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Abstract

The popularity of information retrieval has led users to a new problem: �nding which text
databases (out of thousands of candidate choices) are the most relevant to a user. Answering
a given query with a list of relevant databases is the text database discovery problem. The �rst
part of this paper presents a practical method for attacking this problem based on estimating
the result size of a query and a database. The method is termed GlOSS-Glossary of Servers

Server. The second part of this paper evaluates GlOSS using four di�erent semantics to answer
a user's queries. Real users' queries were used in the experiments. We also describe several
variations of GlOSS and compare their e�cacy. In addition, we analyze the storage cost of our
approach to the problem.

1 Introduction

Information vendors such as Dialog and Mead Data Central provide content-indexed access to
multiple databases. Dialog for instance has over three hundred databases. In addition, the advent
of Archie, WAIS, WorldWide Web, and other Internet tools has provided easy, distributed access to
many more hundreds of text document databases. Thus, users are faced with the problem of �nding
the databases that are relevant to their information need (the user query). This paper presents a
framework for (and analyzes a solution to) this problem, which we call the text database discovery
problem (also referred to as the resource discovery problem in some generally more comprehensive
contexts). [SEKN92] and [ODL93] provide surveys of proposed solutions to this problem.

The traditional information retrieval problem of �nding documents relevant to a user query is
studied by (a) describing an information retrieval model (consisting of a document representation, a
query representation, and a matching algorithm) and (b) evaluating the model in terms of precision
and recall [TC92, SB88]. This problem has a single underlying semantics of producing all (measured
by recall) and only (measured by precision) the documents relevant to the query. We expand on
this framework by motivating four di�erent semantics for the database discovery problem.

Given a query and a set of databases, the user may be interested in (at least) four di�erent
semantics for the query:

� Exhaustive Search. The user is interested in the set of all databases which contain any relevant
documents.

� All-Best Search. The user wants all the best databases for the query. The best databases are
the ones which contain more relevant documents than any other database.
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� Only-Best Search. The user is interested in any one best database (not necessarily in all of
them).

� Sample Search. The user is interested in any one database which contains at least one relevant
document (not necessarily in all such databases).

Intuitively, exhaustive search is the most computationally expensive and sample search is the
least computationally expensive.

Example 1.1 To illustrate the various semantics, consider the query \�nd Knuth and computer"
and four databases A, B, C and D. Suppose that A and B have 10 documents relevant to the query,

C has one relevant document, and D has zero relevant documents. Exhaustive Search would return

fA,B,Cg as the answer, All-Best Search would return fA,Bg as the answer, Only-Best Search would

return any subset of fA, Bg as the answer, and Sample Search would return any subset of fA, B,

Cg as the answer. Some systems may directly present the answer to the user, other systems may

then proceed with a second step and send the query to the database(s) and then present the relevant

documents to the user. We leave this choice as a user interface implementation issue.

One solution to the database discovery problem is to let the selection be driven by the user.
Thus, the user will be aware of and an active participant in this selection process. Di�erent systems
follow di�erent approaches to this: one such approach is to let users \browse" through information
about the di�erent databases. Examples include Gopher [SEKN92], where users navigate through
the network following a hierarchy of indexes, and World Wide Web [BLCGP92], which uses a
hypertext interface to do this. The Veronica Service [Fos92] has recently added a search facility to
Gopher. The Prospero File System [Neu92] lets users organize information available in the Internet
through the de�nition (and sharing) of customized views (virtual systems) of the di�erent objects
and services available to them.

A di�erent approach is to keep a database of \meta-information" about the available databases
and have users query this database to obtain the set of databases to search. For example,
WAIS [KM91] provides a \directory of servers." This \master" database contains a set of doc-
uments, each describing (in English) the contents of a database on the network. The users �rst
query the master database, and once they have identi�ed potential databases, direct their query
to these databases. One disadvantage is that the user typically needs two queries. Also, the mas-
ter database documents have to be written by hand to cover the relevant topics, and have to be
manually kept up to date as the underlying database changes. However, freeWAIS [FW+93] auto-
matically adds the 50 most frequently occurring words in an information server to the associated
description in the directory of servers. Another drawback is that in general, databases containing
relevant documents might be missed if they are not chosen during the database selection phase.

[Sch90] follows a probabilistic approach to the resource discovery problem. A resource discovery
protocol is presented that conceptually consists of two phases: a dissemination phase, during which
information about the contents of the information providers is replicated at randomly chosen sites,
and a search phase, where several randomly chosen sites are searched in parallel. Also, sites are
organized into \specialization subgraphs". If one node of such a graph is reached during the search
process, the search proceeds \non-randomly" in this subgraph, if it corresponds to a specialization
relevant to the query being executed. See also [Sch93].

In Indie (shorthand for \Distributed Indexing") [DLO92], information is indexed by \Indie
brokers", that have, among other administrative data, a boolean query associated with each of
them (a \generator rule"). Each broker indexes (not necessarily local) documents that satisfy the
broker's generator rule. Whenever a document is added to an information source, the brokers
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whose generator rules match the new document are sent a descriptor of the new document. The
generator objects associated with the brokers are gathered by a \directory of servers", that is
queried initially by the users to obtain a list of the brokers whose generator rules match the given
query. See also [DANO91]. [SA89] and [BC92] are other examples of this type of approach in which
users query a \meta-information" database.

A \content based routing" system is used in [SDW+] to address the database discovery problem.
The \content routing system" keeps a \content label" for each information server (or collection
of objects, more generally), with attributes describing the contents of the collection. Users assign
values to the content label attributes in their queries until a su�ciently small set of information
servers is selected. Also, users can browse the possible values of each content label attribute.

The master database idea can be enhanced if we can use the semantics of queries and databases.
In particular, assume we can automatically extract the semantic \concepts" involved in a user query.
Also assume that we can extract the semantic concepts appearing in a collection of documents (in
a database). Assuming that the number of concepts is much smaller than the number of words
appearing in documents, then the concepts can be used for distributed indexing. That is, the
user query is processed to extract the concepts; these are matched against the set of concepts
and the potential sites identi�ed. With our sample query �nd Knuth ^ computer, the processing
could extract the concept computer science and the index would determine that documents on
this concept appear in the Computer Science and the Medical databases. This approach has been
followed in [GS93].

Another approach to solving the database discovery problem is user transparent database se-
lection in a way that guarantees exhaustive answers to the users' queries. For example, the Archie
system [SEKN92] periodically obtains a recursive listing of the contents of all the available FTP
sites in order to answer users' queries. One way to achieve complete answers would be to evaluate
the query on all databases (if the databases are distributed, this implies broadcasting the query)
and, given the resulting answer set sizes, returning the proper set of databases as an answer. How-
ever, the computational expense of broadcasting queries makes this approach infeasible in most
situations1. Another alternative is to build a complete index of all the documents. By searching
in this index, we could match exactly the query to all relevant documents. Unfortunately, this
approach does not scale well either. For example, a full text index is usually the same size as the
documents it references, so we would need to build a structure of the same size as all the documents
in the network. A third strategy for exact matches is to construct some type of document or index
hierarchy. For example, documents on a particular topic would be stored on a �xed database. If our
query is for a computer science document, it would be routed to the Computer Science database.
(This database could be physically distributed.) An alternative is to not partition the documents
but the index. Thus, the computer science query would be routed to the Computer Science index
machine. It could in turn provide a list of all the computer science documents that match, even
though the documents could be on a variety of machines.

While some form of the hierarchical scheme may be attractive, it seems to require some type of
network wide agreement on how to partition the documents or the indexes. Thus, as an alternative
to these complete answer strategies, we wish to explore a methodology that yields, in general, not
necessarily exhaustive answers to users' queries. Our approach is to have each database extract
a \histogram" of its words occurrences. These histograms are used to estimate the result size of
each query. For example, the Computer Science Library could report that the word Knuth occurs
180 times, the word computer 25,548 times, and so on. This information is orders of magnitude
smaller than a full index (see Section 6.2 and Figure 25): For example, [CD90] reports statistics
on a legal textual 9 Gigabyte database. The vocabulary of this database consists of approximately

1Dialog can evaluate a query over all databases and return the answer set sizes as the answer to the query.
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A B C D

Knuth 100 Knuth 10 Knuth 1 Knuth 10

computer 1000 computer 100 computer 100 computer 0

d = 1000 d = 100 d = 200 d = 20

Figure 1: Portion of the histograms for four databases. d is the database size in documents.

1,800,000 words. For each of these words we only need to keep its frequency, as opposed to the
identities of the documents that have these words. Even though the histograms are small, they
can still provide very useful information regarding what sites may have relevant documents. To
illustrate estimation, consider the following example.

Example 1.2 Figure 1 shows the portion of the histograms corresponding to four databases, A,

B, C, and D, that is relevant to a query q=�nd Knuth ^ computer. Using this information,

we can safely discard database D, since there will be no documents that are relevant to q in it:

D does not contain any documents with the word \computer" in them. However, the remaining

databases may contain relevant documents. So, for the Exhaustive Search semantics, we would

return fA, B, Cg as the answer. The best databases are those whose estimates are maximal in the

set of databases. Database A contains 1000 documents, 100 of which contain the word \Knuth".
Therefore, the probability that a document in A contains the word \Knuth" is 100

1000. Similarly, the

probability that a document in A contains the word \computer" is 1000
1000. Under the assumption

that words appear independently in documents2, the probability that a document in database A

has both the words \Knuth" and \computer" is 100
1000 �

1000
1000. Consequently, we can estimate the

result size of query q in database A as f(q; A) = 100
1000 �

1000
1000 � 1000 = 100 documents. Similarly,

f(q; B) = 10
100 �

100
100 � 100 = 10, f(q; C) = 1

200 �
100
200 � 200 = 0:5, and f(q;D) = 10

20 �
0
20 � 20 = 0

(as we explained above). Thus, A is the estimated best database and the All-Best semantic would

return fAg. The Only-Best semantic would return fAg, and the Sample Semantic would return

any database(s) with a non-zero estimate, so any subset of fA, B, Cg could be returned.

