
Web Caching using Access Statistics

Adam Meyerson� Kamesh Munagalay Serge Plotkinz

May 12, 2000

Abstract

We present the problem of caching web pages under the assumption that each user has a

�xed, known demand vector for the pages. Such demands could be computed using access

statistics. We wish to place web pages in the caches in order to optimize the latency from

user to page, under the constraints that each cache has limited memory and can support a

limited total number of requests. When C caches are present with �xed locations, we present a

constant factor approximation to the latency while exceeding capacity constraints by O(logC).

We improve this result to a constant factor provided no replication of web pages is allowed. We

present a constant factor approximation where the goal is to minimize the maximum latency. We

also consider the case where we can place our own caches in the network for a cost, and produce

a constant approximation to the sum of cache cost plus weighted average latency. Finally, we

extend our results to incorporate page update latency, temporal variation in request rates, and

economies of scale in cache costs.

�Supported by ARO DAAG-55-97-1-0221. Department of Computer Science, Stanford University CA 94305.

Email: awm@cs.stanford.edu.
ySupported by ONR N00014-98-1-0589. Department of Computer Science, Stanford University CA 94305. Email:

kamesh@cs.stanford.edu.
zSupported by ARO Grants DAAG55-98-1-0170 and ONR Grant N00014-98-1-0589. Department of Computer

Science, Stanford University CA 94305. Email: plotkin@cs.stanford.edu.

1 Introduction

As web traÆc increases, the added congestion makes accessing pages more diÆcult. Caching

of web data is quickly becoming key in reducing this congestion, particularly for more popular

pages. In this paper, we consider the natural theoretical problems of assigning pages to caches and

determining the optimal cache locations on the web.

Our caching paradigm assumes that every web domain (like \yahoo" or \cnn") is statically

cached in certain caches, and user requests are routed to the appropriate cache. Static caching

of domains has been shown to work in practice [20, 5]. We also assume that accurate data

on user preferences is available to our algorithm, and remains relatively static over time. We

can merge all the users in a single region of the network for these purposes, and experimental

observations [2, 21, 20, 6] tend to support our assumptions.

Our assignments will attempt to accomplish four things: we want to minimize the internet

distance from users to the pages they wish to view, we want to keep the traÆc on any given

cache below a certain threshold, we want to keep the total number of caches opened from growing

too large, and we should not exceed the bounded memory of any cache. With these goals, we

consider three di�erent problems related to web caching. These problems are motivated by di�erent

optimization requirements for the caches. Typically, such optimization would be used by Internet

Service Providers who place these caches in their networks, or by independent entities who manage

the storage requirements for the content providers of the web pages.

The problems we present below are generalizations of the classical facility location [18] and

k-median [10, 4] problems, which are NP-hard. We therefore are interested in solving them ap-

proximately. The approximation technique we use is rounding of linear programs. The rounding

schemes combine ideas from randomized rounding [14, 15, 19, 13] and path �ltering [10, 18] with

many new techniques.

First, we look at the Page-Placement problem. We assume that caches already exist; our

goal is to allocate a set of web pages to these caches in order to optimize the average user's quality-

of-service. If we were to assume that every cache contains a copy of every page, this would become

a minimum cost
ow problem. However, we will assume that cache memory is relatively small,

creating an upper bound on the number of pages allowed in a cache. We would like to allocate

pages without exceeding the cache memory, in such a way that average distance from a user to a

cache containing the page the user wishes to view is small. Our algorithm, based on linear program

rounding, �nds an allocation which cannot exceed the cache memory by more than an O(logC)

factor, while making sure that no more than O(logC) times a threshold number of users access

any given cache. In these ratios, C is the number of caches. We make sure that the average user's

network distance from his assigned cache is within a factor of 5 of the optimum. If we are allowed to

assume that every page is cached only once, we can improve these bounds to exceed cache memory

and the user threshold by only a factor of 4 while obtaining optimum average distance-to-cache.

Second, we consider the problem of Cache-Placement. We suppose that we are allowed to

open our own caches at a variety of locations, but we must pay for each cache opened. Once we

have selected caches to open, we allocate pages and users to caches, optimizing the weighted sum

of average user-to-cache distance with the cost of opening the caches. While this problem might

seem more diÆcult than Page-Placement because of the additional decision to open caches, it

turns out we can attain better performance because we are allowed to open multiple caches at

the same location. This problem is related to capacitated facility location [18, 9], with additional

constraints created by the limited size of cache memory. Our LP-rounding algorithm provides a

13:325 approximation on the total cost while guaranteeing that no cache exceeds its cache memory

or its threshold number of users.

Third, we consider the problem of minimizingMaximum-Latency. We suppose that we have

C caches placed at �xed locations in a network, and we wish to cache pages to minimize the

1

distance between any user and the closest cache containing the page the user requests. For this

problem, we assume that any cache can serve an arbitrary number of users. This is a variant of

Page-Placement where we are interested in maximum distance rather than average distance, and

is closely related to the k-center problem [7]. We show how to guarantee that latency is within

a factor of 6 of optimal, while exceeding cache memories by at most a factor of 2.

