
Generalized Projections: a Powerful

Query-Optimization Technique �

Venky Harinarayan Ashish Guptay

Abstract

In this paper we introduce generalized projections (GP). GPs capture aggregations, group-
bys, conventional projection with duplicate elimination (distinct), and duplicate preserving
projections. We develop a technique for pushing GPs down query trees of Select-project-join
queries that may use aggregations likemax, sum, etc. and that use arbitrary functions in their
selection conditions. Our technique pushes down to the lowest levels of a query tree aggrega-
tion computation, duplicate elimination, and function computation. The technique also creates

aggregations in queries that did not use aggregation to begin with. Our technique is important
since applying aggregations early in query processing can provide signi�cant performance im-
provements. In addition to their value in query optimization, generalized projections unify set
and duplicate semantics, and help better understand aggregations.

1 Introduction

A fundamental problem in query processing is deciding when to drop rows (tuples) and columns

(attributes) of relations that do not contribute to the �nal result of a query. Query optimizers try

to drop irrelevant rows and columns as early as possible in query processing. Removing irrelevant

tuples and attributes early leads to smaller intermediate relations thus reducing the cost of the

query. However there is also a cost associated with discovering and discarding irrelevant tuples

and attributes. Query optimizers in commercial systems handle this trade-o� in many ways. Some

optimizers seek to minimize cost by using heuristics, others by exhaustively evaluating numerous

alternatives in a cost based manner [S79]. Yet others use a combination of heuristics and cost based

evaluation. Techniques which remove irrelevant tuples and attributes early are thus of considerable

importance in query processing. A commonly used method for removing irrelevant tuples early is

to push selections down the query tree [Ull89]. The further down a tree we can push a selection, the

earlier in processing we discard irrelevant tuples. Thus far, pushing projections down a query tree

has been used only in removing irrelevant attributes early in query processing. In this paper, we

show how projections can be used to remove irrelevant tuples as well and summarize the relevant

information contained in a relation.

We introduce the notion of a generalized projection that uni�es duplicate eliminating projec-

tions (corresponds to the SQL distinct adjective), duplicate preserving projections, groupbys, and

aggregations, in a common framework. We develop an algorithm for pushing GPs down query

trees. Thus, we are able to push duplicate elimination, aggregation, and duplicate preservation in a

�Work was supported by NSF grants IRI{91{16646 and IRI{92{23405, by ARO grant DAAL03{91{G{0177, and

by Air Force Grant F33615{93{1{1339 Authors' address: Department of Computer Science, Stanford University,

Stanford, CA 94305-2140. Email: fvenky,aguptag@cs.stanford.edu
yCurrent address: IBM Almaden Research Center, San Jose

1

uniform way resulting in query execution strategies that not derivable using existing optimization

techniques. Though selections and generalized projections both eliminate tuples, they do so in

di�erent ways. A selection compares each tuple of the relation with the selection predicate and

discards those that do not satisfy the selection predicate. A generalized projection does not work

at the level of tuples but rather at the level of a relation. The end result though is similar: both

can reduce the size of relations considerably and can thus give big performance gains if applied

early in query processing. As we shall see in the following sections, a generalized projection can be

expressed using SQL aggregation-groupby operators. Therefore, by pushing GPs down trees, we

are able to create aggregate subqueries in queries that did not originally use aggregation.

The examples below give an indication of the wide range of SQL queries to which our technique

applies and illustrate both pushing down and creation of aggregations. The optimized query trees

in the examples are produced using the algorithm given in this paper.

EXAMPLE 1.1 Consider the following schema that models an automobile manufacturer's database.

cost(M#; CP) % \$CP" is the base cost price for model \M#"

factor(M#; State; Factor) % Model \M#" has a overhead of \Factor" in \State"

sales(VId;M#; SP;Dealer; State)

% Car with ID \VId" and model \M#" was sold in \State" by \Dealer" for a sales price\$SP"

The underlined columns state the key for each relation. On the above schema, consider a query

Q1 that computes for each model the pro�t made by the car manufacturer. The following query

tree represents this query. The topmost projection, not shown, outputsM# and the corresponding

value for [sum(SP)� sum(CP �Factor)].

groupby(M#)
sum(SP) − sum(CP*Factor)

sales(VId,M#,SP,Dealer,State)
M#

cost(M#,CP) factor(M#,State,Factor)

M#,State

Figure 1: Find pro�t for company using query Q1

In the left branch of query Q1 relations factor and cost are joined to associate the multiplicative

factor for each state with the base cost price of the appropriate model. The resulting intermediate

relation R(M#; State; CP; Factor) is joined with relation sales and the total revenue is computed

by summing SP . The total cost incurred by the manufacturer is computed by summing CP�Factor

for each car sold.

