
Correct View Update Translations via Containment

Stanford University Computer Science Technical Note STAN-CS-TN-93-3

Anthony Tomasic�

Stanford University

December 8, 1993

Abstract

One approach to the view update problem for deductive databases proves properties of transla-

tions - that is, a language speci�es the meaning of an update to the intensional database (IDB) in

terms of updates to the extensional database (EDB). We argue that the view update problem should
be viewed as a question of the expressive power of the translation language and the computational

cost of demonstrating properties of a translation. We use an active rule based database language

as a means of specifying translations of updates on the IDB into updates on the EDB. This paper
uses the containment of one datalog program (or conjunctive query) by another to demonstrate

that a translation is semantically correct. We show that the complexity of correctness is lower for

insertion than deletion. Finally, we discuss extension to the translation language.

1 Introduction

A deductive database consists of an intensional (IDB) and extensional database (EDB). In the case

of datalog, the meaning of a database is clear [24]. Updates to the EDB are understood as classical

relational set oriented updates. However, the meaning of updates to the IDB is ambiguous. The

approach taken here is to consider a language which speci�es how to translate a view update on an IDB

predicate to updates on EDB predicates. Active rule based database systems provide such a language.

Example 1 Consider an IDB view for transitive closure,

tc(X;Y) e(X;Y)

tc(X;Y) tc(X;Z) & tc(Z; Y)

�Department of Computer Science, Margaret Jacks Hall, Stanford, CA USA 94305-2140. e-mail address:

tomasic@cs.stanford.edu

1

an EDB with two facts,

e(a; b)

e(b; c)

and the active rule,

on del tc(X;Y) do del e(X;Z):

This rule translates, for instance, the (view) update del tc(a; b) on the IDB to the update del e(a; Z)

for all Z on the EDB and subsequently would delete the fact e(a; b).

The rule speci�es that the update \delete a transitive closure arc tc(X;Y) for some X and Y " means

the update \delete all outgoing arcs from node X."1 Thus, given the former update, the database will

perform in its place the latter update. Note that the EDB update can always be coded directly into the

application requesting the view update. However, the principal advantage of view updates is then lost {

namely, the independence of updates from schema modi�cation. If the schema is changed, view update

translations can automatically be checked for a property only if they are separate from the application.

Example 2 Consider an IDB view for transitive closure,

tc(X;Y) e(X;Y)

tc(X;Y) tc(X;Z) & tc(Z; Y)

an EDB with two facts,

e(a; b)

e(b; c)

and the active rule,

on ins tc(X;Y) do ins e(X;Z)& ins e(Z; Y):

This rule translates, for instance, the (view) update ins tc(c; e) on the IDB to the updates ins e(c; Z)

and ins e(Z; e) for some Z on the EDB and would insert, say, e(c; d) and e(d; e) if Z were d.

This example demonstrates insertion view updates in the same framework. Note that in the case

of deletion, free variables in the translation (Z in Example 1) are universally quanti�ed, and all tuple

instances of the corresponding predicate are deleted. In the case of insertion, the free variables in the

translation (Z in Example 2) are existentially quanti�ed, and the tuple instances of the corresponding

1This translation deletes edges from node X which are not on paths to Y and thus is not minimal in some sense. We

address this issue by extending the translation language in Section 3.

2

predicate are inserted. We assume here that the additional constants needed for an insertion are provided

by the user or some other source [18].

The particular translation of a deletion of a transitive closure arc in Example 1 insures a property

of the resulting database. That is, whatever IDB fact f appears in the deletion view, f will not be

modeled (derived) in the database that results from the view update translation. Translations with this

property are semantically correct [17] or simply correct. Similarly, in the case of an insertion of an IDB

fact f , a correct translation insures that f will be modeled in the resulting database. We believe that

testing a translation for this property is a useful function of a deductive database system. In this paper

we show how to determine if a translation is correct.

Of course, many other correct translations for del tc(X;Y) are possible (e.g., delete the incoming

arcs to node Y). The variety of correct translations for a view is the source of the ambiguity of the

view update problem. One classical approach to attack the this ambiguity is to a priori eliminate some

translations (e.g., the redundant or non-minimal translation which deletes both outgoing and income

arcs). We believe that a priori elimination of any translation as part of the translation language is

undesirable. (Of course, other criteria for translations (such as minimality) are interesting in their

own right.) Since our approach is based on a translation language, all correct translations which can be

expressed in the translation language are equally valid. Since correctness is a property which our method

demonstrates about translations, we would like to cover as large a class of translations as possible.