Finally, we mention various straightforward extensions of our algorithms, accounting for situa-

tions where pages have di�erent memory sizes, where users have di�erent bandwidth demands, and

where we need to guarantee that pages have small latency of update. None of these situations will

e�ect our performance bounds. We also show how our algorithms can exploit economies of scale in

cache cost, i.e., the cost of the caches grow sub-linearly with the cache capacity.

1.1 Previous Work

Previous theoretical work on web caching [6, 1, 8] has focussed on online page replacement policies.

We di�er from these works in that we assume pages are statically cached in certain caches, and

we know the steady state access patterns for these pages by di�erent users. Our algorithms are

therefore o�ine, and need to be run only when there is a signi�cant shift in usage patterns. There

has been some previous work on adapting existing online single cache replacement policies to

multiple caches [11, 12], but these approaches work only for certain classes of networks. The

performance of our approach is independent of the network topology, and the number of users and

pages.

The problems we solve and the techniques we use are closely related to three di�erent types

of problems. The problem of packing pages into caches so that capacity constraints of the caches

are satis�ed is similar in
avor to covering and packing problems [15, 19, 13]. The standard tech-

nique used for solving these problems is randomized rounding [14]. The Generalized Assignment

Problem(GAP) [17] is a special packing problem for which constant approximations are known.

The problem of placing caches in a network and deciding how many times and where to replicate

the pages is similar to the classical facility location and k-median problems [10, 18]. The algorithms

in [18, 3, 9] give eÆcient constant factor algorithms to the facility location problem, while the

algorithms in [4, 9, 3] give a constant approximation to the k-median problem.

Finally, we also consider scenarios in which we take advantage of economies of scale while buying

and placing caches. This is related to the buy-at-bulk network design problem [16]. The facility

location algorithm in [9] gives a 4-approximation for the case where the facilities have capacities

and we can place multiple facility copies at any location.

1.2 Organization of the Paper

The next section presents the Page-Placement problem, where the cache locations are �xed.

The main technique here is randomized rounding of an LP after consolidating user demands at

cache locations. We augment the LP by a cutting plane to improve the quality of approximation.

In Section 3, we present the Cache-Placement problem and give a constant approximation for

it. Our technique involves applications of the �ltering technique in [10] combined with new ideas.

We show how we can extend the framework to incorporate economies of scale in Appendix C. In

Section 4, we present the Maximum-Latency problem and give a constant approximation for

it. Our technique here involves a two stage rounding of an LP, where we ensure the �rst stage

rounding preserves the feasibility of the LP. The two rounding stages use techniques from [18]

and [17] respectively. We conclude by mentioning extensions and open problems.

2

2 The Page-Placement Problem

We are given a set P of pages, and a set C of caches. The caches are placed at known locations in

the network represented by a graph G(V;E) with a distance(latency) function d(e) on the edges.

Each user in the network requests a page. We must assign pages and users to caches, guaranteeing

that at most capu users and at most capp pages are assigned to any one cache. We must also

guarantee that if a user is assigned to a cache, the page he requested is present at that cache.

Given these restrictions, we wish to minimize the sum over users of the distance along the network

from the user to his assigned cache.

Our algorithm will obtain within constant factors of the optimal distance sum, while guaran-

teeing at most O(log jCj)capu users and O(log jCj)capp pages on each cache. Since the algorithm is

randomized, we will obtain these bounds to high probability; repeated executions of the algorithm

makes the probabilities arbitrarily good.

2.1 Algorithm

First, we assign users to caches without exceeding capu users on any cache, ignoring the page bound.

This is simply a min-cost
ow problem, and we can solve it exactly. Since ignoring the page bound

can only help our cost, we guarantee cost1 � OPT .

We now merge users who were mapped to the same cache and request the same page. This

gives us a total of jCj � jP j users, each with a \size" equal to the number of real users it represents.

These sizes are between 1 and capu, since no more than capu users were mapped to any cache. We

de�ne U to be this new weighted set of users. We let W (u) represent the \size" of user u , and

d(u; c) represent the distance between user u and cache c. Gc(u) represents the fraction by which

user u receives from cache c, while Ic(p) represents the fraction of page p present in cache c. Call

the page wanted by user u page pu. We will solve the linear relaxation of the following integer

program:

Minimize
X

u

X

c

Gc(u)W (u)d(u; c)

Gc(u) � Ic(pu) 8u 2 U; c 2 CP
cGc(u) = 1 8u 2 UP
p Ic(p) � capp 8c 2 CP

uW (u)Gc(u) � capu 8c 2 CP
u:pu=p

W (u)Gc(u) � capuIc(p) 8p 2 P; c 2 C

Gc(u); Ic(p) 2 f0; 1g 8u 2 U; c 2 C; p 2 P

Note that the constraint
P

u:pu=p
W (u)Gc(u) � capuIc(p) is a cutting plane required to make

the rounding scheme outlined below go through.

Suppose we assign each page to the caches where the optimal solution places the page. We then

map each user fractionally back to the locations from which the requests originated, and from there

to their optimal caches. It follows that frac � OPT + cost1, where frac represents the cost of the

fractional solution to this linear program.

