
FORMALIZING CONTEXT

(Expanded Notes)

John McCarthy and Sa�sa Buva�c

Computer Science Department

Stanford University

Stanford

California 94305-2140.

fjmc, buvacg@sail.stanford.edu

Abstract

These notes discuss formalizing contexts as �rst class objects. The basic relation is

ist(c; p). It asserts that the proposition p is true in the context c. The most important

formulas relate the propositions true in di�erent contexts. Introducing contexts as

formal objects will permit axiomatizations in limited contexts to be expanded to tran-

scend the original limitations. This seems necessary to provide AI programs using logic

with certain capabilities that human fact representation and human reasoning possess.

Fully implementing transcendence seems to require further extensions to mathematical

logic, i.e. beyond the nonmonotonic inference methods �rst invented in AI and now

studied as a new domain of logic.

1 Introduction

These notes contain some of the reasoning behind the proposals of [McC87] to introduce

contexts as formal objects. The present proposals are incomplete and tentative. In particular

the formulas are not what we will eventually want, and we will feel free to use formulas in

discussions of di�erent applications that aren't always compatible with each other. This is

an expanded and revised version of [McC93].

Our object is to introduce contexts as abstract mathematical entities with properties

useful in arti�cial intelligence. Our attitude is therefore a computer science or engineering

attitude. If one takes a psychological or philosophical attitude, one can examine the phe-

nomenon of contextual dependence of an utterance or a belief. However, it seems to us

unlikely that this study will result in a unique conclusion about what context is. Instead, as

is usual in AI, various notions will be found useful.

One major AI goal of this formalization is to allow simple axioms for common sense

phenomena, e.g. axioms for static blocks world situations, to be lifted to contexts involving

fewer assumptions, e.g. to contexts in which situations change. This is necessary if the

1

axioms are to be included in general common sense databases that can be used by any

programs needing to know about the phenomenon covered but which may be concerned

with other matters as well. Rules for lifting are described in section 4 and an example is

given.

A second goal is to treat the context associated with a particular circumstance, e.g. the

context of a conversation in which terms have particular meanings that they wouldn't have

in the language in general.

The most ambitious goal is to make AI systems which are never permanently stuck with

the concepts they use at a given time because they can always transcend the context they

are in|if they are smart enough or are told how to do so. To this end, formulas ist(c; p)

are always considered as themselves asserted within a context, i.e. we have something like

ist(c0; ist(c; p)). The regress is in�nite, but we will show that it is harmless.

The main formulas are sentences of the form

c0 : ist(c; p);

which are to be taken as assertions that the proposition p is true in the context c, itself

asserted in an outer context c0. (We have adopted Guha's [Guh91] notation rather than

that of [McC87], because he built his into Cyc, and it was easy for us to change ours.) For

now, propositions may be identi�ed with sentences in English or in various logical languages,

but we may later take them in the sense of [McC79b] as abstractions with possibly di�erent

identity conditions. We will use both logical sentences and English sentences in the examples,

according to whichever is more convenient.

Contexts are abstract objects. We don't o�er a de�nition, but we will o�er some exam-

ples. Some contexts will be rich objects, like situations in situation calculus. For example,

the context associated with a conversation is rich; we cannot list all the common assump-

tions of the participants. Thus we don't purport to describe such contexts completely; we

only say something about them. On the other hand, the contexts associated with certain

microtheories are poor and can be completely described.

Here are some examples.

c0 : ist(context-of(\Sherlock Holmes stories"); \Holmes is a detective")

asserts that it is true in the context of the Sherlock Holmes stories that Holmes is a detective.

We use English quotations here, because the formal notation is still undecided. Here c0 is

considered to be an outer context. In the context context-of(\Sherlock Holmes stories"),

Holmes's mother's maiden name does not have a value. We also have

c0 : ist(context-of(\U.S. legal history"); \Holmes is a Supreme Court Justice"):

Since the outer context is taken to be the same as above, we will omit it in subsequent

formulas until it becomes relevant again. In this context, Holmes's mother's maiden name

has a value, namely Jackson, and it would still have that value even if no-one today knew it.

ist(c1; at(jmc;Stanford)) is the assertion that John McCarthy is at Stanford University in

a context in which it is given that jmc stands for the author of this paper and that Stanford

stands for Stanford University. The context c1 may be one in which the symbol at is taken

2

in the sense of being regularly at a place, rather than meaning momentarily at the place. In

another context c2, at(jmc;Stanford) may mean physical presence at Stanford at a certain

instant. Programs based on the theory should use the appropriate meaning automatically.

Besides the sentence ist(c; p), we also want the term value(c; term) where term is a term.

For example, we may need value(c; time), when c is a context that has a time, e.g. a context

usable for making assertions about a particular situation. The interpretation of value(c; term)

involves a problem that doesn't arise with ist(c; p). Namely, the space in which terms take

values may itself be context dependent. However, many applications will not require this

generality and will allow the domain of terms to be regarded as �xed.

Here's another example of the value of a term depending on context:

c0 : value(context-of(\Sherlock Holmes stories"); \number of Holmes's wives") = 0

whereas

c0 : value(context-of(\U.S. legal history"); \number of Holmes's wives") = 1:

We can consider setof-wives(Holmes) as a term for which the set of possible values depends

on context. In the case of the Supreme Court justice, the set consists of real women, whereas

in the Sherlock Holmes case, it consists of �ctitious women.

The remainder of this paper is organized as follows. In x2 we give examples of some

elementary relations among contexts. The basic operations of contextual reasoning, entering

and exiting contexts, are introduced in x3. In x4 we focus on lifting axioms|axioms relating

what is true in one context based on what is true in another context. Building on the basic

notions of entering/exiting contexts and lifting axioms, x5 shows how contexts can be used to

reason in the style of natural deduction. To illustrate short term applicability of contexts, x6

demonstrates how the context formalism aids in the integration of databases which were not

originally intended to be used together. In x7 we treat contexts associated with particular

circumstances, namely those that come up in a conversation. The transcending of the context

an AI system is in, as discussed in x8, might result in AI systems which are never permanently

stuck with the concepts they use at a particular time. In x9, we argue that all sentences

will always be context dependent, and thus it is not possible to de�ne an absolute outermost

context. Returning to applications, in x10 we sketch how contexts can be used to represent

mental states and revise the beliefs of an agent. We conclude with a some remarks in x11.

Most of the ideas and results in x2{x4 and x8{x11 were �rst reported in [McC93].

2 Relations among Contexts

There are many useful relations among contexts and also context valued functions. Here are

some.