Our approach is based on estimators of the result size of the queries. The contributions of this
paper are:

� a formal framework for the text database discovery problem,

� the concept of a Glossary Of Servers Server (GlOSS) that diverts queries to appropriate
information sources, based on previously collected frequency statistics about the sources,

� several estimators that may be used by GlOSS for making decisions, and

� an experimental evaluation of GlOSS according to di�erent semantics for the queries, using
real users' queries.

Section 2 introduces GlOSS and the concept of an estimator. In particular, Section 2.4 describes
Ind, one estimator for GlOSS that we will evaluate in the rest of the paper. Estimators do not
generally produce exact answers. For instance, following Example 1.2, it is possible that database
A does not have any document at all containing both the word \Knuth" and the word \computer",
even though we predicted that there would be 100 such documents. Therefore, given an estimation
function, we would like to evaluate the e�cacy of the estimation function with respect to the four
semantics. Section 3 de�nes these evaluation criteria precisely. In order to assess the performance of

2We examine this assumption in Section 6.6.
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GlOSS, we performed experiments using query traces from the FOLIO library information retrieval
system at Stanford University. Section 4 describes these experiments, which involved six databases
available through FOLIO. The experimental results are reported in Section 5. Section 6 examines
the space requirements of GlOSS, and introduces variations to it, as well as a comparison of Ind
with two other estimators for GlOSS, namely Min and Binary.

2 GlOSS: Glossary Of Servers Server

Consider a query q that we want to evaluate over a set of databases DB. GlOSS (Glossary
Of Servers Server) selects a subset of DB consisting of \good candidate" databases for actually
submitting q. To make this selection, GlOSS uses an estimator, which assesses how \good" each
database in DB is with respect to the given query. In this paper, we study several such estimators
for GlOSS.

2.1 Query representation

We will only consider boolean \and" queries, i.e. queries that consist of positive atomic subqueries
connected by the boolean \and" operator (denoted as \^" in what follows). An atomic subquery
is a keyword-�eld designation pair. An example of a query is:

�nd author Knuth ^ subject computer.

This query has two atomic subqueries:

� author Knuth, and

� subject computer

In author Knuth, author is the �eld designation, and Knuth the corresponding keyword.
The reason why we are considering only boolean queries so far is because this model is used by

library systems and information vendors worldwide. Also, the system we had available to perform
our experiments uses only boolean queries (see Section 4.1). Nevertheless, it should be stressed
that the approach taken in this paper can be generalized to the vector space retrieval model [SM83].
The reason why we restrict our study to \and" queries is that we want to understand a simple
case �rst. Also, most of the queries in the trace we studied (see Section 4.1) are \and" queries.
However, as will be explained in Section 4, a limited form of \or" queries is implicit whenever the
subject �eld designation is used (see Section 6.1).

2.2 Database histograms

GlOSS has available the following information:

� DBSize(db), the total number of documents in database db, 8 db 2 DB, and

� freq(t; db), the number of documents in db that contain t, 8 db 2 DB, and for all keyword-
�eld designation pairs t. Note that GlOSS does not have available the actual \inverted lists"
corresponding to each keyword-�eld pair and each database, but just the length of these
inverted lists. The value freq(t; db) is the size of the result of query �nd t in database db.

If freq(t; db) = 0, GlOSS does not need to store this explicitly, of course. Therefore, if no
information is found by the estimator about freq(t; db), then freq(t; db) will be assumed to
be 0 (see Section 6.4).
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2.3 Estimate of the result size of a query

Given freq and DBSize for a set of databases DB, GlOSS can use an estimator EST to compute
a guess of the result size of a query q at any database db 2 DB, ESizeEST (q; db). Ideally

3,

ESizeEST (q; db) � RSize(q; db) (1)

where RSize(q; db) is the actual number of documents satisfying the query in the database. Once
ESizeEST (q; db) has been de�ned, we can determine ChosenEST (q;DB) in the following way:

ChosenEST (q;DB) = fdb 2 DBjESizeEST (q; db) = max
db02DB

ESizeEST (q; db
0)

^ESizeEST (q; db)> 0g (2)

So, ESizeEST completely determines an estimator EST . Equation 2 may seem targeted to iden-
tifying the databases containing the most relevant documents. However, Section 6.6 shows how
ESizeEST (q; db) can be de�ned so that ChosenEST (q; db) becomes the set of all of the databases
potentially containing relevant documents, when the Binary estimator is presented.

2.4 The Ind estimator

In this section, the estimator that we will use for most of our experiments, Ind, is described. Ind (for
\independence") is an estimator built upon the (possibly unrealistic) assumption that keywords
appear in the di�erent documents of a database following independent and uniform probability
distributions. Under this assumption, given a database db, any n keyword-�eld designation pairs
t1; : : : ; tn, and any document d 2 db, the probability that d contains all of t1; : : : ; tn is:

freq(t1; db)

DBSize(db)
� : : :�

freq(tn; db)

DBSize(db)

So, the estimated number of documents in db that will satisfy the query:

find t1 ^ : : :^ tn

is given, according to Ind, by:

ESizeInd(find t1 ^ : : :^ tn; db) =

Qn
i=1 freq(ti; db)

DBSize(db)n
�DBSize(db)

=

Qn
i=1 freq(ti; db)

DBSize(db)n�1
(3)

The ChosenInd set is then computed with Equation 2.
To illustrate this de�nition, let db =INSPEC (INSPEC is a database that will be used in our

experiments, see Section 4). Also, let:

q = �nd author Knuth ^ subject computer

The statistics available to Ind are:

3In fact, the Binary estimator presented in Section 6.6 is such that ESizeBinary(q; db) will not attempt to approxi-

mate RSize(q; db). Instead, ESizeBinary(q; db) will be one or zero, depending on whether db might contain documents

relevant to query q or not.
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� DBSize(INSPEC) = 1; 416; 823,

� freq(author Knuth, INSPEC)= 47, and

� freq(subject computer, INSPEC)= 155; 574.

From this, Ind computes:

ESizeInd(q; INSPEC) =
47� 155; 574

1; 416; 823
' 5:16

Incidentally, the actual result size of the query q in INSPEC (obtained by submitting the query)
is:

RSize(q; INSPEC) = 14

An interesting property of Ind is that if freq(ti; db) = 0 for some 1 � i � n, then

ESizeInd(find t1 ^ : : :^ tn; db) = 0

and so, db will not be included in ChosenInd. This is an important point, since in this case db cannot
contain any document satisfying the given query, because of the boolean logic semantics of the query
representation. So, db can be safely eliminated from the set of databases where to direct the query.
To continue with our example, suppose that no database in a set DB other than INSPEC contains
documents with author Knuth, i.e.freq(author Knuth; db) = 0 for all db 2 DB�fINSPECg. Then,
for each such database db, ESizeInd(q; db) = 0. Therefore,

ESizeInd(q; INSPEC) = max
db2DB

ESizeInd(q; db)

and ChosenInd(q;DB)=fINSPECg.

3 Evaluation Criteria

Let DB be a set of databases. In order to evaluate an estimator EST , we need to compare its
prediction against what actually is the right subset of DB to query. There are two notions of what
the \right subset" means: One is Relevant(q;DB)4, the databases that contain documents that
are judged to be \relevant" to q, in some prede�ned sense. A second notion of \right subset" is
Best(q;DB), those databases that yield the most relevant documents.

Once these sets have been de�ned for a query q and a database set DB, we can state four
di�erent criteria to evaluate ChosenEST (q;DB):

� Exhaustive Search: We are interested in obtaining complete answers to query q. We say that
ChosenEST satis�es criterion CEX for query q and set of databases DB if:

CEX : Relevant � ChosenEST
5

In other words, we want to be certain to search all of the relevant databases.

4In general, we will drop the parameters of the functions when this will not lead to confusion. For example, we

refer to Relevant(q; DB) as Relevant, whenever q and DB are clear from the context.
5Note that Relevant � ChosenEST is a shorthand for Relevant(q; DB) � ChosenEST (q; DB).
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� All-Best Search: We are interested in the Best databases for q. We say that ChosenEST
satis�es criterion CAB if:

CAB : Best � ChosenEST

If Best � Relevant, we may not get an exhaustive answer to q (and so, ChosenEST may not
satisfyCEX). However, databases containing only a few documents will have been eliminated,
permitting a more focused search.

� Only-Best Search: We are less demanding than with CAB: we are just interested in searching
(some of) the best databases for q. We might be missing some of these best databases, but
we do not want to waste any time and resources by searching a non-optimal database. So,
we say that ChosenEST satis�es criterion COB if:

COB : ChosenEST � Best

� Sample Search: This criterion is the weakest: we just want an answer to our query from
a relevant database. We do not want to carry fruitless searches in databases that do not
contain any relevant documents. So, we say that ChosenEST satis�es criterion CSM if:

CSM : ChosenEST � Relevant

Note that these four criteria correspond to the four di�erent semantics for the database discovery
problem, as described in Section 1. The set ChosenEST will be said to satisfy criterion CEX strictly

if ChosenEST = Relevant. Analogous de�nitions follow for the other criteria.
Now, let C be any of the criteria above and Q be a �xed set of queries. Then,

Success(C;EST) = 100�
jfq 2 QjChosenEST (q;DB) satis�es Cgj

jQj
(4)

In other words, Success(C;EST) is the percentage of Q queries for which EST produced the
\right answer" under criterion C.

Following notions analogous to those used in Statistics, we de�ne the Alpha and the Beta errors
of EST for an evaluation criterion C as follows:

Alpha(C;EST ) = 100� Success(C;EST ) (5)

Beta(C;EST ) = Success(C;EST )� (6)

100�
jfq 2 QjChosenEST (q;DB) satis�es C strictly gj

jQj

So, Alpha(C;EST) is the percentage of queries in Q for which the estimator gives the \wrong
answer", i.e., the ChosenEST set does not satisfy criterion C at all. Beta(C;EST ) measures the
percentage of queries for which the estimator satis�es the criterion, but not strictly. For the Beta
queries, the estimator yields a correct but \overly conservative" (for CEX and CAB) or \overly
narrow" (for COB and CSM) answer. For example, consider an estimator, TRIV , that would
always produce ; as the value for ChosenTRIV . TRIV would have Success(CSM ; TRIV ) = 100
(and Alpha(CSM ; TRIV ) = 0). However, Beta has a high value for conservative estimators:
Beta(CSM ; TRIV ) would be quite high.
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CEX CSM

Success RRelevant = 1 PRelevant = 1

Alpha RRelevant < 1 PRelevant < 1

Beta RRelevant = 1 and PRelevant < 1 PRelevant = 1 and RRelevant < 1

Success�Beta RRelevant = PRelevant = 1 PRelevant = RRelevant = 1

Figure 2: Summary of the relationship between the Success, Alpha, and Beta functions and
PRelevant and RRelevant, for criteria CEX and CSM .