We call our optimal fractional solution to this program G�
c and I�c . We scale these variables as

follows.

IDc (p) = min(1; 2I�c (p))

If d(u; c) � 2
P

cG
�
c(u)d(u; c) then GD

c (u) = 0, otherwise GD
c (u) = min(1; 2G�

c(u)).

This scaling removes long-distance paths from consideration, while exceeding the capacity equa-

tions by at most a factor of two. We now scale again in preparation for randomized rounding.

3

� ISc (p) = min(1; 2(log jCj)IDc (p))

� GS
c (u) =min(1;

2(log jCj)GDc (u)IDc (pu)

ISc (pu)
)

We now perform a randomized rounding on these scaled variables. Notice that all the variables

will be rounded independently.

� IRc (p) = 1 with probability equal to ISc (p).

� GR
c (u) = 1 with probability equal to GS

c (u)=I
D
c (pu).

Finally, we eliminate Gc variables which would send a user to a cache which does not have the

page he's looking for, yielding:

� IFc (p) = IRc (p)

� GF
c (u) = IRc (pu)G

R
c (u).

These �nal values for GF
c (u) are not independent, since if two users want the same page from

the same cache, they will both have the same IRc (p) term in their formula. Some users may not

have been assigned to any cache (Gc(u) = 0 for all c). These users will be assigned to the closest

cache; of course this is the cache where they were placed in the �rst stage of the algorithm. If the

proper page is not in the cache, we will place it there. Clearly this algorithm assigns every user to

a cache, and makes sure that each cache has the corresponding page for the users assigned there.

We will show in the next section that the total cost is within a constant factor of optimum, and

that no capacity (in terms of pages or users) is exceeded by more than O(log jCj).

2.2 Analysis

We will begin by proving that most users are satis�ed in the LP-rounding stage, leaving a relatively

small number of users to be satis�ed in the �nal stage by sending them to their local cache.

Lemma 1. For any choice of user, u 2 U , Pr[
P

cG
F
c (u) = 0] < e=jCj.

Proof. Refer Appendix A

We note that for users desiring di�erent pages, the decision as to where to send those users is

independent.

Lemma 2. For users u1; u2 desiring di�erent pages, the values of the random variables G(u1) =P
cG

F
c (u1) and G(u2) =

P
cG

F
c (u2) are independent.

We continue to prove that the probability of placing a lot of pages on a single cache in the

LP-rounding stage is small. This indicates that, with high probability, the LP-rounding part of the

algorithm does not exceed page capacity bounds on caches by too much.

Lemma 3. For any cache c 2 C, Pr[
P

p I
F
c (p) > (6 log jCj)capp] < 1=jCj2.

Proof. Refer Appendix A.

We also need to prove that the additional pages added to caches by the �nal stage of the

algorithm don't cause us to over
ow page capacities by too much. This depends on our previous

lemmas indicating that most pages were satis�ed by the LP-rounding and the satisfying of users

wanting di�erent pages is independent.

4

Lemma 4. The probability that there exists a cache with more than (3e+ 6)(log jCj)capp pages in

the �nal assignment is at most (1=jCj) + (1=jCj5).

Proof. Consider the pages assigned to caches during the �nal step of the algorithm. Originally, we

assigned at most jP j pages to each cache. Lemma 1 proves at most e=jCj probability to remain

unsatis�ed after the LP rounding phase. Whether each page remains is, according to lemma 2, an

independent Bernoulli variable. The expected number of pages remaining is jP je=jCj � e(capp)

since there must be enough space to place each page on some cache. Let Xc be the number of pages

assigned to cache c in the last step.

Using Cherno� bounds, and assuming that capp > 2 log jCj, for any given cache we have Xc

pages assigned in the last step:

Pr[Xc > e(3 log jCj)capp] < (e2=27)3e log jCj < 1=jCj6

Now applying lemma 3, the probability that any given cache has at least (3e + 6)(log jCj)capp
pages is bounded above by (1=jCj2) + (1=jCj6). The probability that some cache has at least that

many pages is bounded by (1=jCj) + (1=jCj5).

We also need to show that we don't over
ow the capacities based on the number of users by

too much. We �rst show that the LP-rounding part of the algorithm is unlikely to cause more than

O(log jCj) over
ow.

Lemma 5. For any cache c 2 C, Pr[
P

uW (u)GF
c (u) > (18 log jCj)capu] � (1=jCj2) + (1=jCj6).

Proof. We divide the users into users wanting di�erent pages. We de�ne S(p) to be the sum over

users wanting page p of W (u)GR
c (u). It follows that

P
uW (u)GF

c (u) =
P

p S(p)I
R
c (p). We know

from the cutting plane equation that for any chosen page where ISc (p) < 1, E[S(p)] � 2capu.