The query tree of Figure 1 does the aggregation step after all the joins are done. This is the

normal way of doing aggregations in relational systems. A better option for evaluating Q1 is �rst to

compute the revenues in each state for each model by aggregating relation sales over (M#; State).

The resulting aggregate relation would be much smaller than the initial sales history table because

there are far fewer states and model numbers than the total number of cars sold. The query tree

for the rewritten query is in Figure 2.

Doing an early aggregation helps reduce the size of (and time taken in) subsequent joins and

thus reduces the overall execution cost of the query.

Now we illustrate how aggregations can be created as a result of pushing GPs. Consider query

Q2 executed by the market research department of the car manufacturer. Q2 �nds all those models

2

groupby(M#)

sales(VId,M#,SP,Dealer,State)

groupby(M#,State)

R=sum(SP), Cr=count(*)

sum(R) − sum(CP*Factor*Cr)

cost(M#,CP) factor(M#,State,Factor)
M#

M#,State

Figure 2: Query to �nd pro�t after pushing down aggregations

whose cost price after factoring in the state overhead, is more than 85% of the sales price of some

car of that model sold in that state. Such models are considered low-pro�t. Query Q2 is represented

by the following query tree:

sales(VId,M#,SP,Dealer,State)

M#
(distinct)

M#
cost(M#,CP) factor(M#,State,Factor)

M#,State

0.85*SP < CP*Factor

Figure 3: Find all low-pro�t models using query Q2

Query Q2 uses no aggregation. However, aggregation can be introduced at very low levels in

the query in order to reduce the size of joins. Let us see how relation sales might be aggregated

without a�ecting the answer of query Q2. The point to note is that all tuples of sales are not

relevant to the query. For instance consider two tuples t1 = (V 1; miata; 14K;John; CA) and

t2 = (V 2; miata; 13K;Sam;CA). Both tuples refer to cars of the same model sold in the same

state. Say that (CP �Factor) for a \miata" in CA is 13K. Both tuples t1 and t2 imply that

\miata" is a low-pro�t model. However, whenever tuple t1 causes \miata" to become a low-pro�t

model, then tuple t2 also allows the same inference because the sales price in t2 is less than the

sales price in t1. Thus, we can discard tuple t1 without a�ecting the answer to Q2. That is, we

can introduce an aggregation operation above relation sales to compute for each state and each

model, the minimum value of 0:85�SP . This minimum value determines if a model is low-pro�t.

Figure 4 shows the query tree for query Q2 after the aggregation has been created. The aggregated

sales relation has as many tuples as the product of the number of states and number of models

supplied by the manufacturer. Note, a function computation has also been pushed down to a base

relation.

sales(VId,M#,SP,Dealer,State)

groupby(M#,State)
R=min(0.85*SP)

M#
(distinct)

M#
cost(M#,CP) factor(M#,State,Factor)

M#,State

R < CP*Factor

Figure 4: Query to compute low-pro�t cars after pushing down aggregation

Q2 shows that aggregations can be introduced gainfully in queries that do not use any aggrega-

tion. Queries Q1 and Q2 are representative of queries in decision support systems. These systems

3

typically involve massive tables. The queries compute aggregate values of some attributes grouped

by other attributes that denote some �nancial or sociological class.

This example illustrated three optimizations: pushing aggregations, introducing new aggrega-

tions in queries that did not have aggregations, and pushing function computations. All three are

inferred in a uniform manner by the GP pushing algorithm we present in this paper. 2

Aggregations are a way of eliminating some tuples of a relation based on some other tuples.

