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Abstract

Machine learning algorithms for supervised learning are in wide use. An important issue in the use
of these algorithms is how to set the parameters of the algorithm. While the default parameter values
may be appropriate for a wide variety of tasks, they are not necessarily optimal for a given task. In this
paper, we investigate the use of cross-validation to select parameters for the C4.5 decision tree learning
algorithm. Experimental results on five datasets show that when cross-validation is applied to selecting
an important parameter for C4.5, the accuracy of the induced trees on independent test sets is generally
higher than the accuracy when using the default paramter value.

1 Introduction

Cross-validation (Weiss & Kulikowski 1991, Bailey & Elkan 1993) is a powerful tool for error estimation
which has unfortunately been under-utilized in the machine learning community. We investigate its use in
the C4.5 decision tree algorithm (Quinlan 1993) as the evaluation component of an exhaustive search over a
space of parameter values.

In supervised classification learning, one is given a training set of labeled instances. Each training instance
is described by a vector of attribute (feature, measurement variable) values Z and a categorical class label
y (output, dependent variable). The job of a supervised classification learning algorithm is to induce some

function fwhich approximates the mapping X — Y.

A common choice for the representation of f is a decision tree (Hunt, Marin & Stone 1966, Morgan &
Messenger 1973, Breiman, Friedman, Olshen & Stone 1984). The process of building a decision tree is a
recursive partitioning of a training set. CART (Breiman et al. 1984), C4.5 (Quinlan 1993) and other decision
tree algorithms use a stopping parameter, which sets some lower bound on the number of elements that must
be in a set in order for that set to be partitioned further. In C4.5 this is called the MINOBJS or m parameter.
When a node contains fewer than m instances, it is not split further but rather made into a leaf labeled with
the majority class.

Quinlan (1993) suggests that the C4.5 user should manually experiment with different values of the
MINOBJS parameter, and the accompanying software includes a utility program to partially automate this
task, using 10-fold cross-validation. An obvious extension is to fully automate this search and evaluation
inside the learning algorithm itself, and this is what we describe in this paper.

To find the best setting of m we waged an all-out war against our datasets, trying twenty different
settings of m, using five trials of 20-fold cross-validation repeated five times to estimate the value of each
m setting, running C4.5 a total of ten thousand times on each dataset. This is the “speak softly, carry a
small stick, but hit your opponent with it 10,000 times” approach. The remaining sections describe the use
of cross-validation to select a parameter for a learning algorithm and our experimental results.
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Figure 1: Cross-validation methodolgy

2 Searching for the Best m Parameter

Figure 1 describes the method for using cross-validation as the objective function in an exhaustive search
for the best value of the m parameter. We tried all values from 1 to 10, 12, 15, 20, 25 and every tenth value
from 30 to 100. To evaluate m = 1, say, we first break the training set into k blocks (three in the figure,
although we use 20 in the experiments). We then repeatedly train €4.5 -mi using two out of the three
blocks as training data and using the remaining block as a test set to estimate the accuracy of the induced
tree. This gives three accuracy estimates, which are averaged to give the 3-fold cross-validation estimate of
the accuracy when using m = 1. This is repeated for all other potential values of m. At the end we pick the
value m* with highest estimated accuracy and use this value to train C4.5-m* on the entire training set and
use an unseen test set to measure the resulting accuracy.

A problem with using cross-validation as an error estimate is that it has high variance. Running the above
procedure several times will give markedly different estimates for the value of each possible m parameter.
One remedy used in our experiments is stratified CV, where an effort is made to ensure that the distribution
of classes in each block is roughly the same. This only helps a little, so we overcame variance by running
the entire CV algorithm five times and estimating the mean of the resulting set of estimates. We use a 20%
trimmed mean, removing the top and bottom 20% of the values and then taking the mean of the rest. A
trimmed mean is a more robust estimator (Hubel 1977) of the mean of a set of data if the data is suspected
to contain outliers. As a general rule of thumb, we found that this procedure generally allows us to get a
good (low variance) estimate of error with only half as many runs of CV as were needed when using the
usual mean estimate. Additionally, since the m parameter depends heavily on the training set size, we used
20-fold cross-validation (where the training set is broken into 20 blocks) so that each training set used in
cross-validation would contain 95% of the instances in the original training set.

3 Experiments

We show results for four datasets taken from the UC Irvine repository (Murphy & Aha 1994) and one
artificial dataset of our own construction. The Irvine datasets are the Wisconsin breast cancer database,
the Pima Indians diabetes database, the credit database, and the artificial monks2 data. Our “Financial”
dataset is so named because it is an attempt at constructing a dataset with charastics one would find in
many real financial domains. We arbitrarily divided each database into a training and test set. For a better
comparison we should have used cross-validation for this final evaluation step as well, but we chose to use a
single training and test set to avoid confusing the role of cross-validation in this work. We then ran C4.5,
CVC4.5, and C4.5% on each dataset, and results are given in Table 1. C4.5 results are from running the C4.5
algorithm with default parameters and estimating the accuracy of the pruned tree on the unseen test set.
CV(C4.5 results are from using cross-validation to pick the optimal m parameter value and then using the
test set to estimate the accuracy of the pruned trees. Results shown are from five runs. Variance in size was
large but is not shown. Small-CVC4.5 results are from picking the smallest induced tree from among the 5



Table 1: Experimental Results.

C4.5 CVC4.5 small CVC4.5 C4.5*
Dataset Train Test | Acc  Size Acc Size | Acc Size Acc  Size
Breast 466 233 | 944 19 | 94.344+1.10 13 | 94.4 5 95.7 31
Pima 512 256 | 68.4 99 | 72.7441.23 8 72.3 3 74.6 9
Credit 490 200 | 81.0 39 | 81.294+0.04 41 | 81.5 28 85.0 9
Monk2 169 432 | 65.0 31 | 65.204+1.04 22 | 67.1 1 67.1 1
Financial | 250 150 | 787 45 | 81.34+1.32 35 | 78.7 19 82.7 b

CV(C4.5 runs. C4.5* results are optimistic upper bounds — we “cheated” and used the test set itself instead
of cross-validation to pick the best value of the m parameter, then used the same test set to evaluate the
induced tree.

The CVC4.5 results are almost uniformly better than the C4.5 results, but for a few bad runs which
brought up the averages in the CVC4.5 column. Small-CV(C4.5 is uniformly better than C4.5 on all domains
tested. Even when Small-CVC4.5 and C4.5 have the same accuracy, Small-CVC4.5 is often smaller.

4 Conclusion

We have described a simple method of improving the C4.5 algorithm by using cross-validation to select the
m parameter of the tree construction algorithm. This yields better accuracy and smaller trees than C4.5
run with the default parameter settings. We are not claiming to be at the forefront of machine learning
with our new CVC4.5 algorithm; rather we intended to demonstrate the power of cross-validation used as
a parameter selection tool. We hope that our results will inspire machine learning researchers to look more
closely at cross-validation and related statistical error estimation techniques such as the bootstrap (Efron &

Tibshirani 1986).
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