Suppose we assign the random values of IRc (p). What is the new expected value, based on the

choice of GR
c (p), for the sum, ignoring pages for which ISc (p) = 1? This expected value is a sum

of independent Bernoulli variables, each of which is at most 2capu. The expected value (based on

choices of I) of this expected value is at most 2capu. Using Cherno� bounds, the probability that

this expected value is above (4 log jCj)capu is at most 1=jCj2 for large jCj. The sum of S(p) where

ISc (p) < 1 has expected value at most (2 log jCj)capu. Given that the overall expected value is below

(6 log jCj)capu, we now determine the values for W (u)GR
c (u). Since each weight is at most capu,

this is a sum of bounded Bernoulli variables. It follows that the probability of this sum exceeding

(18 log jCj)capu is at most (e2=27)6 log jCj � 1=jCj6. The overall probability that a given cache serves

more than (18 log jCj)capu users is bounded by (1=jCj2) + (1=jCj6).

We notice that at most capu weight of users are assigned to a cache in the �nal stage, even if

all users from the �rst stage are assigned there. It follows that the total number of users assigned

to a cache are at most those assigned by randomized rounding plus capu. Applying lemma 5 gives

us:

Lemma 6. The probability that there exists a cache with more than (1 + 18 log jCj)capu users in

the �nal assignment is at most (1=jCj) + (1=jCj5).

What's the overall chance that \something goes wrong" when we run this algorithm? We de�ne

\something" to be over
owing either the user capacity or the page capacity on some cache by more

than O(log jCj). We combine the results of lemma 4 and lemma 6 to get that the chance of this

occurring is polynomially small.

Theorem 1. The probability that there exists a cache with more than (3e + 6)(log jCj)capp pages

or more than (1 + 18 log jCj)capu users in the �nal assignment is at most (2=jCj) + (2=jCj5).

5

Finally, we show that the total cost of our solution is good. This will hold regardless of the

random choices made.

Theorem 2. The total cost is at most �ve times optimal.

Proof. The distance from the �rst stage of the algorithm is at most optimal. The LP-rounding stage

guarantees that a user can only be sent to a cache within a factor of two of its average distance in

the fractional optimal; thus the rounded solution we get has at most twice the total distance of the

fractional optimal which is at most twice the optimal distance. The �nal stage of the algorithm

simply places users in caches to which they've already been moved, incurring no extra distance.

Overall total distance is at most �ve times optimal.

We've shown that the probability of violating a user or page capacity constraint on some cache

by more than O(log jCj) is polynomially small, while guaranteeing that the total distance is within

5 times optimal. By repeating our randomized algorithm several times, we can guarantee that we

�nd a \good" solution which does not exceed any constraint by more than O(log jCj).

The main ideas in the rounding scheme are the consolidation of users at the cache location using

min-cost
ow, the cutting plane equation to guarantee that the rounding of users does not blow

up capacity constraints and the bounding of the number of users left over after the randomized

rounding stage.

2.3 Page-Placement Without Replication

If we impose the additional constraint that each page can be cached exactly once, we can obtain

a constant factor approximation for Page-Placement. We can formulate this as an extension of

the Generalized Assignment Problem(GAP) [17] and obtain the following theorem.

Theorem 3. We can solve Page-Placement without page replication to obtain the optimum

latency, provided the packing constraints are violated by a factor of 4.

Proof. Refer Appendix A.

3 The Cache-Placement Problem

We consider the alternate problem where we need to select locations for caches on the network.

We are given a set P of pages and a set L of possible cache locations. Each user in the network

requests a page. We must choose caches to open, assign pages to open caches, and then assign

users to caches which are open and contain the requested page. We must guarantee that the total

number of pages assigned to any open cache is at most capp and the total number of users assigned

to any open cache is at most capu. We wish to minimize the sum over users of the distance from

user to assigned cache, plus the sum over open caches of the cost of opening the cache. We call

this problem Cache-Placement. Our algorithm obtains a constant-approximation.

Intuitively, this problem is easier than Page-Placement because we are allowed to place

multiple caches at a single location. This means we can over
ow capacity in a few locations by a

lot, instead of having to make sure no location over
ows capacity by more than a log factor.

3.1 Algorithm

We de�ne x to be the cost of placing a cache, and d(u; c) to be the distance from user u to location

c. We let pu represent the page requested by user u. We de�ne Oc to be the number of caches

we open at location c, Ic(p) is one if page p is placed at location c, and Gc(u) is one if user u is

satis�ed from location c. We solve the linear relaxation of the following integer program:

6

Minimize
X

u

X

c

Gc(u)d(u; c) +
X

c

xOc

Gc(u) � Ic(pu) 8u 2 U; c 2 C

Ic(p) � Oc 8p 2 P; c 2 CP
cGc(u) = 1 8u 2 UP
p Ic(p) � cappOc 8c 2 CP

uGc(u) � capuOc 8c 2 C

Gc(u); Ic(p) 2 f0; 1g 8u 2 U; p 2 P; c 2 C

Oc 2 Z
+ [f0g 8c 2 C

If we were to restrict all variables to be integer, then the optimal solution of the integer program

is equal to the optimal problem solution. Suppose our fractional solution has total distance d =P
u

P
cGc(u)d(u; c) and opens k =

P
cOc caches. We know that d+ xk � OPT .

It is useful to have comparable distances between a user and the caches from which his demand

is satis�ed. We describe a rounding scheme which can guarantee such a condition. We use the

�ltering technique of Lin and Vitter [10].

