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Abstract

We consider the minimum cut cover problem for a simple, undirected graphs

G(V;E): �nd a minimum cardinality family of cuts C in G such that each edge

e 2 E belongs to at least one cut C 2 C. The cardinality of the minimum cut

cover of G is denoted by c(G). The motivation for this problem comes from

testing of electronic component boards.

Loulou has shown that the cardinality of a minimum cut cover in the com-

plete graph is precisely dlogne. However, determining the minimum cut cover

of an arbitrary graph was posed as an open problem by Loulou. In this note

we settle this open problem by showing that the cut cover problem is closely

related to the graph coloring problem, thereby also obtaining a simple proof of

Loulou's main result. We show that the problem is NP-complete in general, and

moreover, the approximation version of this problem still remains NP-complete.

Some other observations are made, all of which follow as a consequence of the

close connection to graph coloring.
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1 Introduction

Let G = (V;E) be a simple undirected graph. A cut C in G is a partition of V into

two disjoint subsets, Vr and V`, such that V = Vr [ V`. Equivalently, C is the set

of edges connecting Vr and V`. In the sequel, we will consistently use n to refer to

the number of vertices of the graph under consideration, and all logarithms will be

to base 2.

Loulou [Lou92] introduced the minimum cut cover problem: �nd a minimum

cardinality family of cuts C such that each edge e 2 E belongs to at least one cut

C 2 C. The cardinality of the minimum cut cover of G is denoted by c(G). The

motivation for this problem comes from testing of electronic component boards. (The

interested reader is referred to Loulou [Lou92] for more details.)

Loulou showed that the cardinality of a minimum cut cover in the complete graph

is precisely dlog ne. However, determining the minimum cut cover of an arbitrary

graph was posed as an open problem by Loulou. In this note we settle this open

problem by showing that the cut cover problem is closely related to the graph coloring

problem, thereby also obtaining a simple proof of Loulou's main result. We show that

the problem is NP-complete in general, and moreover, the approximation version of

this problem still remains NP-complete. Some other observations are made, all of

which follow as a consequence of the close connection to graph coloring.

An interesting open question is to study the complexity of this problem when

generalized to the case of weighted graphs. For example, we could de�ne a cost

function over the cuts in the graph, and the problem would then be to �nd a minimum

cost collection of cuts that covers the graph. Although the hardness results given here

still apply using a unit cost function, it is possible that the approximation version of

this problem is signi�cantly harder.

2 The Complexity of Minimum Cut Cover

We start by proving two lemmas relating the cut cover number c(G) with the chro-

matic number �(G).

Lemma 2.1 For any graph G, �(G) � 2c(G).
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Proof: Let C = fC1; C2; . . . ; Ckg be a set of cuts in G. We construct from C a

labeling of the vertices of G as follows. Let V i
r and V i

` be the partition of V induced

by cut Ci. We now associate with each vertex v 2 V a label l(v) from f0; 1gk. The

i'th position in l(v) is equal to 0 (1) if vertex v belongs to V i
` (V i

r ). We claim that C

is a cut cover of G if and only if, for each edge e = (v;w), l(v) 6= l(w). This follows

by observing that if l(v) 6= l(w), then there exists a position, say i, in which they

di�er. But, then, cut Ci must cover edge e.

We can now interpret the labels of the vertices as colors, and it is easy to see that

this is a legal vertex coloring of the graph using at most 2k colors. 2

Lemma 2.2 For any graph G, c(G) � dlog �(G)e.

Proof: Consider any k-coloring of G, and assume that the color labels are dlog ke-

bit strings. This de�nes a cut cover of size dlog ke, when we interpret the i'th bit in

a color as the indicator for the i'th cut. 2

By these lemmas we have that c(G) = dlog�(G)e. The following theorem settles

the open problem posed by Loulou.

Theorem 2.1 The problem of deciding for a graph G and integer k whether c(G) � k

is NP-complete.

Proof: Recall that for any �xed k � 3, it is NP-hard to decide if a graph is k-

colorable [GJ79]. In particular, it is NP-hard to decide whether a graph is 4-colorable.

But note that a graph is 4-colorable if and only if it has a cut cover of cardinality

at most 2. From this it follows that determining the cardinality of the minimum cut

cover is an NP-complete problem. 2

Corollary 2.1 An optimal cut cover of a planar graph can be computed in polynomial

time, and its cardinality is equal to 2 unless the graph is bipartite.