In general, active rules permit arbitrary changes to the database. In this paper we consider only

translations: a subset of active rules which specify the meaning of view updates. Our method is unique

in that correctness for translations onto recursive views is demonstrated. A larger class of translations is

desirable { however the computational complexity of proving properties on a more expressive translation

language quickly becomes intractable. We relate complexity results on query containment [4] to the

complexity of proving correctness for view update translations in Section 2.

3

1.1 Related Work

In addition to the relational framework [1, 3, 5, 6, 7, 8, 12, 18], the view update problem has been

attacked from various logical vantage points. One method is to extend the semantics of the database to

directly express some or all the possible correct translations of a view update [10, 21, 25] or to directly

store the view updates and provide new semantics for the database [16]. The opposite approach, to

restrict the class of translations in an attempt to compute a unique result [11], has also been studied.

Some very useful work has been in the classi�cation of the types of ambiguity in relational view updates

[14, 18] and the related work on translation editors [15, 19] which compute the implications of a view

update translation for the database administrator. The addition of integrity constraints clearly impacts

translations and [23] considers extracting information from functional dependencies. For datalog, [20]

considers view updates for deletion but de�nes insertion as the insertion of IDB facts. Another methods

[2, 9, 13], closely related to conjunctive query containment, generate all possible translations of a view

update.

The approach taken here is most closely related to DLP [17] which introduced a language and several

criteria for translations. DLP also extends the semantics of the database to include updates whereas

we retain the standard semantics. Our work can be viewed as a method for showing correctness for

a subclass of DLP translations. This paper enlarges the class of translations which can be decidably

shown as correct for datalog. Finally, a simple translation language is discussed in [22].

In the next section we formally present a framework and prove the correctness of translations can

be tested by using containment. In Section 3 we discuss extensions and limitations of this approach.

2 Datalog

In this section we de�ne a class of translations and prove a method for testing correctness of a translation

with respect to a datalog program.

De�nition 1 A program P is a pair (E; I) consisting of an IDB of datalog rules I and an EDB of facts

E. Throughout this paper the IDB of a program is �xed over a view update translation.

4

Following Example 1, E = fe(a; b); e(b; c)g and I = ftc(X;Y) e(X;Y); tc(X;Y) tc(X;Z)&

tc(Z; Y)g.

In active rule databases, a rule can specify that some update trigger an arbitrary collection of

updates. Here, we consider a subset of rules which translate insertions (deletions) on a single IDB

predicate into insertions (deletions) on EDB predicates. For convenience in the following proofs, we

write these rules as datalog.

De�nition 2 A translation is an insertion translation of the form ins R or a deletion translation of

the form del D. R is a datalog rule of the form H G1& � � �&Gn where H is an IDB predicate and

each Gi is an EDB predicate. D is a set of rules, each of which has the same form as R.

The active rule in Example 1 is written del tc(X;Y) e(X;Z). The syntactic transformation from

datalog to the corresponding active rule is straightforward.

Note that the rule appearing in an insertion translation is a conjunctive query and the rule appearing

in a deletion translation is a nonrecursive datalog program.

De�nition 3 A view update u is of the form ins F or del F . F is an IDB predicate. F is a fact.

The view update of Example 1 is del tc(a; b).

De�nition 4 A view update translation of a view update u, a translation t and a program P where

P = (E; I) is a program P 0 = (E0; I) where E0 is of the form

1. if u = ins F and �(H) = F and t = ins H G1& � � �&Gn, then E0 = E [
S

i �(�(Gi)),

where � is the MGU of H and F and the added tuples are ground by virtue of � (supplied by the

user), or

2. if u = del F and �i(Hi) = F and ti = del Hi Gi1 : : :Gij : : :Gini
, then E0 = E�

S
ij 8�k(�i(Gij))

such that �k(�i(Gi;j)) 2 E,

where �i is the MGU of Hi and F and the deleted tuples are ground by virtue of � (which is

universally quanti�ed).

For Example 2, u = ins tc(c; e), � = [X=c; Y=e], H = tc(X;Y), t = ins tc(X;Y) e(X;Z)&

e(Z; Y), � = [Z=d], E = fe(a; b); e(b; c)g, and E0 = E [fe(c; d); e(d; e)g.

5

For Example 1, u = del tc(a; b), �1 = [X=a; Y=b]; H1 = tc(X;Y), t1 = del tc(X;Y) e(X;Z),

�1 = [Z=b], E = fe(a; b); e(b; c)g, and E0 = fe(b; c)g.

Note that � is for variables which appear only in the body of a translation. For insertion, � provides

(possibly new) constants for these variables. For deletion, the various instances of � provide constants

which match all the EDB facts which satisfy a rule.

De�nition 5 A view update translation P 0 of (u; t; P) is correct if

1. u = ins F and P 0 j= F , or

2. u = del F and P 0 6j= F .