Lemma 7. Given a fractional solution with k caches and total distance d, we can produce a new

fractional solution which guarantees that if d(u; c) > �
P

cGc(u)d(u; c), then G0
c(u) = 0. This new

solution guarantees that O0
c � Oc for all c 2 L. The new fractional solution uses at most �

��1
k

caches and has total distance at most d.

Proof. Refer Appendix B.

We now explain how to round a fractional solution to guarantee that the Oc variables are all

integral, while losing at most a constant factor on the cost function.

Lemma 8. Suppose we have a fractional solution which guarantees that if Gc(u) > 0 then d(u; c) �

�f(u) (for some function f), we can produce a new fractional solution in which all Oc are either

zero or at least one. This solution uses at most 2 times the number of caches in the given solution,

and guarantees that if Gc(u) > 0 then d(u; c) � 3�f(u). This of course also guarantees total

distance at most 3�
P

u f(u).

Proof. We consider user u0 with the minimum value of f(u0). Some fraction of this user's demand

is satis�ed by caches which are less than half open (
P

c:Oc<0:5Gc(u0)). If this fraction is less than

one half, we set all those Gc(u0) to zero. This can only decrease the total distance; note that the

user still has
P

cGc(u0) � 0:5; all other LP equations still hold. Otherwise, we select a cache c0
such that d(u0; c0) is minimum. We close every cache c 6= c0 with Oc < 0:5 and Gc(u0) > 0. The

pages contained in these caches and the users satis�ed by the caches are moved to c0. We thus set

Gc0(u) =
P

c:closedGc(u) +Gc0(u) for all u, and Ic0(p) =
P

c:closed Ic(p) + Ic0(p) for all p. In order

to accommodate the increased number of pages and users, we also set Oc0 =
P

c:closedOc + Oc0 .

Notice that Oc0 �
P

c:Oc<0:5Gc(u0) � 0:5. This modi�ed solution still satis�es all LP equations

which were previously satis�ed. The total
P

cOc remains unchanged. The total distance for the

new solution has increased. However, each u; c pair which was moved to cache c0 had its distance

increased by at most the sum of the distance from u0 to the original cache with the distance from

u0 to the c0. This is an increase of at most 2�f(u0). Since we selected the user with minimum

f(u0), this means that no path increases by more than 2�f(u) for the relevant user u.

We continue this process for each user, in order from least f(u) to most. No path is ever changed

more than once (after one change, it goes to a cache which is at least half open). Moving a path

7

increases its length by at most 2�f(u). When we drop Gc(u) values to zero, we note that the paths

we keep have length at most 3�f(u). We double the values of Ic(p) and Oc in order to scale up the

Gc(u) values to sum to one. Our �nal solution satis�es all equations with total distance at most

3�
P

u f(u) and at most 2 times the caches of the previously given fractional solution. Suppose

we have some cache location with Oc < 1. It follows that before doubling, we had Oc < 0:5. If

any user has Gc(u) > 0, then we would have either set Gc(u) = 0 or else Oc > 0:5 would have

been guaranteed. It follows that Gc(u) = 0 for all users, so we may as well close the cache and set

Oc = 0.

We now have a solution where the Oc are at least one, but the variables need not be integer.

We show how to round to get Oc and Ic(p) variables to be integers.

Lemma 9. Given a fractional solution which guarantees that all Oc are zero or at least one, and

that if Gc(u) > 0 then d(u; c) � 3�f(u), we can produce a new solution which satis�es all equations

except
P

uGc(u) � capuOc and in which all Oc and Ic(p) are integer. This solution uses at most 2

times the number of caches in the previous solution and has total distance at most 9�
P

u f(u).

Proof. We consider user u0 with the minimum value of f(u0). We let p0 be the page requested by

this user. If there exists a cache c0 with Gc0(u0) > 0 and Ic0(p0) = 1, then we set Gc0(u0) = 1

and reduce Gc(u0) to zero for all other caches c 6= c0. Otherwise, we choose c0 to be the closest

cache to user u0. We remove all partial copies of page p0 from caches with Gc(u0) > 0, setting

Ic(p0) = 0 at these caches. We set Gc0(u0) = Ic0(p0) = 1. We also move all the other users which

were retrieving page p0 from one of the caches which no longer has the page, so that they are

retrieving p0 from c0. This step may increase the distance along those paths. However, these other

users have f(u) � f(u0), so the maximum possible increase of the distance is bounded by 6�f(u).

We continue this process for each user, from least f(u) to most. No path is ever changed more

than once (after one change, it goes to a cache which has the full page). Moving a path increases its

length by at most 6�f(u). When we drop Gc(u) values to zero, we note that the path we keep has

length at most 9�f(u). By setting Oc to the sum over pages of Ic(p)=capp, we guarantee that pages

don't over
ow bounds. Since the total of
P

c

P
p Ic(p) has not changed, we know that this solution

does not increase the number of caches. However, we still may not have satis�ed Ic(p) � Oc and we

still have fractional Oc values. We round up all fractions to correct this problem. This introduces

at most one extra cache at each location where the previous solution had Oc > 0. However, the

previous solution had Oc � 1 in these locations, so we end up at most doubling the previous number

of caches. Our �nal solution satis�es all equations except
P

uGc(u) � capuOc with total distance

at most 9�
P

u f(u) and at most 2 times the caches of the previously given fractional solution.