1. specialize-time(t; c) is a context related to c in which the time is specialized to have

the value t. We may have the relation

c0 : ist(specialize-time(t; c); at(jmc;Stanford)) � ist(c; at-time(t; at(jmc;Stanford))):

3

Here at-time(t; p) is the assertion that the proposition p holds at time t. We call this a

lifting relation. It is convenient to write at-time(t; foo(x; y; z)) rather than foo(x; y; z; t),

because this lets us drop t in certain contexts. Many expressions are also better represented

using modi�ers expressed by functions rather than by using predicates and functions with

many arguments. Actions give immediate examples, e.g. slowly(on-foot(go)) rather than

go(on-foot,slowly).

Instead of using the function specialize-time, it may be convenient to use a predicate

specializes-time and an axiom

c0 : specializes-time(t; c1; c2) ^ ist(c1; p) � ist(c2; at-time(t; p)):

This would permit di�erent contexts c1 all of which specialize c2 to a particular time.

There are also relations concerned with specializing places and with specializing speakers

and hearers. Such relations permit lifting sentences containing pronouns to contexts not

presuming speci�c places and persons.

2. If q is a proposition and c is a context, then assuming(p; c) is another context like c in

which p is assumed, where \assumed" is taken in the natural deduction sense. We investigate

this further in x5.

3. There is a general relation specializes between contexts. We say specializes(c1; c2)

when c2 involves no more assumptions than c1. We have nonmonotonic relations

specializes(c1; c2) ^ :ab1(p; c1; c2) ^ ist(c1; p) � ist(c2; p):

and

specializes(c1; c2) ^ :ab2(p; c1; c2) ^ ist(c2; p) � ist(c1; p):

This gives nonmonotonic inheritance of ist in both from the subcontext to the supercontext

and vice versa. More useful is the case when the sentences must change when lifted. Then we

need to state that and every propositionmeaningful in c1 is translatable into one meaningful

in c2. See x4 for an example.

4. A major set of relations that need to be expressed are those between the context

of a particular conversation and a subsequent written report about the situation in which

the conversation took place. References to persons and objects are decontextualized in the

report, and sentences like those given above can be used to express their relations.

5. Consider a wire with a signal on it which may have the value 0 or 1. We can associate

a context with this wire that depends on time. Call it cwire117(t). Suppose at time 331, the

value of this signal is 0. We can write this

ist(cwire117(331); signal = 0):

Suppose the meaning of the signal is that the door of the microwave oven is open or closed

according to whether the signal on wire117 is 0 or 1. We can then write the lifting relation

(8 t)(ist(cwire117(t); signal = 0) � door-open(t):

The idea is that we can introduce contexts associated with particular parts of a circuit or

other system, each with its special language, and lift sentences from this context to sentences

meaningful for the system as a whole.

4

3 Entering and Exiting Contexts

Suppose we have the formula c0 : ist(c; p). We can then enter the context c and infer the

formula c : p. Conversely, if we have the formula c : p we can infer c0 : ist(c; p) by exiting

the context c. We don't always want to be explicit about the sequence of all the contexts that

were entered, but the logic needs to be such that the system always exits into the context

it was in before entering. The enter and exit operations can be thought of as the push and

pop operations on a stack. In the logic presented in [BBM] the sequence of contexts that

has been entered is always explicitly stated.

We can regard ist(c; p) as analogous to c � p, and the operation of entering c as analogous

to assuming c in a system of natural deduction as invented by Gentzen and described in many

logic texts. Indeed a context is a generalization of a collection of assumptions, but there

are important di�erences. For example, contexts contain linguistic assumptions as well as

declarative and a context may correspond to an in�nite and only partially known collection

of assumptions. Moreover, because relations among contexts are expressed as sentences in

the language, ist(c; p) allows inferences within the language that could only be done at the

meta-level of the usual natural deduction systems.

There are various ways of handling the reasoning step of entering a context. The way

most analogous to the usual natural deduction systems is to have an operation enter c.

Having done this, one could then write any p for which one already had ist(c; p). However, it

seems more convenient in an interactive theorem proving to use the style of Jussi Ketonen's

EKL interactive theorem prover [KW84]. In the style of that system, if one had ist(c; p),

one could immediately write p, and the system would keep track of the dependence on c.

To avoid ambiguity as to where an occurrence of ist(; p) came from, one might have to

refer to a line number in the derivation. Having obtained p by entering c and then inferring

some sentence q, one can leave c and get ist(c; q). In natural deduction, this would be called

discharging the assumption c.

Human natural language risks ambiguity by not always specifying such assumptions,

relying on the hearer or reader to guess what contexts makes sense. The hearer employs a

principle of charity and chooses an interpretation that assumes the speaker is making sense.

In AI usage we probably don't usually want computers to make assertions that depend on

principles of charity for their interpretation.

We are presently doubtful that the reasoning we will want our programs to do on their

own will correspond closely to using an interactive theorem prover. Therefore, it isn't clear

whether the above ideas for implementing entering and leaving contexts will be what we

want.

Sentences of the form ist(c; p) can themselves be true in contexts, e.g. we can have

ist(c0; ist(c1; p)). In this draft, we will ignore the fact that if we want to stay in �rst order

logic, we should reify assertions and write something like ist(c0; Ist(c1; p)), where Ist(c; p) is

a term rather than a w�. Actually the same problem arises for p itself; the occurrence of

p in ist(c; p) might have to be syntactically distinct from the occurrence of p standing by

itself. Alternatively to reifying assertions we could use a modi�ed logic; this approach was

investigated in [BBM].

5

4 Lifting Axioms

Lifting axioms are axioms which relate the truth in one context to the truth in another

context. Lifting is the process of inferring what is true in one context based on what is true

in another context by the means of lifting axioms. We treat lifting as an informal notion in

the sense that we never introduce a lifting operator. In this section we give an example of

lifting.

Consider a context above-theory, which expresses a static theory of the blocks world

predicates on and above. In reasoning about the predicates themselves it is convenient not

to make them depend on situations or on a time parameter. However, we need to lift the

results of above-theory to outer contexts that do involve situations or times.

To describe above-theory, we may write informally

above-theory : (8xy)(on(x; y) � above(x; y))(1)

above-theory : (8xyz)(above(x; y) ^ above(y; z) � above(x; z))(2)

etc:

which stands for

c0 : ist(above-theory; (8xy)(on(x; y) � above(x; y)))(3)

etc:

Constant c0 denotes an outer context. Section x8 has more about c0. In the following

formulas, we put the context in which the formula is true to the left followed by a colon.