Proof: First note that we can check in polynomial time if a graph is bipartite, which

happens if and only if c(G) = 1. The lemma follows by observing that a planar graph

can be colored by 4 colors in polynomial time [SK86], and therefore non-bipartite

planar graphs have chromatic number either 3 or 4. 2

We remark that the NP-hardness result also applies for a variety of special types

of graphs, as enumerated by Garey and Johnson [GJ79]. For example, the problem
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remains NP-hard for intersection graphs of line segments in the plane, circle graphs,

and circular-arc graphs. These special cases are of interest as it is likely that in

applications, such as electronic component boards, the graphs may possess a special

structure.

It is interesting to note that for graphs for which the maximum degree � is

bounded by a constant, there exists a cut cover which has cardinality bounded by

dlog(� + 1)e. This follows from the fact that such graphs can be colored by at most

� + 1 colors.

3 NP-hardness of Approximations

We now make use of the recent results on approximate graph coloring to obtain

corresponding results for the cut cover problem. First, we focus on approximations

with an additive error. Making use of the (weak) approximation algorithm for graph

coloring due to Halldorsson [Hal90] that achieves a ratio of O(n(log log n)2=(log n)3),

we obtain the following theorem.

Theorem 3.1 There exists a polynomial time algorithm which can �nd an approxi-

mate cut cover of size c(g) + log n� 3 log log n.

It is known that this algorithm cannot be improved signi�cantly. In particular,

based on the results of Arora, Lund, Motwani, Sudan and Szegedy [ALMSS92], it

was shown by Lund and Yannakakis [LY93] that there exists a constant � > 0 such

that no polynomial time algorithm can approximate the chromatic number of a graph

to within a ratio of n�, unless P = NP. As a consequence, we obtain the following

theorem which pins down the approximability of the minimum cut cover problem

rather precisely.

Theorem 3.2 There exists a constant � > 0 such that no polynomial time algorithm

can approximate the minimum cut cover of a graph to within c(G) + � log n, unless P

= NP.

Consider now the problem of approximations with a multiplicative error. It is easy

to see that we can approximate the minimum cardinality cut cover within a ratio of

log n, since there always exists a cut cover of this size. The following theorem provides
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a complementary result with respect to absolute approximation ratios (see [GJ79] for

a de�nition).

Theorem 3.3 Unless P = NP, there is no polynomial time algorithm for approxi-

mating the minimum cardinality cut cover within an absolute ratio of 1:5.

Proof: Recently, Khanna, Linial and Safra [KLS93] showed that it is NP-hard to

distinguish between graphs of chromatic number 3 from those of chromatic number

5. Suppose there were a polynomial time algorithm for approximating the cut cover

within a ratio strictly smaller than 1:5. Noting that dlog 3e = 2 and dlog 5e = 3, we

can see that it is then possible to distinguish between graphs of chromatic number 3

versus 5. 2

A weaker result can be proved for the case asymptotic approximation ratio, in

particular that there is no polynomial time approximation scheme (PTAS) for this

problem (see [GJ79] for a de�nition).

Theorem 3.4 Unless P = NP, there is no polynomial time (asymptotic) approxima-

tion scheme (PTAS) for the minimum cardinality cut cover problem. In other words,

there exists an � > 0 such that no polynomial time algorithm can approximate the cut

cover problem with an asymptotic ratio of 1 + � unless P = NP.

Proof: Notice that an algorithm with asymptotic approximation ratio equal to 1+�

can approximate the cut cover problem within an additive error of � log n, since any

graph has a cut cover of cardinality dlog ne. Any PTAS gives such an algotihm for

all �xed � > 0, and the result now follows from Theorem 3.2. 2

It remains an interesting open problem to determine the approximability of cut

cover more precisely. However, this looks pretty hard since any result along these

lines would imply new results for approximate graph coloring. For example, if we

could prove that there is a polynomial time approximation algorithm for cut cover

achieving a ratio r < � log n, it would imply that we could color a 3-chromatic graph

using O(n2�) colors. The best known such result for 3-colorable graphs is that they

can be colored with roughly O(n3=8) colors [Bl90]. Similar consequences would follow

from any hardness results for cut cover approximations.
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