Combining the rounding schemes given above, we can obtain an integer solution with cost at

most a constant factor more than the fractional, while guaranteeing Oc and Ic(p) variables are

integral. We show how to �nish the rounding by guaranteeing integer Gc(u).

Theorem 4. We can �nd a constant-approximation to Cache-Placement.

Proof. We apply the rounding techniques of lemma 7, lemma 8, and lemma 9 in order. This

produces a solution with at most 4 �
��1

k caches and total distance at most 9�d. However, we failed

to satisfy the equation
P

uGc(u) � capuOc. We notice that the original fractional solution must

have had k � jU j=capu. We set Gc(u) = 1 for the cache c which minimizes d(u; c) subject to

Ic(pu) = 1. We can introduce at most k additional caches to cover for the over
ows of capu. Our

�nal solution, satisfying all equations, has at most (1 + 4 �
��1

)k caches and total distance at most

9�d. We set the two approximation ratios to be equal and solve for � = 14+
p
160

18
. This yields a

13:325 approximation to OPT.

8

3.2 Cache-Placement without Page Replication

Using similar techniques to those used in Section 2.3, but with a capacitated facility location

algorithm [9] instead of GAP, we can obtain an 8-approximation to the problem when each page is

cached exactly once.

4 The Maximum-Latency Problem

In this variant of Page-Placement, we are given C caches placed at �xed locations in a network,

each of which can hold capp pages. There is no user bound on the caches. There are N users who

wish to access one or more of P distinct pages. Page p has maximum latency of access Lp. We wish

to cache the pages so that any user accessing page p sees a latency of at most Lp. As before, we

assume that each user has demand for only one page. We call this problem Maximum-Latency.

We model this problem in two stages. In the �rst stage, we open facilities for each page and

route the user demands to the facilities. In the next stage, we route the facilities to the C caches.

Let M(p; i) denote whether we open a facility for page p at location i 2 F . If we open a facility

here, let us denote it as (p; i). Let Gi(u) denote whether user u accesses its page pu from facility

(pu; i). Let Ic(p; i) denote whether we pack (p; i) in cache c 2 F . Let pu denote the page accessed

by user u.

We can write an integer program for Maximum-Latency as follows:

PF
i=1Gi(u) = 1 8u

Gi(u) � M(pu; i) 8u; i

d(i; u) > Lpu) Gi(u) = 0 8u; i

PF
c=1 Ic(p; i) � M(p; i) 8i; pPP

p=1

PF
i=1 Ic(p; i) � capp 8c

d(i; c) > Lp) Ic(p; i) = 0 8p; i; c

Gi(u);M(p; i); Ic(p; i) 2 f0; 1g

Note that the optimal solution is a feasible solution of this integer program where M(p; c) =

Ic(p; c) = 1 if page p is in cache c, and Gc(u) = 1 if user u accesses page p = pu from cache c.

We �rst solve the LP relaxation of the integer program to obtain a fractional solution. Let us

call the �rst three constraints the facility location constraints and the next three constraints the

assignment constraints. We now round Gi(u) and M(p; i) as a facility location problem, and then

round the Ic(p; i) as a GAP problem [17].

The �rst stage rounding scheme uses the facility location constraints and is outlined below:

� Pick any fractional Gi(u), and round up Gi(u) and the corresponding M(p; i) to 1, where

p = pu.

� For all other facilities q from which user u fractionally obtains page p, set M(p; q) to 0. If

user l had Gq(l) > 0, set Gi(l) = 1 and Gq(l) = 0.

� If any Gi(u) remains un-rounded, goto step 1.

In [18], it is shown that this rounding scheme guarantees that the latency in user u going to

facility (p; i) is no more than 3Lp. Furthermore, the total fractional value of all facilities (p; q),

including (p; i) in step 2 of the algorithm is at least 1, guaranteeing that we open no more than the

optimum number of facilities per page.

9

The assignment constraints e�ectively pack the fractional M(p; i) into the caches. Note that

the �rst stage rounding transfers the fractional value M(p; q) at facility (p; q) to a value of one at

facility (p; i) in step 2.

We set Ic(p; i) =
P

q Ic(p; q) + Ic(p; i) and Ic(p; q) = 0 for all (p; q) rounded down to 0 in step

2. The resulting values form a feasible solution to the assignment constraints, provided that the

latency bound for page p is 3Lp instead of Lp.

Note now that the assignment constraints are just a GAP problem. Demand point (p; i) has

size 1, and the packing capacities are capp. This can be rounded using the technique in [17] so

that the cache size is increased by a factor of 2 and the latency in this stage 3Lp for page p. We

therefore obtain the following theorem:

Theorem 5. We can solve Maximum-Latency so that the latency for page p is no more than

6Lp while increasing the cache size by a factor of 2.

We note that for the Cache-Placement version of this problem, the techniques in Section 3

give a 4 approximation on the cache placement cost, provided the latency bound for page p is 9Lp.