We want to use the above-theory in a context blocks which contains the theory of blocks

world expressed using situation calculus. (We assume that situations are a disjoint sort,

and that the variable s ranges over the situation sort.) In the context blocks predicates on

and above have a third argument denoting a situation. Thus the context blocks needs to

relate its three-argument predicates on(x; y; s) and above(x; y; s) to two-argument predicates

on(x; y) and above(x; y) of the above-theory context. This is done by introducing a context

of a particular situation, spec-sit(s). A context spec-sit(s) is associated with each situation

s, such that

blocks : (8xys)(on(x; y; s) � ist(spec-sit(s); on(x; y)));(4)

blocks : (8xys)(above(x; y; s) � ist(spec-sit(s); above(x; y)));(5)

etc:

In order to get relations between on(x; y; s) and above(x; y; s), we will now import above-theory

into the blocks context. The importation of above-theory is expressed by the axiom

c0 : (8p)ist(above-theory; p) � ist(blocks; (8s)(ist(spec-sit(s); p)));(6)

asserting that the facts of above-theory all hold in the contexts associated with every situation.

The following relation between on(x; y; s) and above(x; y; s) follows from the above axioms.

6

Theorem (above):

blocks : (8sxy)(on(x; y; s) � above(x; y; s)):

The example given is so small that it would be simpler to give the relations among the

three-argument predicates directly, but imagine that above-theory was much larger than is

given here.

We proceed to derive the above theorem.

Proof (above): We begin by assuming

blocks : on(x; y; s);(7)

asserting that block x is on block y in a speci�c situation s. Together with the universally

instantiated form of the) direction of formula 4 we get

blocks : ist(spec-sit(s); on(x; y)):(8)

Now we enter spec-sit(s) and get

spec-sit(s) : on(x; y):(9)

From (3) and (6) we conclude

c0 : ist(blocks; (8s)ist(spec-sit(s); (8xy)on(x; y) � above(x; y))):(10)

Therefore, by entering blocks we have

blocks : (8s)ist(spec-sit(s); (8xy)on(x; y) � above(x; y)):(11)

By universal instantiation it follows that

blocks : ist(spec-sit(s); (8xy)on(x; y) � above(x; y)):(12)

Entering spec-sit(s) gives

spec-sit(s) : (8xy)on(x; y) � above(x; y):(13)

By logic, formulas 9 and 13 give

spec-sit(s) : above(x; y):(14)

We can now either continue reasoning in spec-sit(s) or exit spec-sit(s) and get

blocks : ist(spec-sit(s); above(x; y)):(15)

Together with the universally instantiated form of the (direction of formula 5 we get

blocks : above(x; y; s):(16)

7

By the deduction theorem we can discharge the initial assumption to obtain

blocks : on(x; y; s) � above(x; y; s):(17)

Finally, by universal generalization it follows that

blocks : (8sxy)on(x; y; s) � above(x; y; s):(18)

above

In this derivation we used a function giving a context spec-sit(s) which depends on the

situation parameter s. Contexts depending on parameters will surely present problems

requiring more study.

Besides that, the careful reader of the derivation will wonder what system of logic permits

the manipulations involved, especially the substitution of sentences for variables followed by

the immediate use of the results of the substitution. There are various systems that can be

used, e.g. quasi-quotation as used in the Lisp or KIF, use of back-quotes, or the ideas of

[McC79b]. Furthermore, the drafts of this paper have motivated a number of researchers

to develop logics of context in which the above would be a valid derivation; these include

[BM93, Nay94, AS, BBM]. However, at present we are more attached to the derivation than

to any speci�c logical system.

As a further example, consider rules for lifting statements like those of section 1 to one

in which we can express statements about Justice Holmes's opinion of the Sherlock Holmes

stories.

5 Natural Deduction via Context

The formal theory of context can be used to represent inference and reason in the style of

natural deduction. This requires lifting axioms (or lifting rules) to treat the context which

a reasoning system is in as a formal object. If p is a sentence and we are in some context c,

we de�ne a new context assuming(c; p) so that it validates the following rules:

importation c : p � q ` assuming(c; p) : q

discharge assuming(c; p) : q ` c : p � q

Note that these rules can be replaced by lifting axioms. Thus importation is replaced by

(8cpq)(ist(c; p � q) � ist(assuming(c; p); q))(19)

To make the presentation simpler we write them in the rule form. An interesting rule which

can be derived from the above is

assumption ` assuming(c; p) : p

8

In analogy to the restriction to the rule of 8 introduction in formal systems of natural

deduction, we will have to restrict the rule of universal generalization to ensure that the

variable being generalized does not occur free in any of the assuming(c; p) terms of the

current context.

To illustrate the rules we now give a natural-deduction style proof of the above theorem,

which was introduced in x4. This theorem involves the lifting of the theory of above into

the context of situation calculus. The proof should be compared to the Hilbert style proof

which was given in x4.

Proof (above): We begin with the) direction of formula 4

blocks : (8xys)(on(x; y; s) � ist(spec-sit(s); on(x; y)))(20)

It follows by universal instantiation that

blocks : on(x; y; s) � ist(spec-sit(s); on(x; y))(21)

By the importation rule we get

assuming(blocks; on(x; y; s)) : ist(spec-sit(s); on(x; y))(22)

Therefore, by entering the spec-sit(s) context we get

spec-sit(s) : on(x; y)(23)

Now, from formulas 3 and 6 it follows that

c0 : ist(blocks; (8s)ist(spec-sit(s); (8xy)(on(x; y) � above(x; y))))(24)

By entering blocks we get

blocks : (8s)ist(spec-sit(s); (8xy)(on(x; y) � above(x; y)))(25)

By instantiating the universal quanti�er over situations we get

blocks : ist(spec-sit(s); (8xy)(on(x; y) � above(x; y)))(26)

Therefore, by propositional logic we have

blocks : on(x; y; s) � ist(spec-sit(s); (8xy)(on(x; y) � above(x; y)))(27)

Therefore, by the importation rule we get

assuming(blocks; on(x; y; s)) : ist(spec-sit(s); (8xy)(on(x; y) � above(x; y)))(28)

Now, by entering the spec-sit(s) context we get

spec-sit(s) : (8xy)(on(x; y) � above(x; y))(29)

9

By logic from formulas 23 and 29 it follows that

spec-sit(s) : above(x; y)(30)

By exiting the spec-sit(s) context we get

assuming(blocks; on(x; y; s)) : ist(spec-sit(s); above(x; y))(31)

The (direction of formula 5

blocks : (8xys)ist(spec-sit(s); above(x; y)) � above(x; y; s)(32)

By propositional logic we have

blocks : on(x; y; s) � (8xys)ist(spec-sit(s); above(x; y)) � above(x; y; s)(33)

Together with the importation rule the above formula allows us to infer

assuming(blocks; on(x; y; s)) : (8sxy)ist(spec-sit(s); above(x; y)) � above(x; y; s)(34)

By logic from (31) and (34) we get

assuming(blocks; on(x; y; s)) : above(x; y; s)(35)

Using the rule discharge it follows that

blocks : on(x; y; s) � above(x; y; s)(36)

Therefore, by universal generalization we obtain what was to be proved

blocks : (8sxy)on(x; y; s) � above(x; y; s)(37)

above

In the above proof we have entered the context assuming(c; p) in a number of instances.

