route from the facility of the i = k solution to the sink using pipe type k. We need to

bound the total cost of this solution.

Lemma 8.3 The total �xed cost for the pipes used in our solution is bounded by 
(
P

i Ci)(1 + �).

Proof: Consider the pipes used to route from the facilities of the i = j solution to the facilities

of the i = j + 1 solution. Suppose the 
ow at each of the i = j facilities were equal to the 
ow

produced by facility location solution j. This means we have at least uj=
 at each facility. If we

were to route all of this 
ow backwards to the demand points using pipes of type j, we would pay

a total incremental cost of �Cj . If we were then to route back upwards along the paths of solution

j + 1, we would pay incremental cost of Cj+1. Routing the demands back and forth fractionally

can only be more expensive than routing the demands directly along shortest paths to the nearest

facility. It follows that we can pay incremental cost Cj+1+�Cj . Since we guaranteed at least uj=


at each of the facilities to begin with, and kept this 
ow together, we can conclude that the �xed

cost payed for our pipes of type j is at most 
(Cj+1 + �Cj). Of course, in our actual solution we

will not have the correct amount of 
ow at each facility; however, the pipes we will buy will be

exactly the same (shortest path pipe from each i = j facility to nearest i = j + 1). It follows that

the total �xed cost is bounded by
Pj=k

j=2 
(Cj+1+�Cj) to which we add the �xed cost for the pipes

of type one (which is bounded by C2 since we start with at least d1 demand everywhere). The total

�xed cost is at most 
(
P

i Ci)(1 + �).

Lemma 8.4 The total incremental cost is bounded by 1��
1�2�

P
iCi.

Proof: We de�ne Xj to be the total incremental cost incurred in transferring from the facilities

found in the i = j solution to the facilities in the i = j + 1 solution. X1 = C1 is the incremental

cost incurred in transferring from the demand nodes to the i = 2 facilities.

Consider Xj . One way to route involves backing up the 
ow to the j�1 facilities at incremental

cost �Xj�1, then back to the j � 2 facilities at cost �2Xj�2 and so on, until we reach the original

demand points. From here we route along the paths given by the i = j + 1 solution. Since

simply transferring to the closest demand point must be cheaper than this, we can write Xj �
Cj+1 +

Pi=j�1
i=1 �j�iXi. Summing this value over all j, we can bound the total incremental cost by

X

j

Xj �
X

i

Ci +
�

1� �

X

j

Xj

From this it follows that
P

j Xj � 1��
1�2�

P
iCi.

Theorem 8.1 We have constructed a constant approximation for Access Network Design.

Proof: The total cost of our solution is bounded by the following.

C � (
 + 
�+
1� �

1� 2�
)
X

i

Ci � r(
 + 
�+
1� �

1� 2�
)(

1

1� �
)C�

15



Inserting the additional � factor necessary to scale the pipe types properly yields a competitive

ratio of:

C=C� � r(

1 + �

�(1� �)
+

1

�(1� 2�)
)

If we set � = 1=3 and 
 = 3 and r = 3:5, this yields an approximation ratio of 94:5.

Open Problems and Acknowledgments

The most challenging open problem is extending our constant approximation for Access Network

Design to single sink buy-at-bulk. Another interesting problem is removing the restriction that all

� in a layer are identical in Hierarchical Placement. We also believe that the load balanced facility

location problem has applications in network design with concave cost functions on edges. This

connection needs to be explored further.

We would like to thank Matthew Andrews for explaining their work and pointing out diÆculties

in an earlier draft of this work, and Serge Plotkin for his support.

16



References

[1] K. Aardal, M. Labb�e, J. Leung, and M. Queyranne. On the two-level uncapacitated facility

location problem. INFORMS J. Comput., 8:289{301, 1996.

[2] Matthew Andrews and Kamesh Munagala. Online algorithms for caching multimedia streams.

manuscript, 2000.

[3] Matthew Andrews and Lisa Zhang. The access network design problem. 39th IEEE Symposium

on Foundations of Computer Science, pages 40{49, 1998.

[4] B. Awerbuch and Y. Azar. Buy-at-bulk network design. Proceedings of the 38th IEEE Sym-

posium on Foundations of Computer Science, pages 542{47, 1997.

[5] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication protocols.

Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing,

pages 177{87, 1990.

[6] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. 37th

IEEE symposium on Foundations of Computer Science, pages 184{193, 1996.

[7] Y. Bartal. On approximating arbitrary metrics by tree metrics. 30th ACM Symposium on

Theory of Computing, 1998.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like distributions:

Evidence and implications. Proceedings of INFOCOM, 1999.

[9] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approxi-

mation algorithms for group steiner trees and k-median. 30th ACM Symposium on Theory of

Computing, 1998.

[10] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a �nite metric by

a small number of tree metrics. 39th IEEE Symposium on Foundations of Computer Science,

1998.

[11] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location and

k-median problems. Proceedings of the Twenty-Ninth Annual IEEE Symposium on Foundations

of Computer Science, 1999.

[12] C. Chiang, M. Liu, and M. Muller. Caching neighbourhood protocol: A foundation for building

dynamic web caching hierarchies with proxy servers. Proceedings of International Conference

on Parallel Processing, 1999.

[13] A. Dan and D. Sitaram. A generalized interval caching policy for mixed interactive and long

video environments. Multimedia Computing and Networking, January 1996.

[14] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.

Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 649{657,

1998.

[15] Kamal Jain and Vijay Vazirani. Primal-dual approximation algorithms for metric facility

location and k-median problems. Proceedings of the Twenty-Ninth Annual IEEE Symposium

on Foundations of Computer Science, 1999.

i



[16] L. Kaufman, M. vanden Eede, and P. Hansen. A plant and warehouse location problem.

Operations Research Quarterly, 28:547{557, 1977.

[17] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning and shortest path

trees. Algorithmica, 14(4):305{321, 1994.

[18] J.-H. Lin and J. S. Vitter. �-approximations with minimum packing constraint violations.

Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, 1992.

[19] Adam Meyerson, Kamesh Munagala, and Serge Plotkin. Cost-Distance: Two metric net-

work design. Stanford University Tech. Note., STAN-CS-TN-00-92, 2000.

[20] A. Milo and O. Wolfson. Placement of replicated items in distributed databases. Proceedings

of International Conference on Extending Database Technology, 1988.

[21] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-at-bulk network design: Ap-

proximating the single-sink edge installation problem. Proceedings of the Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 619{628, 1997.

[22] David B. Shmoys, �Eva Tardos, and Karen Aardal. Approximation algorithms for facility

location problems. Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of

Computing, pages 265{274, 1997.

[23] I. Tatarinov, A. Rousskov, and V. Soloviev. Static caching of web servers. Proceedings of the

Sixth International Conference on Computer Communications and Networks, 1997.

[24] D. Tcha and B. Lee. A branch-and-bound algorithm for the multi-level uncapacitated location

problem. European J. Oper. Res., 18:35{43, 1984.

[25] T. Van Roy and D. Erlenkotter. A dual based procedure for dynamic facility location. Man-

agement Sci., 28:1091{1105, 1982.

[26] Duanne Wessels. Con�guring hierarchical squid caches. National Laboratory for Advanced

Network Research, 1997.

[27] J. Zhang, R. Izmailov, D. Reininger, and M. Ott. Web caching framework: Analytical models

and beyond. IEEE workshop on Internet Applications, 1999.

ii