5 Extensions

In the previous sections we ignored many parameters for simplicity. We can easily extend the

algorithms mentioned to handle di�erent page sizes, as well as capacity constraints based on user

demands. The approximation ratios remain the same. Furthermore, if request patterns vary tem-

porally, we can solve one instance for each time period where the pattern is �xed (say for example,

one instance for accesses during mornings, one for weekends, etc).

5.1 Update Latency

In addition to ensuring that users see small latency in page access, many pages need to have small

latency of update. To model this, we assume we have a server for every page which updates the

copies of the page in the caches. Page p has a latency of update Jp. We have to place the pages so

that both the user latency bounds and the update latency are satis�ed.

It is an easy exercise to see that the approximation bounds for Page-Placement, Cache-

Placement and Maximum-Latency are the same with this additional constraint. The server

latency bound Jp for page p can be exactly satis�ed. The basic idea is to have the additional

constraint that if the distance from the server to the cached copy of page p is more than Jp, then

Ic(p) = 0.

5.2 Economies of Scale

In Appendix C, we present an algorithm for Cache-Placement when we have caches of di�erent

capacities and costs, and the cost grows sub-linearly with capacity.

6 Open Problems

Many interesting problems arise from the caching framework described above. One direction is to

ask if there is a lower bound on the blowup in cache capacity required in Page-Placement, or if

we can algorithmically obtain a constant blowup. Another interesting direction is to incorporate

bandwidth constraints on the links into the model. Finally, from an implementation point of view,

it would be interesting to come up with more practical schemes than the ones mentioned here which

are based on solving linear programs.

10

References

[1] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems. Proceed-

ings of Tenth Annual SIAM-ACM Symposium on Discrete Algorithms, 1999.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like distributions:

Evidence and implications. Proceedings of INFOCOM, 1999.

[3] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location and

k-median problems. Proceedings of the Twenty-Ninth Annual IEEE Symposium on Foundations

of Computer Science, 1999.

[4] Moses Charikar, Sudipto Guha, David B. Shmoys, and �Eva Tardos. A constant factor approx-

imation algorithm for the k-median problem. Proceedings of the Thirty-First Annual ACM

Symposium on Theory of Computing, 1999.

[5] C. Chiang, M. Liu, and M. Muller. Caching neighbourhood protocol: A foundation for building

dynamic web caching hierarchies with proxy servers. Proceedings of International Conference

on Parallel Processing, 1999.

[6] Edith Cohen and Haim Kaplan. Exploiting regularities in web traÆc patterns for cache re-

placement. Proceedings of Thirty-First Annual ACM Symposium on Theory of Computing,

1999.

[7] Dorit Hochbaum and David Shmoys. A best possible heuristic for the k-center problem. Math

of Operations Research, 10(2):180{184, 1985.

[8] S. Irani. Page replacement with multi-sized pages and applications to web caching. Proceedings

of Twenty-Ninth Annual ACM Symposium on Theory of Computing, 1997.

[9] Kamal Jain and Vijay Vazirani. Primal-dual approximation algorithms for metric facility

location and k-median problems. Proceedings of the Twenty-Ninth Annual IEEE Symposium

on Foundations of Computer Science, 1999.

[10] J.-H. Lin and J. S. Vitter. �-approximations with minimum packing constraint violations.

Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, 1992.

[11] B. Maggs, F. Meyer auf der Heide, B. Vocking, and M. Westermann. Exploiting locality for

networks of limited bandwidth. Proceedings of Thirty-Eighth Annual IEEE Symposium on

Foundations of Computer Science, 1997.

[12] F. Meyer auf der Heide, B. Vocking, and M. Westermann. Caching in networks. Proceedings

of Eleventh Annual SIAM-ACM Symposium on Discrete Algorithms, 2000.

[13] R. Motwani, S. Naor, and P. Raghavan. Randomized approximation algorithms in combina-

torial optimization. In Dorit S. Hochbaum, editor, Approximation Algorithms for NP-hard

Problems. PWS Publishing Company, 1997.

[14] P. Raghavan and C.D. Tompson. Randomized rounding: A technique for provably good

algorithms and algorithmic proofs. Combinatorica, 37:365{374, 1987.

[15] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximating

packing integer programs. JCSS, 37:130{143, 1988.

[16] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-at-bulk network design: Ap-

proximating the single-sink edge installation problem. Proceedings of the Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 619{628, 1997.

i

[17] David B. Shmoys and �Eva Tardos. Scheduling unrelated machines with costs. Proceedings of

the Fourth Annual SIAM-ACM Symposium on Discrete Algorithms, pages 448{454, 1993.

[18] David B. Shmoys, �Eva Tardos, and Karen Aardal. Approximation algorithms for facility

location problems. Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of

Computing, pages 265{274, 1997.

[19] Aravind Srinivasan. Improved approximations for packing and covering problems. Proceedings

of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 1995.

[20] I. Tatarinov, A. Rousskov, and V. Soloviev. Static caching of web servers. Proceedings of the

Sixth International Conference on Computer Communications and Networks, 1997.