This creates an interesting example because it might not be obvious in which context the

term assuming(c; p) is to be interpreted. However, since the logic needs to keep track of

which contexts were entered in the process of reasoning, the answer becomes obvious: the

term assuming(c; p) will be interpreted in the next outer context (see x3 for discussion on

sequences of contexts).

10

5.1 Postponing Preconditions via assuming

We conclude by noting that the assuming function, as de�ned in this section, is also useful

for formalizing a number of other phenomena. Examine a naive formalism for reasoning

about action where the preconditions for
ying are given by the formula

c : have-ticket(x) ^ clothed(x) � can-
y(x):(38)

In common sense reasoning we want the ability to postpone dealing with the precondition of

being clothed. This can be done by considering a context which assumes that one is clothed

assuming(c; clothed(x)). By the importation rule and the formula 38 we get

assuming(c; clothed(x)) : have-ticket(x) � can-
y(x):(39)

Thus in the context assuming(c; clothed(x)) we do not need to consider the precondition of

being clothed in order to infer that one can
y.

Note that we are only developing an ontology for representing this phenomena, and are

not dealing with pragmatic issues like which context a reasoning system will start in, and

how the system will decide to consider a context making an additional assumption. In fact,

from a pragmatic viewpoint the above process might need to be completely reversed. The

reasoning system may realize that its current problem solving context c is making a particular

assumption p that needs to be discharged. Then it will need to consider a context c0 such

that c = assuming(c0; p).

The assuming function is also needed for representing discourse. In x7 we show how it is

used to handle replies to a query; in that section we call the assuming function \reply".

6 Integrating Databases

We see the use of formalized contexts as one of the essential tools for reaching human

level intelligence by logic based methods. However, formalized contexts have shorter term

applications. In this section we deal with one short term application: we show how two data

bases, which were not originally intended to be used together, can be integrated by lifting

their contents into a wider context. We proceed with an example.

6.1 The GE, Navy, and Air Force Example

Here's a hypothetical example. Imagine that the Navy, the Air Force and General Electric

have separately developed standards for databases containing facts about prices of jet engines

and parts. But these standards are not the same. Suppose that associated with each item

is a price. Suppose further

1. For GE, the price is a retail price not including spare parts.

2. For the Navy, the price is the Government's purchase price including spare parts.

3. For the Air Force, the price includes additional inventory costs. It includes spare parts

but a di�erent assortment than the Navy's.

11

Now suppose that associated with each database are many programs that use the infor-

mation. For example, General Electric can compute the cost of equipment packages taking

into account discounts. The Navy can compute the economic ordering quantity for use when

supplies get low.

Suppose now that some plan requires that unexpectedly a certain item made by General

Electric is required in large quantity by both the Navy and the Air Force and deliveries and

purchases from various General Electric warehouses have to be scheduled in co-ordination.

The context in which the reasoning is done requires the lifting of various information from

the contexts of the separate databases to the reasoning context. In the course of this lifting,

the sentences representing the information are translated into new forms appropriate for the

reasoning context.

6.2 A Simple Formalization

In this simple case, assume that the Air Force and Navy data bases need to be updated on

the new General Electric prices. The GE database lists the list price, i.e. the price at which

GE is selling the engine. The Navy database lists the price which Navy will need to pay for

the engine and its assortment of spare parts, if it decides to use GE.

In order to reason with multiple databases, cps, an ad hoc context for reasoning about

the particular problem, may be required. The problem solving context cps contains objects

denoting the General Electric context cGE, the Navy context cN, and the Air Force context

cAF. This enables us to talk about facts which are contained in the corresponding databases.

If for example the GE database contains a fact price(FX-22-engine) = $3600K then the

sentence ist(cGE; price(FX-22-engine) = $3600K) is true in cps.

Di�erent data bases might make di�erent assumptions. For instance, prices of engines

in some contexts might or might not include spare parts or warranties. We need the ability

to represent this information in cps. Function spares, when given a product and a context,

returns the spares which the given context assumes necessary and thus includes in the price

of the product. For example, spares(cNAVY ; x) is the set of spares that Navy assumes will

be included in the price of the product x. Function warranty, when given a product and a

context, returns the name of the warranty assumed for the product in the given context. For

example, warranty(cNAVY ; x) is the name of the warranty which Navy assumes is included

in the price of the product x. In this note we are treating warranty in the same manner as

we would treat spare parts or additional optional features. It would be the responsibility of

another formalization to \understand" the warranty and give axioms describing the exact

obligations that GE has to its clients. Note that information about spares and warranties

assumed by the Navy will probably not be contained in the Navy data base. (Otherwise,

we would use value (cNAVY ; spares(x)) rather than spares(cNAVY ; x) to refer to the spares that

Navy assumes will be included in the price of the product x.) Rather, this information is kept

in in some manual. But for these data bases to be used jointly, the spares information needs

to be included; we assume that it is described declaratively in cps. Finally, the vocabulary

of cps also has a function GE-price, which to every object assigns its corresponding price in

dollars.

In the problem solving context cps we also represent the fact that GE lists engine prices

12

without any spares, while Navy assumes spare parts to be included in the price of a product.

This is done by lifting axioms, which de�ne how the notion of price in di�erent databases

translates into the problem solving context:

cps : (8x)value(cGE; price(x)) = GE-price(x)(40)

cps : (8x)value(cNAVY ; price(x)) = GE-price(x) +GE-price(spares(cNAVY ; x))+(41)

GE-price(warranty(cNAVY ; x))

expressing that the price listed in the Navy data base is the price of the engine, some bag of

spares, and the particular warranty that are assumed by the Navy.

cps : (8x)value(cAF; price(x)) = f(x;GE-price(x);GE-price(spares(cAF; x));(42)

GE-price(warranty(cAF; x)))

where f is some function which determines the total price of an item and spares, also taking

into account the inventory cost. Note that f might not be precisely known, in which case

we might decide to only give some approximate bounds on f .