De�nition 6 A translation t contains a program P where P = (E; I) if t is ins R and R � I or if t is

del D and I � D.

By A � B we mean that if A j= F then B j= F (for all possible EDB). An algorithm to test if a

conjunctive query is contained by a program (R � I) is given in [24, Algorithm 14.2]. An algorithm to

test if a program is contained by a nonrecursive datalog program (P � D), is given in [4]. Both these

algorithms are independent of the EDB.

Theorem 1 If t contains P , then a view update translation P 0 of (u; t; P) is correct.

Proof. If u = ins F then we must show P 0 j= F or equivalently E0 [I j= F . Suppose P j= F ,

then we are done, since the view update translation only adds facts to generate P 0, and datalog is

monotonic. Suppose P 6j= F . Let t = ins R. The view update translation adds a set of facts of the form

gi = �(�(Gi)) to the database. Since �(H) = F , the gi obtained by applying �(�(�)) to the body of R

must derive F i.e. E0 [R j= F . Thus, E0 [I j= F since R � P . (Note that the additional constants

added by � cannot appear in H since F is a fact.)

If u = del F then we must show P 0 6j= F or equivalently E0 [I 6j= F . Suppose P 6j= F , then we

are done, since the view update translation only deletes facts to generate P 0, and datalog is monotonic.

Suppose P j= F . Let t = del D. Then E [D j= F since I � D. By inspection of the de�nition of

view update translation, E0[D 6j= F (the de�nition deletes every EDB fact in every proof of F). Thus,

E0 [I 6j= F since I � D. QED.

6

Note that the above proof rests on containment of programs in a way that is unnecessarily strong.

For instance, consider the program I

p(X) q(X)

q(X) r(X)

and the correct deletion translation D = del p(X) r(X). Technically, I 6� D because of the predicate

q. However, we are interested in containment only with respect to the predicate p. We believe that the

extension of containment to containment \relative" to a predicate (p in this case) is straightforward

and we assume containment is relative for the rest of the paper.

The use of containment to demonstrate correct translations permits an expressive form of insertion.

For example, to insert into transitive closure, we can write the correct translation ins tc(X;Y)

e(X;Y), or ins tc(X;Y) e(X;Z) & e(Z; Y), etc. Thus, we can correctly de�ne a �nite path of any

length as a translation for the view update.

For the insertion case, testing containment is computationally cheap. However, for deletion this

exibility has an associated price. The computational cost of determining containment is triplely ex-

ponential in the deletion case. However, if the view for which the translation is de�ne is not recursive,

the computation cost drops to exponential. There is work on polynomial time containment testing for

a subclass of datalog for the insertion case [24], but for the deletion case this issue remains open.

3 Extensions

In this section we informally discuss some extensions and limitations to the method presented in the

previous section. One extension along the lines of DLP [17] involves querying the database as part of

the translation. For example, consider insertion into the view

p(X) q(X) & r(X)

7

One possible correct translation is ins p(X) q(X) & r(X). Suppose, however, that we wish to

translate the view update only if p(X) q(X) is already true. We extend the notation of translations to

include parenthesis to mean a query on the database. Thus, the translation ins p(X) (q(X)) & r(X)

would for a view update ins p(a) query the database for q(a). If q(a) is in the database, the view

update translation would proceed and insert r(a). However, if q(a) is not in the database, the user

(or application) would be signaled with an exception. The proofs in the previous section can be easily

extended to determine correctness given that any queries in the translation process are satis�ed.

For strati�ed datalog, the syntax of translations can be extended to have insert and delete in the

body such as the translation ins p(X) ins q(X) del r(X) for the view p(X) q(X) & :r(X).

This extension permits much more expressive power in handling translations by modi�cation of the

rules themselves. For instance, the translation of updates to the EDB can be \bypassed" by adding

predicates to the EDB to store updates. In the above view, the translation del p(X) ins r(X) can be

viewed as simply recording the deletion view update in the relation r. (This exibility is also available

in DLP.)

There are some limitations to our translation language however. Consider again transitive closure.

We can the write the correct translation del tc(X;Y) e(X;Z) but this is a crude way of removing

a path. For instance, a reasonable and correct way to accomplish the translation is to \delete all the

edges on any path from X to Y". This translation cannot be expressed in our language. The problem

stems from the fact that the view update translation inexibly falsi�es the body of a rule { it simply

deletes all EDB facts which match. For example, consider the view p q(X) & r(X) and the EDB

consisting of four facts fq(a); r(a); q(b); r(b)g. The translation del p q(X) removes the q facts and

the translation del p r(X) remove the r facts, but there is no correct translation which removes q(a)

and r(b) although the resulting EDB fr(a); q(B)g is correct.