Now we will relate Success, Alpha, and Beta to the well-known precision and recall parameters
[SB88]. Consider, for example, criterion CEX : Relevant � ChosenEST . If we regard Relevant as
the set of \items" (databases, in this context) that are relevant to a given query q, and ChosenEST
as the set of items that is actually retrieved, we can de�ne the following functions PRelevant and
RRelevant, based upon the precision and recall parameters6:

PRelevant(q;DB) =
jChosenEST (q;DB) \Relevant(q;DB)j

jChosenEST (q;DB)j
(7)

RRelevant(q;DB) =
jChosenEST (q;DB) \Relevant(q;DB)j

jRelevant(q;DB)j
(8)

Having RRelevant(q;DB) = 1 is equivalent to having Relevant(q;DB) � ChosenEST (q;DB).
Therefore, EST satis�es criterion CEX for query q and set of databases DB if and only if
RRelevant(q;DB) = 1. This is shown in Figure 2, in the \Success" row, under CEX . That is,
Success(CEX; EST ) gives the fraction of the queries for which the condition shown (RRelevant = 1)
is true.

Figure 2 gives the rest of the relationships. In particular, assume now that RRelevant(q;DB) = 1
for some query q. Then, it is also the case that PRelevant(q;DB) < 1 if and only ifRelevant(q;DB) �
ChosenEST (q;DB). Therefore, given that q satis�es criterionCEX (or equivalently,RRelevant(q;DB) =
1), q will add to Beta(q;DB) if and only if PRelevant(q;DB) < 1.

Now, consider criterion CSM : ChosenEST � Relevant. It follows from the de�nition of
PRelevant that a query q will \contribute" to Success(CSM ; EST ) if and only if PRelevant(q;DB) =
1. The conditions on PRelevant and RRelevant for Beta are analogous to those for CEX with the
roles of PRelevant and RRelevant interchanged.

Analogously, Figure 3 summarizes the conditions for criteria CAB and COB. These criteria
involve the Best set as opposed to the Relevant set in criteria CEX and CSM . Therefore, the
PBest and RBest functions are needed:

PBest(q;DB) =
jChosenEST (q;DB)\ Best(q;DB)j

jChosenEST (q;DB)j
(9)

RBest(q;DB) =
jChosenEST (q;DB)\ Best(q;DB)j

jBest(q;DB)j
(10)

As a �nal comment, notice that criteria CEX and CAB can be regarded as emphasizing recall
over precision: these two criteria are satis�ed whenever their \target sets" (Relevant and Best,
respectively) are included in ChosenEST . On the other hand, COB and CSM can be thought of
as emphasizing precision over recall: even when ChosenEST is not a \complete" answer, success
is achieved if no \useless" databases are included in ChosenEST . Although Success, Alpha, and
Beta can be de�ned in terms of P and R (Figures 2 and 3), these de�nitions depend on whether

6Provided ChosenEST (q;DB) and Relevant(q; DB) are non empty.
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CAB COB

Success RBest = 1 PBest = 1

Alpha RBest < 1 PBest < 1

Beta RBest = 1 and PBest < 1 PBest = 1 and RBest < 1

Success� Beta RBest = PBest = 1 PBest = RBest = 1

Figure 3: Summary of the relationship between the Success, Alpha, and Beta functions and PBest

and RBest, for criteria CAB and COB.

Database DBSize Area

INSPEC 1,416,823 Physics, Elect. Eng., Computer Sc., etc.

COMPENDEX 1,086,289 Engineering

ABI 454,251 Business Periodical Literature

GEOREF 1,748,996 Geology and Geophysics

ERIC 803,022 Educational Materials

PSYCINFO 323,952 Psychology

Figure 4: Summary of the characteristics of the six databases considered.

the criteria emphasize recall or precision. Therefore, we will report the experimental results in
terms of Success, Alpha, and Beta for the sake of clarity.

4 Experimental framework

In order to evaluate the performance of Ind (see Section 2.4) 7 according to the Section 3 criteria,
we performed experiments using query traces from the FOLIO library information retrieval system
at Stanford University.

4.1 Databases and the INSPEC query trace

Stanford University provides on-campus access to its information retrieval system FOLIO from
terminals in libraries and from workstations via telnet sessions. FOLIO gives access to several
databases. Figure 4 summarizes some characteristics of the six databases chosen for our exper-
iments. Six is a relatively small number, given our interest in exploring hundreds of databases.
However, we were limited to a small number of databases by their accessibility and by the high
cost of our experiments. Thus, our results will have to be taken with caution, indicative of the
potential bene�ts of this type of estimators.

A trace of all user commands for the INSPEC database was collected from 4/12/1993 to
4/25/1993. This set of commands contained 8392 queries. Out of this set, 34 queries were elim-
inated, since they contained the character \*" apparently meant as a wildcard, while FOLIO
generally does not consider it as such8. The \real" wildcard queries were kept. A total of 48 other
queries were eliminated since they appeared truncated in the trace.

As discussed in Section 2.1, we only considered \and" queries 9. Thus, we deleted from the
trace those queries involving logical \or"s and \not"s. Also, we did not consider the so called

7We will refer indistinctively to both the estimator EST and its corresponding ChosenEST (q; DB) set as satisfying

the criteria of Section 3, for a query q and a set of databases DB.
8The actual wildcard character is \#".
9In fact, a limited form of \or" queries is implicit whenever the \subject" index is used (see Section 6.1).
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Source of the trace INSPEC database

Raw trace queries 8392

Experiment queries 6897

Percentage experiment queries of raw queries 82.19

Figure 5: Characteristics of the set TRACEINSPEC of queries used in the experiments.

\phrase" queries (e.g. \�nd titlephrase `knowledge bases'") and those queries that are extensions
of previous queries10.

The �nal set of queries, TRACEINSPEC , has 6897 queries, out of the original 8392, or 82.19
% of the original set. Figure 5 summarizes some of this information.

4.2 Database histogram construction

In order to perform our experiments, we evaluated each of the TRACEINSPEC queries in the six
databases described in Figure 4. This is the data we need to build the Best and Relevant sets for
each of the queries.

Also, to build the database histograms needed by GlOSS (Section 2.2) we evaluated, for each
query of the form �nd t1 ^ : : :^ tn, the n queries �nd t1; : : : ; �nd tn in each of the six databases.
Note that the result size of the execution of �nd ti in database db is equal to freq(ti; db) as de�ned
in Section 2. This is exactly the information an estimator EST needs to de�ne ChosenEST , for
each query in TRACEINSPEC

11. It should be noted that this is just the way we gathered the data
in order to perform our experiments. An actual implementation of such a system would require
that each database regularly report the length of each inverted list to the estimator, so that the
corresponding histogram is built.

4.3 De�nition of the experiments

Section 3 introduced the notion of the Relevant and the Best sets of databases. Di�erent instanti-
ations of the four criteria of Section 3 are obtained for di�erent de�nitions of Relevant and Best.
In what follows, we give two de�nitions for each of these two sets.

� Ideally, a \relevant" database is one where the user that submitted the query would �nd
documents of interest. Unfortunately, we have no way to know this. One way to attack this
problem is to consider as relevant any database with documents satisfying the user's query.
However, this does not necessarily solve the problem: For example, a database might contain
a document written by a psychologist named Knuth on how computers can alienate people.
This document may not be relevant to the issuer of the query �nd Knuth ^ computers.
However, if we have no additional information on what relevant is, it is fair to simply look
at databases with matching documents. Therefore, in our �rst de�nition, a database in DB

will belong to Relevant(q;DB) if and only if it has at least one document satisfying the
query q. Best(q;DB) is the set of those relevant databases that have the highest number of
documents satisfying query q. More formally,

Relevant(q;DB) = fdb 2 DBjRSize(q; db)> 0g (11)

10In FOLIO, one can issue a query, say, �nd author Knuth, and after the query has been executed, one can extend

it by entering and subject computer, for example.
11In fact, we are not building the complete histograms, but only those parts that are needed for the queries in

TRACEINSPEC .
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Database set (DB) fINSPEC, COMPENDEX, ABI, GEOREF,
ERIC, PSYCINFOg

Estimator Ind

Query set TRACEINSPEC

Query sizes All
considered

threshold 0

�C 0

�B 0

Figure 6: Basic con�guration of the experiments.

Best(q;DB) = fdb 2 DBjRSize(q; db)> 0 ^

RSize(q; db) = max
db02DB

RSize(q; db0)g (12)

We will refer to the instances of the four evaluation criteria (see Section 3) corresponding to
these de�nitions as CEX , CAB , COB, and CSM .

� The second de�nition is speci�c for the case INSPEC 2 DB, and for queries q 2 TRACEINSPEC.
(This de�nition will be useful in the experiments we describe starting in Section 5.2). In this
case, we assume that INSPEC is the \right" database, regardless of the number of matching
documents in the other databases. This is so because the queries in TRACEINSPEC were is-
sued by the users to the INSPEC database, and perhaps they knew what the right database to
search was. This is somewhat equivalent to regarding each query q 2 TRACEINSPEC as aug-
mented with the extra conjunct \^ database INSPEC". So, we can de�ne RelevantINSPEC

and BestINSPEC
12 as:

RelevantINSPEC(q;DB) =

=

8><
>:
fINSPECg if INSPEC 2 DB ^

RSize(q; INSPEC) > 0
; otherwise

= BestINSPEC (q;DB) (13)

Since RelevantINSPEC = BestINSPEC in this case, the corresponding instances of the four
criteria of Section 3 collapse into two criteria, which will be referred to as CINSPEC

EX=AB and

C
INSPEC
OB=SM .