[21] J. Zhang, R. Izmailov, D. Reininger, and M. Ott. Web caching framework: Analytical models

and beyond. IEEE workshop on Internet Applications, 1999.

ii

A Proofs for Section 2

A.1 Lemma 1

For a particular user, the GF
c (u) variables are independent from cache to cache. Their sum is

a sum of independent 0 � 1 Bernoulli variables. If for some cache, GS
c (u) = 1, then we know

ISc (pu) = 1 and after rounding we will guarantee that the sum over caches is at least one. Assuming

GS
c (u) is not equal to one for any cache, we know that GF

c (u) = IRc (u)G
R
c (u) = 1 with probability

2(log jCj)GD
c (u). This means that either the sum is always at least one or else the sum has expected

value at least � = 2 log jCj. We apply Cherno� bounds to get:

Pr[
X

c

GF
c (u) < (1� Æ)�] < exp(��Æ2=2)

where in this case � = 2 log jCj and Æ = 1� (1=2 log jCj). Solving the inequality yields:

Pr[
X

c

GF
c (u) < 1] < exp(��Æ2=2) < e=jCj

A.2 Lemma 3

The sum
P

p I
F
c (p) is a sum of independent 0 � 1 Bernoulli variables. The expected value of this

sum is at most (2 log jCj)capp. Using Cherno� bounds:

Pr[
X

p

IFc (p) > (6 log jCj)capp] < (e2=27)2 log jCj < 1=jCj2:

A.3 Theorem 3

For page p, let W (p) denote the total user size for that page and d(p; c) denote the total latency of

accessing this page if it is cached in cache c. If Ic(p) denotes whether we cache page p in cache c,

then the resulting integer program is shown below.

Min.

PX

p=1

CX

c=1

W (p)d(p; c)Ic(p)

PC
c=1 Ic(p) = 1 8pPP
p=1 Ic(p) � capp 8cPP

p=1W (p)Ic(p) � capu 8c

Ic(p) 2 f0; 1g

Let M(p) = 1
capp

+
W (p)

capu
. We replace the two packing constraints for each cache c by the

following single constraint:

PP
i=1M(p)Ic(p) � 2 8c

Note that the optimum solution satis�es the new packing constraint. With this new packing

constraint, the problem reduces to the Generalized Assignment Problem (GAP) [17], and we can

round the cost optimally, while violating the packing constraint by a factor of 2. This means that

the original packing constraints are satis�ed, provided we blow up the capu and the capp by a factor

of 4.

i

B Proofs for Section 3

B.1 Lemma 7

For every cache location c and user u, we set G0
c(u) = 0 if d(u; c) > �

P
cGc(u)d(u; c). Otherwise

we set G0
c(u) = Gc(u). Notice that we have

P
cG

0
c(u) � 1� 1

�
. We next scale G0

c(u) by multiplying

it by 1=
P

cG
0
c(u). Since we have only discarded the longest-distance caches, the total distance for

this new set of G0
c(u) cannot be more than the distance in the original fractional solution. However,

we may have G0
c(u) > Ic(pu). Since no G

0
c(u) exceeds the old (pre-rounding) value by more than a

factor of �
��1

, we can set I 0c(p) = min(1; �
��1

Ic(p)) and O0
c =

�
��1

Oc. This increases the number of

caches to �
��1

k. All the linear program constraints are satis�ed.

C Utilizing Economies of Scale for Cache-Placement

As in the Cache-Placement problem, we are given a set P of pages and a set L of possible cache

locations. Each user in the network requests a page. We must choose caches to open, assign pages

to open caches, and then assign users to caches which are open and contain the requested page.

We are given caches of K types. A cache of type i has cost xi, page capacity cappi and user

capacity capui.

We must guarantee that the total number of pages assigned to any open cache of type i is at

most cappi and the total number of users assigned to it is at most capui. We wish to minimize the

sum over users of the distance from user to assigned cache, plus the sum over open caches of the

cost of opening the cache. Our algorithm obtains a O(K) approximation.

We create K copies of each location c, one for each cache type, and treat them as distinct

locations. Note that the cache cost and capacity depend on location now. We �rst solve a linear

relaxation of the following integer program (the variables have the same meaning as before):

Minimize
X

u

X

c

Gc(u)d(u; c) +
X

c

xcOc

Gc(u) � Ic(pu) 8u 2 U; c 2 C

Ic(p) � Oc 8p 2 P; c 2 CP
cGc(u) = 1 8u 2 UP
p Ic(p) � cappcOc 8c 2 CP

uGc(u) � capucOc 8c 2 C

Gc(u); Ic(p) 2 f0; 1g 8u 2 U; p 2 P; c 2 C

Oc 2 Z
+ [f0g 8c 2 C

The rounding scheme follows the scheme for Cache-Placement, but with some modi�cations.

Firstly, for each user, we identify the cache type that sinks in most of its demand, and send all its

demand there. This increases the cost of the solution by at most a factor K. Now, no user goes to

more than one cache type.

For each cache type, we round the fractional solution separately using the rounding scheme for

Cache-Placement. The resulting integer solution is within a factor of 13:325 from the fractional

solution before rounding. We therefore have a O(K) approximation for the problem.

ii