Now we work out an example. Assume that we are given the prices as listed in the GE

data base; i.e. the following formulas hold in cGE:

cGE : price(FX-22-engine) = $3600K(43)

cGE : price(FX-22-engine-fan-blades) = $5K(44)

cGE : price(FX-22-engine-two-year-warranty) = $6K(45)

Information about spares and warranties will not be found in the cGE data base and will

probably require looking up in some manual or description of the the data base. We need to

enter this information into the the problem solving context:

cps : spares(cNAVY ;FX-22-engine) = FX-22-engine-fan-blades(46)

cps : warranty(cNAVY ;FX-22-engine) = FX-22-engine-two-year-warranty(47)

Then we can compute the price of the FX-22 jet engine for the Navy. The following formula

is a theorem, i.e. it follows from the above axioms.

Theorem (engine price):

cNAVY : price(FX-22-engine) = $3611K

In order to compute this price for the Air Force, the inventory cost given by function f

would need to be known.

13

Proof (engine price): First we exit the cGE context thus rewriting formulas 43, 44, and

45 as

cps : value(cGE; price(FX-22-engine)) = $3600K(48)

cps : value(cGE; price(FX-22-engine-fan-blades)) = $5K(49)

cps : value(cGE; price(FX-22-engine-two-year-warranty)) = $6K(50)

From formulas 40 and 48 it follows that

cps : GE-price(FX-22-engine) = $3600K(51)

From formulas 40 and 49 it follows that

cps : GE-price(FX-22-engine-fan-blades) = $5K(52)

Therefore, using formula 46, we get

cps : GE-price(spares(cNAVY ;FX-22-engine)) = $5K(53)

In a similar fashion, from formulas 40, 47 and 50 we can conclude that

cps : GE-price(warranty(cNAVY ;FX-22-engine)) = $6K(54)

From formulas 51, 53, and 54 if follows that

cps : GE-price(FX-22-engine) +GE-price(spares(cNAVY ;FX-22-engine))+(55)

GE-price(warranty(cNAVY ; x)) = $3611K

Then, using formula 41 we can conclude that

cps : value(cNAVY ; price(FX-22-engine)) = $3611K(56)

By entering cNAVY we get

cNAVY : price(FX-22-engine) = $3611K(57)

engine�price

In the above proof we are assuming that all constants denote the same object in all

contexts, i.e. that all constants are rigid designators. Consequently constants can be sub-

stituted for universally quanti�ed variables by the universal instantiation rule. Generalizing

the proof is straight forward if we drop this assumption.

14

6.3 Formalization for Bargaining

Now assume that the air force database contains the price air force plans to pay for a product,

i.e. the included in the budget. Like before, the GE database contain the list price, which

will probably be higher than the air force budget price. This formalization is suited for use

by some bargaining agents or programs. The bargaining agent for the air force will through

negotiation attempt to convince the GE agent to lower the GE list price to the air force

budget price (or some price that would be acceptable to the air force).

The bargaining agents will work in some problem solving context cps. This context con-

tains constants denoting the various data bases which will be relevant to the bargaining; in

our case these will be the General Electric context cGE, and the Air Force context cAF. Con-

text cps contains functions which represent the budget price and the list price of a product.

Function manufacturer-price, when given a context of a manufacturer and a product, returns

the price at which the product is o�ered for sale by the manufacturer; functions budget-price,

when given a context of a customer and a product, returns the price which the customer is

willing to pay for the product. Like in the previous example, cps can represent the spares

associated with an engine. Function spares, when given a product and an object, returns

the spares which the given context assumes necessary and thus included in the price of the

product.

The air force and GE will need to bargain in order to negotiate a price which is acceptable

to both parties. However, since unlike GE, the air force assumes that the price will include

a set of spare parts, the lifting axioms will be needed to adjust the prices in the two data

bases to ensure that both the budget price and the list price pertain to the same package.

The lifting axioms are:

cps : (8x)value(cGE; price(x)) = manufacturer-price(cGE; x)(58)

cps : (8x)value(cAF; price(x)) = budget-price(cAF; x) + budget-price(cAF; spares(cAF; x))(59)

The lifting axioms will enable us to derive the budget-price and manufacturer-price prices

in cps, both of which pertain to the engine only, excluding any spares. These can then be

used by the bargaining programs to negotiate a price and administrate a sale.

Note again the di�erence between this formalization and the previous one. In the previous

subsection the price function in both data bases referred to the price which was actually being

paid for a product. Therefore, the lifting axioms were used to directly infer the price in one

data base based on the price listed in another. In this example, on the other hand, given the

list price the lifting axioms can not be used to work out the budget price. The lifting axioms

simply ensure that both the list price and the budget price talk only about the engine, and

do not implicitly assume the inclusion of spare parts.

6.4 Treating value as an Abbreviation

It will be possible to de�ne value as an abbreviation in a context language which contains

the ist . We �rst deal with the case where all contexts have the same domains. We de�ne

value as an abbreviation:

value(c; x) = y � (8z)y = z � ist(c; x = z)(60)

15

Eliminating the value abbreviation, the above formulas are equivalent to:

cps : (8xy)ist(cGE; y = price(x)) � y = GE-price(x)(61)

cps : (8xy)ist(cNAVY ; y = price(x)) � y = GE-price(x) +GE-price(spares(cNAVY ; x))(62)

cps : (8xy)ist(cAF; y = price(x)) � y = f(x;GE-price(x);GE-price(spares(cAF; x)))(63)

If the domains of all the contexts are not the same, then the above formulas are not

intuitively correct. Instead, a domain precondition needs to be added to all the formulas.

For example instead of formula 61, we would write

cps : (8xy)(in(c; x) ^ in(c; y)) � (ist(cGE; y = price(x)) � y = GE-price(x))(64)

where in(c; x) is true i� the object denoted by x is in the domain of the context denoted by

c. 1

Note however, if we simply change the abbreviation of value to

value(c; x) = y � in(c; x) � (8z)(in(c; z) � (y = z � ist(c; x = z)))(65)

then the axioms involving value (axioms 40-42 and 58-59) will still be true. In other words,

the previous formalizations remain unaltered. To verify this, note that substituting this new

de�nition for value (given in formula 65) into formula 40 gives us formula 64, rather then

formula 61.

We also need to assert that the problem solving context cps contains all the objects

present in the other contexts which are involved in the particular problem solving process.