4.4 Con�guration of the experiments

There are a number of parameters to our experiments. Figure 6 shows an assignment of values
to these parameters that will determine the basic con�guration. In later sections, some of these
parameters will be changed, to produce alternative results. The parameters threshold, �C , and �B

will be de�ned in Sections 6.4 and 6.5.

12We use the subindex INSPEC to di�erentiate this second de�nition for Best and Relevant from the �rst one
given above.
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Figure 7: Ind as an estimator of the result size of the queries.

5 Ind results

5.1 Ind as a predictor of the result size of the queries

The key to Ind is its estimation function ESizeInd(q; db), which predicts how many documents
matching query q database db has. Before seeing how accurate Ind is at selecting a good subset of
databases, let us study its estimation function ESizeInd. An important question is whether ESizeInd
is a good predictor of the result size of a query in absolute terms, i.e., whether the following holds:

ESizeInd(q; db) � RSize(q; db)

If we analyze the data we collected, as explained in Section 4, the answer is no, unfortunately.
In general, Ind tends to underestimate the result size of the queries. The more conjuncts in a
query, the worse this problem becomes. Figure 7 shows a plot of the pairs:

< RSize(q; INSPEC);ESizeInd(q; INSPEC) >

for the queries in TRACEINSPEC (see Section 4). The accumulation of points on the y = x axis
corresponds to the one term queries (e.g. �nd author Knuth), for which ESizeInd = RSize.

Nevertheless, Ind will prove to be good at discriminatingbetween useful and less useful databases
for some of the criteria of Section 3. The reason for this is that even though ESizeInd(q; db) will in
general not be a good approximation of RSize(q; db), it is usually the case that ESizeInd(q; db

0) <
ESizeInd(q; db) if database db contains more documents that are relevant to query q than database
db

0 does.

5.2 Evaluating Ind over pairs of databases

In this section, we report some results for the basic con�guration (see Figure 6), but with DB,
the set of available databases, set to just two databases. Figures 8 and 9 show two matrices
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classifying the 6897 queries in TRACEINSPEC for the cases DB =fINSPEC, PSYCINFOg and
DB =fINSPEC, COMPENDEXg. The sum of all of the entries of each matrix equals 6897. Con-
sider for example Figure 8, for DB =fINSPEC, PSYCINFOg. Each row of the matrix represents
an outcome for Relevant and Best. The �rst row, for instance, represents queries where both IN-
SPEC and PSYCINFO had matching documents (Relevant =fINSPEC, PSYCINFOg) but where
INSPEC had the most matching documents (Best =fINSPECg). On the other hand, each column
represents the prediction made by Ind. For example, the number 2678 means that for 2678 of
the queries in TRACEINSPEC , Best =fINSPECg, Relevant =fINSPEC, PSYCINFOg, and Ind

correctly selected INSPEC as its prediction (ChosenInd =fINSPECg). In the same row, there
were 26 other queries where Ind picked a relevant database (PSYCINFO) but not the best one.

The two matrices of Figures 8 and 9 show that ChosenInd = ; only if Relevant = ;, i.e.as long
as there is at least one database that might contain relevant documents, ChosenInd will be non-
empty. (This property will not hold with the modi�cation to GlOSS of Section 6.4.) Also, note that
very few times (15 for fINSPEC, PSYCINFOg and 92 for fINSPEC, COMPENDEXg) does Ind
determine a tie between the two databases (and so, ChosenInd consists of both databases). This is
so since it is very unlikely that ESizeInd(q; db1) will be exactly equal to ESizeInd(q; db2) if db1 6= db2.
With the current de�nition of ChosenInd, if for some query q and databases db1 and db2 it is the case
that, say, ESizeInd(q; db1) = 9 and ESizeInd(q; db2) = 8:9, then ChosenInd(q; fdb1; db2g) = fdb1g.
We might want in such a case to include db2 also in ChosenInd. We address this issue in Section 6.5,
where we relax the de�nition of ChosenInd and Best.

Figures 10 and 11 report the values of Success, Alpha, and Beta for the six di�erent criteria of
Section 4.3. Consider for example the second row of the matrix in Figure 10. This row corresponds
to criterion CAB (see Section 4.3). Ind satis�es criterion CAB for a query q if Best(q;DB) �
ChosenInd(q;DB), i.e. if ChosenInd(q;DB) contains all of the best databases for q. From the
table, we see that Success(CAB; Ind) = 99:04%. This means that in 99:04% of the cases Ind gave
the correct answer (according to CAB), that is, the ChosenInd set of databases included the Best
set of databases we were after. In 0:96% of the queries (Alpha(CAB; Ind)) we got the \wrong"
answer, i.e., the ChosenInd set did not contain some of the best databases. Out of the successful
cases (99:04%), sometimes Ind gives exactly the set of best databases, while in other cases it gives
a larger set. The value Beta(CAB ; Ind) = 7:29% tells us how many queries were in the latter
case. Finally, Success(CAB; Ind)�Beta(CAB; Ind) = 91:75% gives us the number of queries in the
former case.

As we have just seen, for the case DB =fINSPEC, PSYCINFOg, Success(CAB; Ind) = 99:04%.
The reason for such a high value is that INSPEC and PSYCINFO cover very di�erent topics (see
Figure 4). Therefore, for each query there is likely to be a clear \winner" (generally INSPEC for
the queries in TRACEINSPEC). On the other hand, INSPEC and COMPENDEX cover somewhat
overlapping areas, thus yielding a lower (90:94%) value for Success(CAB; Ind).

The values for Success(CEX ; Ind) are much lower in both the PSYCINFO and COMPENDEX
cases: this is not surprising since Ind chooses the most promising databases, not all of the ones
potentially containing relevant documents. Therefore, some relevant databases may be missed.
Section 6.6 introduces a di�erent estimator for GlOSS, Binary, aimed at maximizing Success for
criterion CEX . Notice that Success(CEX; Ind) is particularly low (21:40%) for the pair fINSPEC,
COMPENDEXg, since for most of the queries, there are relevant documents in both databases (see
the rows of Figure 9 corresponding to Relevant =fINSPEC, COMPENDEXg).

Note that it is always the case that Success(CEX; Ind) � Success(CAB; Ind). The reason
for this is that since Best � Relevant, if Relevant � ChosenInd (criterion CEX) then Best �

ChosenInd (criterion CAB).
The values for Success(COB; Ind) and Success(CSM ; Ind) are relatively high for both pairs of
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ChosenInd
Best Relevant fIg fPg fI, Pg ;

fIg fI, Pg 2678 26 0 0

fIg fIg 2894 16 0 0

fPg fI, Pg 11 224 0 0

fPg fPg 5 34 0 0

fI, Pg fI, Pg 3 5 15 0

; ; 462 41 0 483

Figure 8: Results corresponding toDB = fINSPEC (I), PSYCINFO (P)g and Ind as the estimator.

ChosenInd
Best Relevant fIg fCg fI, Cg ;

fIg fI, Cg 4053 247 0 0

fIg fIg 382 43 0 0

fCg fI, Cg 144 743 0 0

fCg fCg 23 100 0 0

fI, Cg fI, Cg 125 43 92 0

; ; 319 173 0 410

Figure 9: Results corresponding to DB = fINSPEC (I), COMPENDEX (C)g and Ind as the
estimator.

databases, showing that in most cases ChosenInd consists only of relevant databases (criterion
CSM), and in many of these cases, ChosenInd consists only of \best" databases (criterion COB).
Furthermore, it is always the case that Success(COB; Ind) � Success(CSM ; Ind). To see why note
that ChosenInd � Best (criterion COB) implies ChosenInd � Relevant (criterion CSM), since
Best � Relevant.

Recall thatBeta(CINSPEC
OB=SM

; Ind) computes howmany times the criterionChosenInd � RelevantINSPEC

is not met strictly. Since RelevantINSPEC can only be ; or fINSPECg, then the criterion is not
met strictly only if ChosenInd = ; and RelevantINSPEC = fINSPECg. However, this can never
happen because if ChosenInd = ;, then Relevant = ;, and hence RelevantINSPEC must also be
empty (see Section 4.3).

Also, notice that for both criteria CEX and CSM the Success�Beta entries are identical. This
is because they have the same \target" set, namely the Relevant set of databases. That is, for
both criteria, Success� Beta measures the fraction of queries for which ChosenInd = Relevant.
Therefore,

Success(CEX; Ind)�Beta(CEX ; Ind) =

= Success(CSM ; Ind)�Beta(CSM ; Ind)

The same is true for CAB and COB, with target set Best, and for CINSPEC
EX=AB and C

INSPEC
OB=SM , with

target set RelevantINSPEC (= BestINSPEC ).
Finally, Figure 12 summarizes the evaluation criteria results for each of the 15 di�erent pairs of

databases that can be obtained from fINSPEC, COMPENDEX, ABI, GEOREF, ERIC, PSYCINFOg.
Note that the two pairs of databases that we analyzed in more depth above, fINSPEC, PSYCINFOg
and fINSPEC, COMPENDEXg, are among the \best" and the \worst", respectively, for Ind,
among all possible pairs. In general, we can observe that the performance of Ind varies for the
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Criteria Success Alpha Beta Success�Beta

CEX 56.97 43.03 7.29 49.67

CAB 99.04 0.96 7.29 91.75

COB 91.87 8.13 0.12 91.75

CSM 92.40 7.60 42.73 49.67

C
INSPEC
EX=AB 96.07 3.93 8.08 87.99

C
INSPEC
OB=SM 87.99 12.01 0 87.99

Figure 10: Evaluation criteria for DB =fINSPEC, PSYCINFOg and Ind as the estimator.