4 Conclusion

In this paper we have shown a method which determines if a translation encodes a natural semantics for

view updates. Namely, that after an insertion of a fact, the fact is modeled in the resulting database and

8

after a deletion of a fact, the fact is not modeled in the resulting database. The proof of the method

relies directly on the containment of conjunctive queries by datalog programs and the containment

of datalog programs by nonrecursive datalog programs. Thus, various results on the complexity of

containment problems also apply to checking translations. In addition, we discuss extensions to the

translation language for strati�ed datalog and discuss limitations of the described approach.

Acknowledgements: Thanks to Surajit Chaudhuri, Ashish Gupta, Je� Ullman, Tak Yan, and the

anonymous referees for comments and discussions on the subject of this paper.

References

[1] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions on

Database Systems, 6(4):557{575, 1981.

[2] Francois Bry. Intensional updates: Abduction via deduction. In Proceedings of the Seventh Inter-

national Conference On Logic Programming, 1990.

[3] C. R. Carlson and A. K. Arora. The updatability of relational views based on functional depen-

dencies. In Proceedings COMPSAC 79, pages 415{420, 1979. Reprinted in Tutorial: Database

Management in the 1980's, J. A. Larson and H. A. Freeman (editors), IEEE Computer Society

Press, 1981.

[4] Surajit Chaudhuri and Moshe Y. Vardi. On the equivalence of recursive and nonrecursive data-

log programs. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, San Diego, 1992.

[5] S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational views. Journal of the ACM,

31(4):742{760, 1984.

[6] C. J. Date. Relational Database: Selected Writings. Addison-Wesley, Reading, Massachusetts,

1986.

[7] J. E. Davidson. Interpreting Natural Language Database Updates. PhD thesis, Stanford University,

1984.

[8] U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational views.

ACM TODS, 8(3):381{416, 1982.

[9] Hendrik Decker. Drawing updates from derivations. In Proceedings of the Third International

Conference on Database Theory (ICDT '90), 1990.

[10] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases. In Proceedings

2nd ACM Symposium on Principles of Database Systems, pages 352{365, Atlanta, 1983.

[11] Stephen J. Hegner. Foundations of canonical update support for closed database views. In Pro-

ceedings of the Third International Conference on Database Theory (ICDT '90), 1990.

[12] B. E. Jacobs. Application of database logic to the view update problem. Technical Report TR 960,

University of Maryland, College Park, 1980.

[13] A. C. Kakas and P. Mancarella. Database updates through abduction. In Proceedings of the 16th

VLDB Conference, Brisbane, Australia, 1990.

9

[14] A. M. Keller. Algorithms for translating view updates to database updates for views involving

selections, projections, and joins. In PODS '85, pages 154{163, 1985.

[15] A. M. Keller. Choosing a view update translator by dialog at view de�nition time. In Proceedings

of VLDB, pages 467{474, Kyoto, 1986.

[16] D. Laurent, V. Phan Luong, and N. Spyratos. Updating intensional predicates in deductive

databases. In Proceedings of the Ninth IEEE International Conference on Data Engineering

(ICDE), 1993. (To Appear).

[17] Sanjay Manchanda and David Scott Warren. A logic-based language for database updates. In Jack

Minker, editor, Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann,

1987.

[18] Y. Masunaga. A relational database view update translation mechanism. In Proceedings of VLDB,

pages 309{320, Singapore, 1984.

[19] C. B. Medeiros and F. Wm. Tompa. Understanding the implications of view update policies.

Algorithmica, 1:337{360, 1986.

[20] J.-M. Nicolas and K. Yazdanian. An outline of BDGEN: a deductive DBMS. In R. E. A. Mason,

editor, Proceedings of IFIP 83, pages 711{717, 1983.

[21] Francesca Rossi and Shamim A. Naqvi. Contributions to the view update problem. In Proceedings

of the Sixth International Conference on Logic Programming, Lisbon, 1989.

[22] Anthony Tomasic. View update translation via deduction and annotation. In ICDT '88 2nd

International Conference on Database Theory, pages 338{352, 1988. Springer-Verlag Lecture Notes

in Computer Science 326.

[23] Riccardo Torlone and Paolo Atzeni. Updating deductive databases with functional dependencies.

In Proceedings of the Second International Conference on Deductive and Object-Oriented Databases

(DOOD '91), 1991.

[24] Je�rey D. Ullman. Principals of Database and Knowledge-Base Systems, volume 2: The New

Technolgies. Computer Science Press, 1989.

[25] M. W. Wilkins. A model-theoretic approach to updating logical databases. Technical Report

STAN-CS-86-1096, Stanford University, 1986.

10