In some outer context c0 we would write:

c0 : (8c)involved-in-ps(c) � (8x)(in(c; x) � in(cps; x)):(66)

In both cases mentioned above, the rules of entering and exiting a context for the value

function will follow from the general rules enter and exit for the ist .

7 Representing Discourse

Formal theory of context is needed to provide a representation of the context associated

with a particular circumstance. In this section we illustrate this by showing how our formal-

ism can be used to represent the context of a conversation in which terms have particular

meanings that they wouldn't have in the language in general. We examine question/answer

conversations which are simply sequence of questions and answers. In this simple model we

allow two types of questions:

1The main implication connective in this formula will probably not be classical. However this is a technical

point which we address elsewhere.

16

propositional questions are used to inquire whether a proposition is true or false; they

require a yes or no answer. In the language we introduce a special proposition yes

which is used to answer these questions.

qualitative questions are used to �nd the objects of which a formula holds; in the language

we introduce a unary predicate answer which holds of these objects.

In order to know what is being communicated in a discourse, as well as reason about

a discourse in general, we need a way of representing the discourse. To do this in the

framework of the formal theory of context, we identify a new class of contexts, the discourse

contexts. Discourse contexts are not only characterized by the sentences which are true

in them but also by the intended meaning of their predicates, which might vary from one

discourse context to the next.

We represent a discourse with a sequence of discourse contexts, each of which in turn

represents the discourse state after an utterance in the discourse. Our attention is focused

only on discourses which are sequences of questions and replies: [q1; r1; q2; r2; : : : ; qn; rn].

Thus, we can represent such a discourse with a sequence of discourse contexts:

[cd; query(cd; q
1); reply(query(cd; q

1); r1); : : :

: : : ; reply(query(reply(� � � reply(query(cd; q
1); r1) � � � ; rn�1); qn); rn)]

s.t. (i) cd
0 is some discourse context in which the initial question (q1) was asked; (ii) the

function query takes a question � and some discourse context cd (representing the discourse

state before the question �) and returns the discourse context representing the discourse

state after asking the question � in cd; (iii) the function reply takes a reply � and some

discourse context cd (representing the discourse state before before replying �) and returns

the discourse context representing the discourse state after replying � in cd. In order to

reason about the discourse we now only need the properties of the functions query and reply.

These will be made precise in the next subsection.

Since we are not concerned with solving the syntactic and semantic problems addressed

by the natural language community, we are assuming the system is given the discourse

utterances in the form of logical formulas. This assumption is in line with [McC90a]; in

McCarthy's terminology we would say that the discourse has been processed by both the

parser and the understander to produce a logical theory. Note that the process of producing

this theory is not precisely de�ned, and it is not completely clear how much common sense

information is needed to generate it. It might turn out that producing such a theory requires

the solution of the problem we had set out to solve. But for the time being let us take a

positive perspective and assume the discourse theory is given.

Note that our simple model will not capture a number of other aspects of a discourse

state, as have been studied by computational linguists [GS86]. For example, we have com-

pletely ignored all pragmatic issues which are in fact considered central to discourse analysis.

Extending the notion of the discourse state is part of our plan for future research.

17

7.1 The Logic of query and reply

In this section we give the properties of the functions query and reply, which are central for

representing question/answer discourses. Since the query and reply functions are treated in

the style of situation calculus, we do not need to change our basic theory of context, but

simply give the axioms that formalize the two functions.

Intuitively, the query function will set up a context in which the reply to the question

will be interpreted. For example, the context resulting in asking some proposition p will

have the property that yes in that context will be interpreted as p. Thus query only changes

the semantic state of the discourse context. The reply function will do a simple update of

information: the formulas true in the context resulting in replying p in cd will be exactly

those formulas which are conditionally true on p in cd. Thus the reply function only changes

the epistemic state of the discourse context. We now make these notions more precise.

The following axioms characterize the functions query and reply.

interpretation axiom (propositional) if � is a closed formula, then

ist(query(�; �); � � yes)

frame axiom (propositional) if � is a closed formula, and yes does not occur in , then

ist(�;) � ist(query(�; �);)

interpretation axiom (qualitative) if x is the only variable occurring free in �, then

ist(query(�; �(x)); �(x) � answer(x))

frame axiom (qualitative) if x is the only variable occurring free in �, and answer does

not occur in , then

ist(�;) � ist(query(�; �(x));)

reply axiom ist(reply(�; �);) � ist(�; � �)

We proceed to illustrate the axioms and their use with an example.

7.2 Example: Air Force{GE Discourse

We examine the following hypothetical discourse taking place between the Air Force and

General Electric:

1. AF: Will you bid on the engine for the FX22?

2. GE: Yes.

18

3. AF: What is your bid?

4. GE: $4M.

5. AF: Does that include spares?

6. GE: Yes.

We transcribe the above discourse in our logic as a sequence of discourse contexts, s.t.

c1 = query(c;will-bid-on(engine(FX22)))

c2 = reply(c1; yes)

c3 = query(c2; price(engine(FX22); x))

c4 = reply(c3; answer($4M))

c5 = query(c4; price(x) � ist(ckb; price-including-spares))

c6 = reply(c5; yes)

where c is the initial discourse context. To simplify presentation, in this section we take

price to be a predicate; in x4 we have illustrated how it can be treated as a function by using

value instead of ist .

7.3 Deriving Properties of the Air Force{GE Discourse

We now show some properties of the discourse which can be derived with our logic.

7.3.1 First Question: Propositional Case

The discourse begins with a propositional question. We show how they modify the discourse

state.

Theorem (c2): ist(c2;will-bid-on(engine(FX22)))

Proof (c2): Instantiating the �rst axiom for the propositional questions, we get

ist(query(c;will-bid-on(engine(FX22)));will-bid-on(engine(FX22)) � yes)

which, by de�nition of c1, can be written as

ist(c1;will-bid-on(engine(FX22)) � yes)

Instantiating the axiom for reply we have

ist(reply(c1; yes);will-bid-on(engine(FX22))) � ist(c1; yes � will-bid-on(engine(FX22)))

and it follows from the two lines above that

ist(reply(c1; yes);will-bid-on(engine(FX22)))

which by de�nition of c2 we can write as

ist(c2;will-bid-on(engine(FX22)))

c2

19

7.3.2 Second Question: Qualitative Case

The reasoning for this qualitative question is similar to the propositional question.