Criteria Success Alpha Beta Success�Beta

CEX 21.40 78.60 7.13 14.27

CAB 90.94 9.06 7.13 83.80

COB 86.24 13.76 2.44 83.80

CSM 91.91 8.09 77.64 14.27

C
INSPEC
EX=AB 84.40 15.60 10.25 74.15

C
INSPEC
OB=SM 74.15 25.85 0 74.15

Figure 11: Evaluation criteria for DB =fINSPEC, COMPENDEXg and Ind as the estimator.

di�erent pairs of databases. Success(CAB; Ind) is always relatively high (above 90%) regard-
less of the pair. In contrast, the pair fINSPEC, COMPENDEXg reaches the lowest mark for
Success(CEX; Ind), 21:40%. The reason for this, as was pointed out above, is that INSPEC and
COMPENDEX have overlapping domains, and Ind is not designed to return all of the relevant
databases, but only the most promising ones. Finally, the Success values for the rest of the
criteria are relatively high for all of the pairs of databases.

5.3 Evaluating Ind over six databases

In this section we report some results for the basic con�guration, as de�ned in Figure 6. So,
DB =fINSPEC, COMPENDEX, ABI, GEOREF, ERIC, PSYCINFOg, and Ind is used as the
estimator. Figure 13 summarizes the results corresponding to our six di�erent evaluation criteria.
This �gure shows that the same phenomena described in Section 5.2 prevail, although in general
the success rates are lower. The reason for this is that we are now considering six databases instead
of just two. For example, Success(CEX; Ind) is notoriously lower. As was mentioned above, this
can be explained by the fact that Ind chooses only the most promising databases, not all of the ones
that might contain relevant documents (see Section 6.6). Still, Success(CAB; Ind) is relatively high
(88:95%), showing Ind's ability to predict what the best databases are. Also, the Success �gures
for COB and CSM are high (84:38% and 91:26%, respectively), making Ind useful for exploring some
of the relevant/best databases. This is particularly signi�cant for Ind: ChosenInd(q;DB) will be
non-empty as long as there is some database in DB that might contain some document relevant
to query q. Therefore, for 91:26% of the queries, Ind chooses databases that actually are relevant,
provided there are any, what makes Ind particularly good for the CSM semantics. However, Ind
fails in many cases to isolate all of the relevant databases (thus making Beta(CSM ; Ind) high:
80:64%).

Figure 14 shows the average values of PRelevant, RRelevant, PBest, RBest, PRelevantINSPEC , and
RRelevantINSPEC (see Equations 7 through 10) obtained for the basic con�guration of the experi-
ments. Note that the average PRelevant equals Success(CSM ; Ind)=100. This is not surprising, since
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CEX CAB COB CSM C
INSPEC
EX=AB C

INSPEC
OB=SM

ERIC, INSPEC 54.13 98.71 91.50 92.21 93.63 85.33

ERIC, COMPENDEX 54.75 98.58 88.79 89.55 N/A N/A

ERIC, PSYCINFO 61.68 97.36 73.90 74.86 N/A N/A

ERIC, GEOREF 61.52 97.83 73.70 74.45 N/A N/A

ERIC, ABI 60.04 97.29 75.92 76.76 N/A N/A

INSPEC, COMPENDEX 21.40 90.94 86.24 91.91 84.40 74.15

INSPEC, PSYCINFO 56.97 99.04 91.87 92.40 96.07 87.99

INSPEC, GEOREF 51.52 98.78 91.13 91.84 87.62 78.89

INSPEC, ABI 50.99 97.88 90.95 92.10 94.26 85.76

COMPENDEX, PSYCINFO 57.30 98.83 88.84 89.40 N/A N/A

COMPENDEX, GEOREF 52.02 98.45 88.14 88.95 N/A N/A

COMPENDEX, ABI 51.21 98.13 88.34 89.47 N/A N/A

PSYCINFO, GEOREF 63.06 98.06 73.18 73.95 N/A N/A

PSYCINFO, ABI 63.03 97.71 76.95 77.83 N/A N/A

GEOREF, ABI 61.97 97.51 75.47 76.50 N/A N/A

Figure 12: Success(C; Ind), for the di�erent criteria C and 15 pairs of databases.

Criteria Success Alpha Beta Success�Beta

CEX 17.50 82.50 6.89 10.61

CAB 88.95 11.05 6.89 82.06

COB 84.38 15.62 2.32 82.06

CSM 91.26 8.74 80.64 10.61

C
INSPEC
EX=AB 70.12 29.88 11.02 59.10

C
INSPEC
OB=SM 59.10 40.90 0 59.10

Figure 13: Evaluation criteria for DB =fINSPEC, COMPENDEX, ABI, GEOREF, ERIC,
PSYCINFOg, using Ind as the estimator.
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Set PSet RSet

Relevant 0.9126 0.4044

Best 0.8438 0.9010

RelevantINSPEC 0.5966 0.7012

Figure 14: Average values of the di�erent P and R functions for the basic con�guration of the
experiments.

Source of the trace ERIC database

Raw trace queries 3050

Experiment queries 2404

Percentage experiment queries of raw queries 78.82

Figure 15: Characteristics of the set TRACEERIC of queries used in the experiments.

the condition PRelevant = 1 is equivalent to the condition for satisfying criterion CSM (see Figure 2),
and very few times does Ind choose more than one database in ChosenInd , as mentioned in Sec-
tion 5.2. In particular, for only 96 out of the 6897 TRACEINSPEC queries does ChosenInd consist
of more than one database. Furthermore, 95 of these 96 queries are one-term queries, for which
ChosenInd = Best necessarily. So, if ChosenInd(q;DB) is a singleton, either ChosenInd(q;DB) �
Relevant(q;DB), in which case PRelevant(q;DB) = 1 and q contributes to Success(CSM ; Ind), or
ChosenInd(q;DB) \ Relevant(q;DB) = ;, PRelevant(q;DB) = 0, and q does not contribute to
Success(CSM ; Ind). This explains why PRelevant equals Success(CSM ; Ind)=100. A similar expla-
nation applies to PBest being equal to Success(COB; Ind)=100, and to PRelevantINSPEC being almost
identical to Success(CINSPEC

OB=SM ; Ind)=100.

On the other hand, the average RRelevant is higher than Success(CEX; Ind)=100. The rea-
son for this is that Ind attempts to identify the most promising databases, not all of the ones
containing relevant documents (this is why Success(CEX; Ind) is low). A query q such that
; 6= ChosenInd(q;DB) � Relevant(q;DB) will not contribute to Success(CEX; Ind), and, even

though RRelevant(q;DB) 6= 1, RRelevant(q;DB) =
jChosenInd(q;DB)j

jRelevant(q;DB)j > 0, making the average
RRelevant higher. The same is true, but to a more limited extent due to the higher Success

values, for RBest and Success(CAB; Ind). RRelevantINSPEC and Success(CINSPEC
EX=AB ; Ind)=100 are

equal, since RelevantINSPEC is either the empty set or the singleton fINSPECg. Therefore, ei-
ther RelevantINSPEC(q;DB) � ChosenInd(q;DB), in which case RRelevantINSPEC = 1 and q

\contributes" to Success(CINSPEC
EX=AB ; Ind), or RelevantINSPEC(q;DB) 6� ChosenInd(q;DB), in

which case RelevantINSPEC(q;DB) \ ChosenInd(q;DB) = ;, and so q does not contribute to
Success(CINSPEC

EX=AB ; Ind) and RRelevantINSPEC = 0. Therefore, RRelevantINSPEC and

Success(CINSPEC
EX=AB ; Ind)=100 must be equal.

5.4 Impact of using other traces

So far, all of our experiments were based on the set of 6897 queries from the INSPEC trace, namely,
TRACEINSPEC, as described in Section 4. To analyze how dependent the results are from the
trace used, we ran our experiments using a di�erent set of queries. These queries were issued by
real users to the ERIC database, between 3/28/1993 and 4/10/1993. The trace was processed in
the same way as the INSPEC trace (see Section 4). Figure 15 summarizes some information about
the ERIC trace. We will refer to this set of queries as TRACEERIC.

Figure 16 shows the results for the di�erent evaluation criteria, for the basic con�guration (see
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Criteria Success Alpha Beta Success�Beta

CEX 28.62 71.38 9.28 19.34

CAB 93.39 6.61 9.28 84.11

COB 84.94 15.06 0.83 84.11

CSM 89.64 10.36 70.30 19.34

C
ERIC
EX=AB 68.76 31.24 14.23 54.53

C
ERIC
OB=SM 54.53 45.47 0 54.53

Figure 16: Evaluation criteria for DB =fINSPEC, COMPENDEX, ABI, GEOREF, ERIC,
PSYCINFOg and Ind as the estimator (ERIC trace).

Figure 6) but using TRACEERIC. The results obtained di�er only slightly from the ones reported
in Figure 13 for TRACEINSPEC.

5.5 Impact of the query size

It is interesting to classify the queries according to their number of keyword-�eld designation pairs
and analyze Ind's performance over each of these groups. Figures 17 and 18 show some of the
results for the basic con�guration (Figure 6) but split by query size. Results are reported for
queries up to size four, since there are very few queries in TRACEINSPEC consisting of more than
four terms. Figure 19 summarizes the number of TRACEINSPEC queries for the di�erent query
sizes.

As was mentioned in Section 5.1, Ind chooses exactly the Best set for queries of size one.
This is why, for this query size, Success(CAB; Ind) = Success(CSM ; Ind) = 100%. Surprisingly,
some criteria perform better as the number of terms per query grows, while others perform worse.
For instance, the Ind performance according to CEX gets better for larger queries: as pointed
out before, Ind chooses only the databases that are predicted the best. The more terms a query
contains, the smaller the Relevant subset of DB will tend to be, thus making ChosenInd a better
approximation of it. This is also true of CAB (after an initial decline of the performance from
query size 1 to query size 2, since for size 1, ChosenInd = Best).

The reverse e�ect takes place for COB and CSM : the associated performance tends to get worse
as Best and Relevant shrink, respectively: if a query contains, say, four terms, it is more likely
that there will be no documents containing all of the four terms, even though there are documents
containing each of the terms, but not all. So, it is more likely that ChosenInd will contain some
\non-relevant" or \non-best" database.

6 Improving GlOSS

In this section we study the space requirements of GlOSS and compare them with those of a full
index of the set of databases. We also analyze ways of reducing the size of the database histograms
kept by GlOSS. We then introduce slight variations to the de�nition of the ChosenEST and Best

sets in order to make them more comprehensive, and present two new estimators,Min and Binary.

6.1 Eliminating the \subject" index

Before we compute the histogram sizes, we will analyze the way the \subject" index is treated
in the six databases we considered. In all of these databases, \subject" is a compound index,
built by merging together other \primitive" indexes. For example, in the INSPEC database, the
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Figure 17: Success(C; Ind) as a function of the query size.
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Figure 18: Beta(C; Ind) as a function of the query size.

Query size Number of queries % of total

1 3692 53.53

2 1720 24.94

3 1020 14.79

4 333 4.83

5 or more 132 1.92

Total 6897 100

Figure 19: Number of queries in TRACEINSPEC for the di�erent query sizes.
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Database Indexes

INSPEC title, abstract, thesaurus, organization, (other subjects)

COMPENDEX title, abstract, thesaurus, conference, (other subjects)

ABI title, abstract, thesaurus, organization, class, (places)

GEOREF title, abstract, thesaurus

ERIC title, abstract, thesaurus, organization, (geographic area),
(other subjects)

PSYCINFO title, abstract, thesaurus, (keyphrase)

Figure 20: The primitive indexes used to build the \subject" index in the six databases considered.

\subject" index is constructed by merging the \title", \abstract", \thesaurus", \organization", and
\other subjects" indexes (see Figure 20). Therefore, a query \�nd subject computers" is in reality
equivalent to the following \or" query:

�nd title computers _ abstract computers _ thesaurus computers

_ organization computers _ other subjects computers

Figure 20 shows what indexes the \subject" index is built from for the six databases.
All of the experiments we reported so far treated \subject" as a primitive index, as though

GlOSS kept the entries corresponding to the \subject" �eld designation in the database histograms.
In this Section, we investigate whether this is actually necessary from a performance point of view.
Given that GlOSS has the entries for the constituent indexes from which the \subject" index is
formed, we could attempt to estimate the entries corresponding to the \subject" index using the
entries for the primitive indexes. This way, we can save space by not having to store entries for
the \subject" index. For example, given that we know freq(title computers, INSPEC), freq(abstract
computers, INSPEC), and so on, can we estimate freq(subject computers, INSPEC) instead of
storing this piece of information explicitly?

There are di�erent ways to estimate freq(subject <w>, <db>), given the primitive indexes
index1; index2; : : : ; indexn the \subject" index is built from in database < db >. One such way is
to take the maximum of the individual frequencies for the primitives indexes:

freq(subject <w>, <db>) � max
i=1;:::;n

freq(indexi < w >, <db>) (14)

Note that this estimate constitutes a lower bound for the actual value of freq(subject <w>, <db>).
Figure 21 shows the results obtained for the basic con�guration (see Figure 6) but estimating

the \subject" frequencies as in Equation 14, with one di�erence: only those indexes that actually
appeared in TRACEINSPEC queries were considered. The other indexes are seldom used so it does
not make sense for GlOSS to keep statistics on them. The indexes considered are the ones that
are listed in Figure 23. The indexes that appear between parentheses in Figure 20 were ignored,
since no information was kept about them by GlOSS in our experiments. For example, freq(subject
computers, INSPEC) was estimated as:

freq(subject computers, INSPEC) � maxffreq(title computers, INSPEC);

freq(abstract computers, INSPEC);

freq(thesaurus computers, INSPEC);

freq(organization computers, INSPEC)g
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Criteria Success Alpha Beta Success� Beta Success

CEX 17.41 82.59 6.92 10.50 17.50

CAB 88.23 11.77 6.93 81.30 88.95

COB 83.82 16.18 2.52 81.30 84.38

CSM 91.21 8.79 80.72 10.50 91.26

C
INSPEC
EX=AB 70.18 29.82 10.89 59.29 70.12

C
INSPEC
OB=SM 59.29 40.71 0 59.29 59.10

Figure 21: Evaluation criteria for the basic con�guration, but estimating the \subject" frequencies
as the maximum of the frequencies of the primitives indexes. The last column shows the Success
values for the basic con�guration using the exact \subject" frequencies.

Criteria Success Alpha Beta Success� Beta Success

CEX 17.47 82.53 6.90 10.57 17.50

CAB 88.30 11.70 6.92 81.38 88.95

COB 83.82 16.18 2.44 81.38 84.38

CSM 91.33 8.67 80.76 10.57 91.26

C
INSPEC
EX=AB 69.91 30.09 10.98 58.94 70.12

C
INSPEC
OB=SM 58.94 41.06 0 58.94 59.10

Figure 22: Evaluation criteria for the basic con�guration, but estimating the \subject" frequencies
as the sum of the frequencies of the primitives indexes. The last column shows the Success values
for the basic con�guration using the exact \subject" frequencies.

Thus, the \other subjects" index is simply ignored in this estimate 13. The last column in Figure 21
shows the Success �gures for the basic con�guration, using the exact frequencies for the \subject"
index: there is very little change in performance if we estimate the \subject" frequencies as in
Equation 14.

Alternatively, we can estimate freq(subject <w>, <db>) as:

freq(subject <w>, <db>) �
X

i=1;:::;n

freq(indexi < w >, <db>) (15)

Note that this estimate constitutes an upper bound for the actual value of freq(subject <w>,
<db>).

Figure 22 shows the results obtained for the basic con�guration (see Figure 6) but estimating the
\subject" frequencies as in Equation 15, ignoring those indexes not appearing in TRACEINSPEC

queries, as explained above.
Figures 21 and 22 show that either way we estimate the \subject" frequencies, the performance

of Ind does not vary signi�cantly from that obtained when using the exact frequencies for the
\subject" indexes (see Figure 13). Therefore, when we compute the size of the GlOSS histograms
in the next section, we will assume that \subject" histograms are not stored. Only primitive
indexes appearing in TRACEINSPEC queries will be taken into account.

6.2 Characteristics of the histograms and full indexes

13In fact, the \other subjects" index does not appear in any of the queries of TRACEINSPEC since it can only be

used in browse mode in the INSPEC database under FOLIO.
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Full GlOSS

Index (threshold=0)
Field Designator # of # of

postings entries

Author 4108027 311632

Title 10292321 171537

Publication 6794557 18411

Abstract 74477422 487247

Thesaurus 11382655 3695

Conference 7246145 11934

Organization 9374199 62051

Class 4211136 2962

Numbers (ISBN, ...) 2445828 12637

Report Numbers 7833 7508

Totals 130340123 1089614

Figure 23: Characteristics of the histogramkept by GlOSS vs. those of a full index, for the INSPEC
database.

As explained in Section 2.2, the estimators need to keep, for each database, the number of doc-
uments that satisfy each possible keyword-�eld designation pair. Figure 23 was generated using
information of the corresponding INSPEC indexes obtained from Stanford's FOLIO library infor-
mation retrieval system. The \# of entries" column reports the number of entries required for each
of the INSPEC indexes appearing in the TRACEINSPEC queries. For example, there are 311; 632
di�erent author surnames appearing in INSPEC (�eld designation \author"), and each will have
an associated frequency in the histogram for INSPEC. A total of 1; 089; 614 entries will be required
for the histogram for the INSPEC database. Each of these entries will correspond to a term and its
associated frequency (e.g. <author Knuth, 47>, meaning that there are 47 documents in INSPEC
with Knuth as the author). In contrast, if we were to keep the complete inverted lists associated
with the di�erent indexes we considered, 130; 340; 123 postings would have to be stored in the full
index.

6.3 Storage cost estimates

In the following, we will roughly estimate the space requirements of a full index vs. those of the
histogram kept by the estimators, for the INSPEC database. The �gures we will produce should
be taken just as an indication of the relative order of magnitude of the corresponding requirements.

Each of the postings of a full index will typically contain the following information:

� a �eld designation,

� a document identi�er, and

� a count or position of the word in the document.

If we dedicate one byte for the �eld designation, three bytes for the document identi�er, and one
byte for the position in the document, we end up with �ve bytes per posting. Let us assume that,
after compression, 2.5 bytes su�ce per posting (compression of 50% is typical for inverted lists).

Each of the frequencies kept by an estimator will typically contain the following information:
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Size of Full Index GlOSS/threshold=0

Vocabulary 3.13 MBytes 3.13 MBytes

Index 310.76 MBytes 2.60 MBytes

Total 313.89 MBytes 5.73 MBytes

% of Full Index 100 1.83

Figure 24: Estimated storage costs of a full index vs. the GlOSS histogram for the INSPEC
database.

� a �eld designation,

� a database identi�er, and

� the frequency itself.

Regarding the size of the frequencies themselves, only 1417 keyword-�eld designation pairs in
INSPEC have more than 216 documents containing them. Therefore, in the vast majority of the
cases, two bytes su�ce to store these frequencies, according to the INSPEC data we have available.
So, we can encode the frequencies by letting one bit indicate whether the frequency is a two-byte
or a three-byte frequency, for example. Since the number of keyword-�eld designation pairs that
require three bytes is so small, to estimate storage costs we can assume that two bytes are dedicated
per frequency. So, using one byte for the �eld designation and two bytes for the database identi�er,
we end up with �ve bytes per frequency of the histogram. Again, after compression we will assume
that 2.5 bytes are required per frequency. Using the data from Figure 23 and our estimates for the
size of each posting and histogram entry, we obtain the index sizes shown in Figure 24 (\Index"
row).

The vocabulary itself will presumably be stored at the leaf level of some search structure.
Let us assume that such a search structure is a B

+-tree. Given that the leaf nodes of the tree
are reasonably big, the dominant cost of the search structure will be the word storage. We will
focus on this cost in what follows. As a result of using B

+-trees, the vocabulary will appear in
sorted order in the leaves of the tree. We can take advantage of this situation by compressing the
keywords themselves, to reduce the amount of storage required for them. We will assume that after
compression, �ve letters per word su�ce, and each letter is stored in �ve bits. So, four bytes will
su�ce to store each keyword in a leaf of the B+-tree. The vocabulary for INSPEC, ignoring the
�eld designators and including only those indexes appearing in TRACEINSPEC queries, consists of
819; 437 words (since we are not considering the �eld designators here a keyword that is associated
with more than one �eld designator appears only once in this vocabulary). Therefore, around
4� 819; 437 bytes, or 3:13 MBytes are needed to store the INSPEC vocabulary. This is shown in
the \Vocabulary" row of Figure 24. So, the size of the histogram needed by GlOSS is only around
1:83% the size of the corresponding full index, for the INSPEC database.