Theorem (c4): ist(c4; price(engine(FX22); $4M))

Proof (c4): We begin with an instance of the �rst axiom for qualitative questions

ist(query(c2; price(engine(FX22); x)); price(engine(FX22); x) � answer(x))

which, by de�nition of c3, can be written as

ist(c3; price(engine(FX22); x) � answer(x))

Instantiating the axiom for reply we have

ist(reply(c3; answer($4M)); price(engine(FX22); $4M)) �

� ist(c3; answer($4M) � price(engine(FX22); $4M))

and it follows from the two lines above that

ist(reply(c3; answer($4M)); price(engine(FX22); $4M))

which by de�nition of c4 we can write as

ist(c4; price(engine(FX22); $4M))

c4

Due to the frame axioms, the conclusion established in the �rst question

ist(c2;will-bid-on(engine(FX22)))

also holds in context c4.

Theorem (frame): ist(c2;will-bid-on(engine(FX22)))

Proof (frame): We �rst instantiate the second axiom for qualitative questions to get

ist(c2;will-bid-on(engine(FX22))) �

� ist(query(c2; price(engine(FX22); x));will-bid-on(engine(FX22)))

The two lines above imply

ist(query(c2; price(engine(FX22); x));will-bid-on(engine(FX22)))

20

which, by de�nition of c3, can be written as

ist(c3;will-bid-on(engine(FX22)))

Now we apply the following instance of the reply axiom

ist(reply(c3; answer($4M));will-bid-on(engine(FX22))) �

� ist(c3; answer($4M) � will-bid-on(engine(FX22)))

to get

ist(reply(c3; answer($4M));will-bid-on(engine(FX22)))

which, by de�nition of c4, can be written as

ist(c4;will-bid-on(engine(FX22)))

frame

7.3.3 Third Question: Dealing with Ambiguity

We are assuming that the predicate price is ambiguous in the discourse contexts since it can

be ambiguously interpreted as either price-including-spares or as price-not-including-spares

in some knowledge base. In the third question the predicate is disambiguated for context

c6. This will allow us to prove that the GE bid on the FX22 engine is $4M including spare

parts. Note that we will have to state the above in the kb context because the discourse

contexts are not expressive enough to distinguish between the price including spares and the

price excluding spares (which in fact was the source of ambiguity).

Theorem (kb): ist(ckb,price-including-spares(engine(FX22),$4M))

Proof (kb): By reasoning similar to the �rst question, we can conclude

ist(c6; price(x; y)) � ist(ckb; price-including-spares(x; y))

From the frame axioms we get

ist(c6; price(engine(FX22); $4M))

similarly to the frame derivation in the second question. Now the theorem follows from the

above formulas. kb

21

8 Transcending Contexts

Human intelligence involves an ability that no-one has yet undertaken to put in computer

programs|namely the ability to transcend the context of one's beliefs.

That objects fall would be expected to be as thoroughly built into human mental structure

as any belief could be. Nevertheless, long before space travel became possible, the possibility

of weightlessness was contemplated. It wasn't easy, and Jules Verne got it wrong when he

thought that there would be a turn-over point on the way to the moon when the travellers,

who had been experiencing a pull towards the earth would suddenly experience a pull towards

the moon.

In fact, this ability is required for something less than full intelligence. We need it to be

able to comprehend someone else's discovery even if we can't make the discovery ourselves.

To use the terminology of [MH69], it is needed for the epistemological part of intelligence,

leaving aside the heuristic.

We want to regard the system as being at any time within an implicit outer context; we

have used c0 in this paper. Thus a sentence p that the program believes without quali�cation

is regarded as equivalent to ist(c0; p), and the program can therefore infer ist(c0; p) from

p, thus transcending the context c0. Performing this operation again should give us a new

outer context, call it c
�1. This process can be continued inde�nitely. We might even consider

continuing the process trans�nitely, for example, in order to have sentences that refer to the

process of successive transcendence. However, I have no present use for that.

However, if the only mechanism we had is the one described in the previous paragraph,

transcendence would be pointless. The new sentences would just be more elaborate versions

of the old. The point of transcendence arises when we want the transcending context to relax

or change some assumptions of the old. For example, our language of adjacency of physical

objects may implicitly assume a gravitational �eld, e.g. by having relations of on and above.

We may not have encapsulated these relations in a context. One use of transcendence is to

permit relaxing such implicit assumptions.

The formalism might be further extended to provide so that in c
�1 the whole set of

sentences true in c0 is an object truths(c0).

Transcendence in this formalism is an approach to formalizing something that is done in

science and philosophy whenever it is necessary to go from a language that makes certain

assumptions to one that does not. It also provides a way of formalizing some of the human

ability to make assertions about one's own thoughts.

The usefulness of transcendence will depend on there being a suitable collection of non-

monotonic rules for lifting sentences to the higher level contexts.

As long as we stay within a �xed outer context, it seems that our logic could remain

ordinary �rst order logic. Transcending the outermost context seems to require a changed

logic with what Tarski and Montague call re
exion principles. They use them for sentences

like true(p�) � p, e.g \ `Snow is white.' is true if and only if snow is white."

The above discussion concerns the epistemology of transcending contexts. The heuristics

of transcendence, i.e. when a system should transcend its outer context and how, is entirely

an open subject.

22

9 Relative Decontextualization

Quine [1969] uses a notion of \eternal sentence", essentially one that doesn't depend on

context. This seems a doubtful idea and perhaps incompatible with some of Quine's other

ideas, because there isn't any language in which eternal sentences could be expressed that

doesn't involve contexts of some sort. We want to modify Quine's idea into something we

can use.

The usefulness of eternal sentences comes from the fact that ordinary speech or writing

involves many contexts, some of which, like pronoun reference, are valid only for parts

of sentences. Consider, \Yes, John McCarthy is at Stanford University, but he's not at

Stanford today". The phrase \at Stanford" is used in two senses in the same sentence. If

the information is to be put (say) in a book to be read years later by people who don't

know McCarthy or Stanford, then the information has to be decontextualized to the extent

of replacing some of the phrases by less contextual ones.

The way we propose to do the work of \eternal sentences" is called relative decontextu-

alization. The idea is that when several contexts occur in a discussion, there is a common

context above all of them into which all terms and predicates can be lifted. Sentences in

this context are \relatively eternal", but more thinking or adaptation to people or programs

with di�erent presuppositions may result in this context being transcended.

10 Mental States as Outer Contexts

A person's state of mind cannot be adequately regarded as the set of propositions that he

believes|at least not if we regard the propositions as sentences that he would give as answers

to questions. For example, as we write this we believe that George Bush is the President of

the United States, and if we were entering information in a database, we might write

president(U.S.A.) = George.Bush.