So far, we have only focused on the space requirements of a single database, namely INSPEC.
We will base the space requirement estimates for the six databases on the �gures we have just
computed for the INSPEC database, for which we have reliable index information. To do this, we
will multiply the di�erent values we calculated for INSPEC by a growth factor G (see Figure 4):

G =

P
db2fINSPEC;COMPENDEX;ABI;GEOREF;ERIC;PSYCINFOgDBSize(db)

DBSize(INSPEC)
� 4:12

Therefore, the number of postings required by a full index of the six databases is estimated as G�
INSPEC number of postings = 537; 001; 307 postings, or around 1280:31 MBytes. The number
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Size of Full index GlOSS/threshold=0

Vocabulary 11.59 MBytes 11.59 MBytes

Index 1280.31 MBytes 10.70 MBytes

Total 1291.90 MBytes 22.29 MBytes

% of Full index 100 1.73

Success(CAB, ) 100 88.23

Success(CAB, ) - Beta(CAB, ) 100 81.30

Figure 25: Storage estimates for GlOSS and a full index for the six databases. The entries for
GlOSS in the last two rows correspond to the basic con�guration (Ind as the estimator), but
estimating the \subject" frequencies as the maximum of the frequencies of the primitive indexes.

of frequencies required by GlOSS for the six databases is estimated as G� INSPEC number of
frequencies = 4; 489; 210 frequencies, or around 10:70 MBytes (see the \Index" row of Figure 25).

The space occupied by the index keywords of the six databases considered will be proportional
to the size of their merged vocabularies. Using index information from Stanford's FOLIO library
information retrieval system, we can determine that the size of the merged vocabulary of the six
databases we considered is approximately 90% of the sum of the six individual vocabulary sizes.
Therefore, we estimate the size of the merged vocabulary for the six databases as G � 0:90�
INSPEC vocabulary size = 3,038,472 words, or around 11:59 MBytes (see the \Vocabulary" row
of Figure 25).

Figure 25 summarizes the storage estimates for GlOSS and a full index. Note that the GlOSS
histogram is only 1:73% the size of the full index. This is even less than the corresponding �gure
we obtained above just for the INSPEC database (1:83%). The reason for this is the fact that the
merged vocabulary size is only 90% of the sum of the individual vocabulary sizes. Although this
10% reduction \bene�ts" both GlOSS and the full index case, the impact on GlOSS is higher, since
the vocabulary size is a much larger fraction of the total storage needed by GlOSS than it is for
the full index.

The numbers of Figure 25 have been obtained using some very rough estimates and approxi-
mations, so they should be taken cautiously. However, we think they are useful to illustrate the
low space requirements of GlOSS: around 22.29 MBytes would su�ce to keep the histograms for
the six databases we studied.

6.4 Pruning the histograms

To further reduce the amount of information that we keep about each database, we introduce the
notion of a threshold. If a database db has fewer than threshold documents with a given keyword-
�eld pair t, then this information will not be stored in the corresponding histogram. Therefore, it
will be assumed that freq(t; db) is 0 whenever this data is needed.

As a result of the introduction of threshold, the estimator may now conclude that some database
db does not contain any relevant documents for a query:

find t1 ^ : : :^ tn

if freq(ti; db) is missing, for some i, while in fact db does contain relevant documents for the query.
This situation was not possible before: if freq(ti; db) was missing from the information set of the
estimator, then freq(ti; db) = 0, and so, there could be no documents in db satisfying such a query.
This is why Beta(CINSPEC

OB=SM
; Ind) may now be greater than 0 for threshold> 0 (see Section 5.2).
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Figure 26: Success(C; Ind) as a function of threshold.

To see if Ind's performance deteriorates by the use of this threshold, Figures 26, 27, 28, and 29
show some results for di�erent values of threshold, for the basic con�guration, and using the exact
�gures for the \subject" index entries. On the other hand, Figures 30, 31, 32, and 33 show some
results for di�erent values of threshold, for the basic con�guration, but estimating the \subject"
index entries as in Equation 14. These �gures show that the performance for the di�erent criteria
is only slightly sensitive to (small) increases in threshold. In fact, the Success values for criterion
CSM , for example, tend to improve for higher values of threshold. The reason for this is that
ChosenInd does not include databases with ESizeInd = 0. By increasing threshold, the number of
such databases will presumably increase, thus makingChosenInd smaller, and more likely to satisfy
CSM : ChosenInd � Relevant. Analogous explanations apply to the improvement in Success for
criteria COB and C

INSPEC
OB=SM .

The reason for introducing thresholds is to have to store less information for the estimator.
Figure 34 reports the number of entries that would be left, for di�erent �eld designators, in the
histogram for the INSPEC database. Some �eld designators (e.g. \thesaurus") are not a�ected
much by this pruning of the smallest entries, whereas the space requirements for some others (e.g.
\author", \title", and \abstract") are reduced drastically. Adding together all of the indexes,
the number of entries in the histogram for INSPEC decreases very fast as threshold increases:
for threshold=1, for instance, 508; 978 entries, or 46:71% of the original number of entries, are
eliminated. Therefore, the size of the GlOSS histograms can be substantially reduced beyond the
already small size estimated in Figure 25.

Another approach to reducing the size of the histograms kept by the estimators would be to
classify each of the individual frequencies into one out of, say, eight classes: for example, the 0th

class would consist of all the zero frequencies, the 1st class, of the frequencies from 1 to 10, and so
on. So, instead of storing the frequencies to form the histograms, we would instead just store the
class each frequency belongs to. If we have eight classes, then only three bits will be required per
entry of each histogram, at the expense of having less information about the databases. We are
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Figure 27: Beta(C; Ind) as a function of threshold.
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Figure 28: Success(C; Ind) as a function of higher values of threshold.
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Figure 29: Beta(C; Ind) as a function of higher values of threshold.
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Figure 30: Success(C; Ind) as a function of threshold. The \subject" entries are estimated as the
maximum of the entries corresponding to the \primitive" indexes.
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Figure 31: Beta(C; Ind) as a function of threshold. The \subject" entries are estimated as the
maximum of the entries corresponding to the \primitive" indexes.
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Figure 32: Success(C; Ind) as a function of higher values of threshold. The \subject" entries are
estimated as the maximum of the entries corresponding to the \primitive" indexes.
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Figure 33: Beta(C; Ind) as a function of higher values of threshold. The \subject" entries are
estimated as the maximum of the entries corresponding to the \primitive" indexes.

threshold

Field Designator 0 1 2 3 4 5

Author 311632 194769 150968 125220 107432 94248

Title 171537 85448 62759 51664 44687 40007

Publication 18411 11666 10042 9281 8832 8535

Abstract 487247 227526 163644 133323 115237 102761

Thesaurus 3695 3682 3666 3653 3641 3637

Conference 11934 10138 9887 9789 9702 9653

Organization 62051 34153 26518 22612 20121 18382

Class 2962 2953 2946 2937 2931 2926

Numbers (ISBN, ...) 12637 10199 10067 9946 9865 9779

Report Numbers 7508 102 37 22 14 12

Totals 1089614 580636 440534 368447 322462 289940

% 100 53.29 40.43 33.81 29.59 26.61

Success(CAB, Ind) 88.23 87.12 86.07 85.28 84.44 83.82

Success(CAB, Ind)
- Beta(CAB, Ind) 81.30 80.64 79.85 79.15 78.44 77.85

Figure 34: Number of entries left for the di�erent thresholds and �eld designators in the INSPEC
database. The last two rows correspond to the basic con�guration, but estimating the \subject"
frequencies as the maximumof the frequencies of the primitive indexes, as explained in this Section.
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planning on exploring this direction shortly14.

6.5 Making ChosenEST and Best more 
exible

The de�nitions of ChosenEST and Best given by Equations 2 and 12 are sometimes too in
exible.
Consider the following example. Suppose DB = fdb1; db2g is our set of databases, and let q be
a query such that RSize(q; db1) = 1; 000, and RSize(q; db2) = 1; 001. According to Equation 12,
Best(q;DB) = fdb2g. But this is probably too arbitrary, as both databases are almost identical
regarding the number of relevant documents they have for query q. Also, if the two databases are
predicted by an estimator EST to contain a very similar number of documents satisfying a query,
though not exactly equal, it might be preferable to choose both databases as the answer instead of
picking the one with absolute highest estimated size.

In this section, we extend the de�nitions of ChosenEST and Best, through the introduction
of two parameters, �B and �C . Parameter �B will make the de�nition of Best looser, by letting
databases with a number of documents close but not exactly equal to the maximum be considered
as \best" databases also. Parameter �C a�ects the estimator EST by making it able to choose
databases that are close to the predicted optimal ones. The new de�nitions for ChosenEST and
Best are, for given �B; �C � 0:

ChosenEST (q;DB) = fdb 2 DBjESizeEST (q; db)> 0 ^ (16)����ESizeEST (q; db)� hest

hest

���� � �Cg

Best(q;DB) = fdb 2 DBjRSize(q; db) > 0^ (17)����RSize(q; db)� hreal

hreal

���� � �Bg

where hest = maxdb02DBESizeEST (q; db
0) and hreal = maxdb02DBRSize(q; db

0). Therefore, the
larger �B and �C get, the more databases will tend to be included in Best and ChosenEST , respec-
tively. Note that Equations 2 and 12 coincide with Equations 16 and 17 for �B = �C = 0. Also,
if �C = 1, Ind becomes the Binary estimator described in Section 6.6: ChosenInd(q;DB) thus
consists of all of the databases in DB that might contain some relevant documents for query q.

To see the impact of introducing �B and �C , we repeated some of the experiments. Figures
35 and 36 are for the basic con�guration, but with varying �B = �C (= �). As � increases,
ChosenInd tends to contain more databases, and so does Best. On the other hand, Relevant,
RelevantINSPEC , and BestINSPEC do not vary for � > 0. This explains why Success(CEX ; Ind)
increases with �: in the extreme case of � = 1, ChosenInd consists of all of the databases that might
contain some relevant document for the given query. Consequently, Success(CEX; Ind) = 100% in
this case. On the other hand, Success(CAB; Ind) improves slightly more slowly, since Best also
grows as � does. For the same reason, Success(COB; Ind) does not change as much as � grows.

The values of Success(CSM ; Ind) get worse as � increases, since Relevant does not depend
on �, and ChosenInd tends to grow along with �. For � = 1, Best becomes equal to Relevant,
so criterion CEX coincides with criterion CAB , and COB with CSM . Note that, also for � = 1,
Beta(CSM ; Ind) = Beta(COB ; Ind) = 0. For this value of �, Relevant = Best, as mentioned above.
If for some given query, ChosenInd � Relevant (and so, criteria COB and CSM are satis�ed), then
this query satis�es these criteria strictly, i.e. ChosenInd = Relevant. This is so since for � = 1

14Note that the Binary estimator of Section 6.6 can be regarded as an extreme instance of this approach, in which

there are only two classes: one containing all of the frequencies greater than zero, and the other one containing all

of the frequencies equal to zero.
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ChosenInd contains all of the databases that might contain documents relevant to the given query,
as pointed out above. Similarly, Beta(CINSPEC

OB=SM ; Ind) is also 0 for � = 1.
Figures 37 and 38 show the performance of the di�erent evaluation criteria for �C = 0 and

for di�erent values of �B . So, our estimator remains �xed (since �C = 0) and so do Relevant

and RelevantINSPEC , which do not depend on the parameter �B. On the other hand, the set of
best databases, Best, varies as �B does. By varying �B alone, we are leaving the estimator �xed,
and we change the semantics of our evaluation criteria, because we are modifying (i.e. making
more 
exible) one of our \target" sets, namely Best. As a result of this, the values for CEX ,
CSM , CINSPEC

EX=AB , and C
INSPEC
OB=SM in Figures 37 and 38 remain constant as �B varies. On the other

hand, Success(CAB; Ind) worsens as �B grows, since Best tends to contain more databases, while
ChosenInd remains �xed. This is exactly why Success(COB; Ind) improves with higher values of
�B . For �B = 1, Best = Relevant, and so, criterion CEX coincides with criterion CAB , and criterion
COB coincides with criterion CSM . As mentioned above, parameter �B is not a parameter of our
estimator, but of the semantics of the queries. Higher values for �B yield more comprehensive Best
sets. Therefore, parameter �B should be �xed according to the desired \meaning" for Best.

Figures 39 and 40 show the performance of the di�erent evaluation criteria for �B = 0 and for dif-
ferent values of �C . So, the evaluation criteria remain �xed, sinceRelevant and RelevantINSPEC do
not change (they do not depend on the �), and neither does Best (since �B = 0). Ind does vary, since
�C is variable. Since ChosenInd tends to cover more databases as �C grows, Success(CEX ; Ind)
and Success(CAB; Ind) improve for higher values of �C . For �C = 1, Success(CEX ; Ind) =
Success(CAB; Ind) = 100%, since ChosenInd contains all of the potentially relevant databases.
As mentioned above, Ind becomes the Binary estimator (Section 6.6) for �C = 1. On the other
hand, Success(COB; Ind) and Success(CSM ; Ind) worsen as �C grows, for the same reasons. Note
that for �C = 1, Success(COB; Ind) 6= Success(CSM ; Ind), since Best and Relevant di�er (�B = 0).
In general, Best � Relevant, and so, Success(COB; Ind) � Success(CSM ; Ind) (see Section 5.2).
From Figure 39 we can conclude that the value for �C should be between 0 and 0.125: COB and
C
INSPEC
OB=SM deteriorate very quickly for higher values of �C . If we focus on the individual criteria,

the following values of �C should be used: to optimize the performance of CEX , �C should be set
to one (see Section 6.6). However, the best values for COB are obtained for �C = 0. For criterion
CAB, the preferred value for �B should be zero. Even though Success increases for higher values of
�B for this criterion, Beta also increases, and much faster. For criterion CSM , the highest Success
value is achieved for �B = 0. However, the highest �gure for Success � Beta is obtained when
�B = 1.

6.6 Other estimators

So far, all of our experiments involved estimator Ind as the estimator for GlOSS. In this section,
we consider two other estimators, and compare their performance with that of Ind.

� Ind is based upon the assumption that the occurrence of the keywords of a query in the
documents of a database follow independent and uniform probability distributions. We can
build alternative estimators by departing from this assumption. For example, we can adopt
the \opposite" assumption, and assume that the keywords that appear together in a user
query are strongly correlated. So, we de�ne another estimator for GlOSS, Min, by letting:

ESizeMin(find t1 ^ : : :^ tn; db) =
n

min
i=1

freq(ti; db) (18)

ESizeMin(q; db) is an upper bound of the actual result size of query q:
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Figure 35: Success(C; Ind) as a function of �B = �C(= �).
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Figure 36: Beta(C; Ind) as a function of �B = �C(= �).
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Figure 37: Success(C; Ind) as a function of �B . �C = 0.
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Figure 38: Beta(C; Ind) as a function of �B . �C = 0.
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Figure 39: Success(C; Ind) as a function of �C . �B = 0.
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Figure 40: Beta(C; Ind) as a function of �C . �B = 0.
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Criteria Success Alpha Beta Success� Beta Success

CEX 17.62 82.38 6.92 10.70 17.50

CAB 88.28 11.72 6.99 81.30 88.95

COB 83.50 16.50 2.20 81.30 84.38

CSM 90.74 9.26 80.03 10.70 91.26

C
INSPEC
EX=AB 73.16 26.84 11.21 61.95 70.12

C
INSPEC
OB=SM 61.95 38.05 0 61.95 59.10

Figure 41: Evaluation criteria for the basic con�guration with Min as the estimator. The last
column shows the Success values for the basic con�guration, using Ind as the estimator.

RSize(q; db)� ESizeMin(q; db)

ChosenMin follows from the de�nition of ESizeMin, using Equation 2.

� If our goal is to maximize Success(CEX; EST ), then we should be very conservative at drop-
ping databases from the ChosenEST set. With this motivation we de�ne another estimator
for GlOSS, Binary:

ESizeBinary(find t1 ^ : : :^ tn; db) =

=

(
0 if 9i, 1 � i � njfreq(ti; db) = 0
1 otherwise

(19)

ChosenBinary follows from this de�nition, using Equation 2.

So, if our threshold is 0 (see Section 6.4), we are guaranteed that Success(CEX ; Binary) = 100
(at the expense of a high Beta(CEX ; Binary), probably). On the other hand, if our threshold
is greater than 0, this is not necessarily the case, as was explained in Section 6.4.

Figures 41 and 42 show the results obtained for the basic con�guration (see Figure 6) but
using Min and Binary as the estimators, respectively. The results for Min are very similar to the
corresponding results for Ind, with no signi�cant di�erences (see Figure 13). Note that, unlike
Ind, the de�nition of ESizeMin does not depend on the size of the corresponding database. This
does not seem to have played an important role for the queries and databases we considered in the
experiments, since the results we obtained for Ind and Min are very similar (see Figures 13 and
41).

As expected, Binary gets much higher success values for the CEX criterion, but performs
much worse for criterion COB than Ind and Min. Even though Success(CAB; Binary) = 100%,
Beta(CAB ; Binary) is also very high (91:92%). Note that Beta is also quite high for criteria CEX

and C
INSPEC
EX=AB , since Binary tends to produce overly conservative ChosenBinary sets, so as not to

miss any of the target databases.

7 Conclusions

In this paper we presented GlOSS, a solution to the text database discovery problem. We also
developed a formal framework for this problem, together with four di�erent semantics to answer a

36



Criteria Success Alpha Beta Success� Beta Success

CEX 100 0 38.23 61.77 17.50

CAB 100 0 91.92 8.08 88.95

COB 8.08 91.92 0 8.08 84.38

CSM 61.77 38.23 0 61.77 91.26

C
INSPEC
EX=AB 100 0 93.42 6.58 70.12

C
INSPEC
OB=SM 6.58 93.42 0 6.58 59.10

Figure 42: Evaluation criteria for the basic con�guration with Binary as the estimator. The last
column shows the Success values for the basic con�guration, using Ind as the estimator.

Criteria Success Alpha Beta Success�Beta

CEX 100 0 38.23 61.77

CAB 88.95 11.05 6.89 82.06

COB 84.38 15.62 2.32 82.06

CSM 91.26 8.74 80.64 10.61

Figure 43: Evaluation criteria for the basic con�guration using a hybrid estimator.

user's queries. We used this framework to evaluate the e�cacy of various estimators. We considered
di�erent variations of GlOSS aimed at reducing GlOSS' storage cost, for example.

The experimental results we obtained, although involving only six databases, are encouraging.
To illustrate this, consider the case in which the semantics the user is interested in (out of CEX ,
CAB, COB, and CSM) is given as a parameter to a hybrid estimator forGlOSS. This estimatorwould
choose among Ind, Min, and Binary according to the desired criterion. Following our experimental
results, such a hybrid estimator should behave as Ind if the target semantics of the query is given
by CAB, COB, or CSM , and as Binary for CEX . The results for this hybrid estimator and the basic
con�guration are summarized in Figure 43. This �gure shows that the Success values for our four
criteria range from 84% to 100%.

To see if the results we got are too dependent on the particular query trace we considered, we
executed some of the experiments using a trace from another database. The results we obtained
are consistent with those that had been produced with the original set of queries.

The storage cost of GlOSS is relatively low (see Figure 25). A rough estimate suggested that
22:29 MBytes would be enough to keep all the data needed for the six databases we studied. Given
this low space need, GlOSS itself can then be replicated to increase its availability.

The approach we took towards solving the text database discovery problem could also deal with
the situation in which some information servers would charge for their use. Since we are selecting
what databases to search according to a quantitative measure of their \goodness" for a given query
(given by ESizeEST ), we could easily incorporate this cost factor into the computation of ESizeEST
so that, for example, given two equally promising databases, a higher value would be assigned to
the least expensive of the two.
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