However, my state of mind includes, besides the assertion itself, my reasons for believing

it, e.g. he has been referred to as President in today's news, and we regard his death

or incapacitation in such a short interval as improbable. The idea of a TMS or reason

maintenance system is to keep track of the pedigrees of all the sentences in the database and

keep this information in an auxiliary database, usually not in the form of sentences.

Our proposal is to use a database consisting entirely of outer sentences where the pedigree

of an inner sentence is an auxiliary parameter of a kind of modal operator surrounding the

sentence. Thus we might have the outer sentence

believe(president(U.S.A.) = George.Bush; because : : :);

where the dots represent the reasons for believing that Bush is President.

The use of formalized contexts provides a convenient way of realizing this idea. In an

outer context, the sentence with reasons is asserted. However, once the system has committed

itself to reasoning with the proposition that Bush is President, it enters an inner context

with the simpler assertion

president(U.S.A.) = George.Bush.

23

If the system then uses the assertion that Bush is President to reach a further conclusion,

then when it leaves the inner context, this conclusion needs to acquire a suitable pedigree.

Consider a belief revision system that revises a database of beliefs solely as a function of

the new belief being introduced and the old beliefs in the system. Such systems seem inad-

equate even to take into account the information used by TMS's to revise beliefs. However,

it might turn out that such a system used on the outer beliefs might be adequate, because

the consequent revision of inner beliefs would take reasons into account.

11 Remarks

1. Guha has put contexts into Cyc, largely in the form of microtheories. The above-theory

example is a microtheory. See [Guh91] for some of the details.

2. We have mentioned various ways of getting new contexts from old ones: by specializing

the time or place, by specializing the situation, by making abbreviations, by special-

izing the subject matter (e.g. to U.S. legal history), by making assumptions and by

specializing to the context of a conversation. These are all specializations of one kind

or another. Getting a new context by transcending an old context, e.g. by dropping

the assumption of a gravitational �eld, gives rise to a whole new class of ways of getting

new contexts.

These are too many ways of getting new contexts to be treated separately.

3. We have used natural language examples in this article, although natural language is

not our main concern. Nevertheless, we hope that formalizing context in the ways we

propose may be useful in studying the semantics of natural language. Natural language

exhibits the striking phenomenon that context may vary on a very small scale; several

contexts may occur in a single sentence.

Consider the context of an operation in which the surgeon says, \Scalpel". In context,

this may be equivalent to the sentence, \Please give me the number 3 scalpel".

4. ist(c; p) can be considered a modal operator dependent on c applied to p. This was

explored in [Sho91].

5. It would be useful to have a formal theory of the natural phenomenon of context,

e.g. in human life, as distinct from inventing a form of context useful for AI systems

using logic for representation. This is likely to be an approximate theory in the sense

described in [McC79a]. That is, the term \context" will appear in useful axioms and

other sentences but will not have a de�nition involving \if and only if".

6. Useful nonmonotonic rules for lifting will surely be more complex than the examples

given.

24

Acknowledgments

The development of these ideas has bene�tted from discussions with Tom Costello, Mike

Genesereth, Fausto Giunchiglia, R. V. Guha, Ian Mason, and Carolyn Talcott. Guha wrote

his thesis [Guh91] while this article was going through many versions as the ideas developed,

and the mutual in
uences cannot be speci�ed.

This work was partly supported by DARPA contract NAG2-703 and ARPA/ONR grant

N00014-94-1-0775.

References

[AS] Giuseppe Attardi and Maria Simi. A formalization of viewpoints. Fundamenta

Informaticae. To appear. Also technical report TR-93-062 at the International

Computer Science Institute, Berkeley, California 94704-1105.

[BBM] Sa�sa Buva�c, Vanja Buva�c, and Ian A. Mason. Metamathematics of contexts.

Fundamenta Informaticae. To appear.

[BM93] Sa�sa Buva�c and Ian A. Mason. Propositional logic of context. In Proceedings of

the Eleventh National Conference on Arti�cial Intelligence, 1993.

[GS86] Barbara J. Grosz and Candace L. Sidner. Attention, intention, and the structure

of discourse. Computational Linguistics, 12:175{204, 1986.

[Guh91] R. V. Guha. Contexts: A Formalization and Some Applications. PhD thesis,

Stanford University, 1991. Also published as technical report STAN-CS-91-1399-

Thesis, and MCC Technical Report Number ACT-CYC-423-91.

[KW84] Jussi Ketonen and Joseph S. Weening. EKL|an interactive proof checker: User's

reference manual. Technical report, Computer Science Department, Stanford Uni-

versity, Stanford, California, 1984.

[McC79a] John McCarthy. Ascribing mental qualities to machines. In Martin Ringle, edi-

tor, Philosophical Perspectives in Arti�cial Intelligence. Humanities Press, 1979.

Reprinted in [McC90b].

[McC79b] John McCarthy. First order theories of individual concepts and propositions.

In Donald Michie, editor, Machine Intelligence, volume 9. Edinburgh University

Press, Edinburgh, 1979. Reprinted in [McC90b].

[McC87] John McCarthy. Generality in arti�cial intelligence. Comm. of ACM, 30(12):1030{

1035, 1987. Also in ACM Turing Award Lectures, The First Twenty Years, ACM

Press, 1987; and reprinted in [McC90b].

[McC90a] John McCarthy. An example for natural language understanding and the AI

problems it raises. In Formalizing Common Sense: Papers by John McCarthy.

Ablex Publishing Corporation, 355 Chesnut Street, Norwood, NJ 07648, 1990.

25

[McC90b] John McCarthy. Formalizing Common Sense: Papers by John McCarthy. Ablex

Publishing Corporation, 355 Chesnut Street, Norwood, NJ 07648, 1990.

[McC93] John McCarthy. Notes on formalizing context. In Proceedings of the Thirteenth

International Joint Conference on Arti�cial Intelligence, 1993.

[MH69] John McCarthy and Patrick Hayes. Some philosophical problems from the stand-

point of arti�cial intelligence. In B. Meltzer and D. Michie, editors, Machine

Intelligence, volume 4, pages 463{502. Edinburgh University Press, Edinburgh,

1969. Reprinted in [McC90b].

[Nay94] P. Pandurang Nayak. Representing multiple theories. In Proceedings of the Twelfth

National Conference on Arti�cial Intelligence, 1994.

[Sho91] Yoav Shoham. Varieties of context. In Vladimir Lifschitz, editor, Arti�cial In-

telligence and Mathematical Theory of Computation: Papers in Honor of John

McCarthy. Academic Press, 1991.

/@sail.stanford.edu:/u/buvac/e94/context.tex: created 1991 winter, latexed 1994 Oct 9 at 9:07 p.m.

26