Current optimizers do not use tuples in a relation R to discard other tuples in R. Duplicate

elimination is another instance of such an optimization. Currently, distinct queries are computed

by doing duplicate elimination at the very top of a query tree. distinct computations can be

pushed down query trees using the algorithm we develop. We also show how to optimize standard

duplicate preserving queries with no aggregations by introducing the count aggregate operator.

EXAMPLE 1.2 Consider query Q3 that for all models with base CP > 15K, returns the model

number of the car and names of dealers who sell cars of that model. Query Q3 preserves duplicates.

The query is represented by the left half of the following �gure. This query is a simple Select-

Project-Join query.

sales(VId,M#,SP,Dealer,State)

M#, Dealer

sales(VId,M#,SP,Dealer,State)

groupby(M#,Dealer)

X = count(*)

M#, Dealer, X

M#
cost(M#,CP)

CP>15K
M#

 CP>15K

cost(M#,CP)

Figure 5: Compute M#; Dealer such that Dealer sells cars of model M# and M# has CP >15K

The optimized query is as shown in the right half of the above �gure. In the �nal answer, counts

represent repeated tuples. If the answer requires duplicates as output, we need to output each tuple

as many times as indicated by its count. In general, if duplicates are needed in the answer then

generalized projection pushing involves keeping a count of the number of duplicates at only some

intermediate nodes. Our rewrite algorithm allow us to carry counts as an extra attribute for all

intermediate computations. Thus, in all intermediate steps, the cost of joins and selections will

be reduced because multiple tuples will be replaced by a single tuple that has an extra �eld. It is

important to note that keeping a count does not require altering the way joins are done.

Consider a database where relation sales has 1 million tuples, that involves 1000 distinct dealer

names, and 10 model numbers. In the optimized tree for query Q3, the size of the aggregated sales

relation is at most 10; 000 assuming that each dealer sells every model. Even with this conservative

assumption, the number of tuples after the join is reduced by a factor of 100. 2

Aggregations are an integral part of SQL [LCW93] and are very commonly used in decision

support systems. E�cient implementations of aggregation and groupby operators exist in most

commercial systems. The performance impact of doing aggregations early has been recognized.

For example, in the Tandem optimizer, single table aggregations are done at the disk process level

whenever possible [HJT94]. While e�cient single-table aggregation implementations are present,

such features are not used in queries where the aggregation is done after a join. The algorithm

presented in this paper allows us to push aggregations down a query tree, enabling the use of

e�cient single-table aggregation operators before joins are taken, as well as reducing the size of

4

intermediate relations. Creating aggregations also makes possible signi�cant performance gains in

conventional queries executing on operational databases that do not use aggregations as often. One

of the biggest bene�ts of our technique is that it involves no new operators: the building blocks

(aggregation-groupby operators) are already present in commercial systems.

In this paper we do not investigate in detail the interaction of our GP pushing algorithm with

an existing query optimizer. Query optimizer architecture varies widely and di�erent optimizers

would use the algorithm at di�erent stages in the optimization process. In the Starburst opti-

mizer [HFLP89], for example, the algorithm for pushing GPs could be done at query rewrite time

using heuristics to determine which GPs should be pushed further down the query tree. It is also

possible to use the GP pushing algorithm on query plans using a cost based scheme to decide

which GPs should be used in the �nal phase. To avoid getting mired in details, in this paper, we

push GPs down a query tree and assume the query optimizer can decide which GPs are useful to

evaluate in the �nal tree. Note, GPs can be translated to aggregate computations, so standard

optimizers have to deal with existing operators. Also, we use a query tree composed of standard

relational operators to represent queries. The query tree can be mapped to an optimizers internal

representation in an implementation speci�c manner. We do not discuss in detail issues relating to

when the tree was generated in query processing or what evaluation algorithm the query optimizer

uses.

We believe that generalized projections provide a new view of aggregate queries and dupli-

cate/set projections by unifying them in a common framework. Besides providing a powerful

technique for optimizing aggregate queries, this new point of view promises to yield insight into

how to better understand aggregations.

Paper Outline

In the course of this paper we develop the GP pushing algorithm in stages. We start with less

expressive queries and then progressively add features, enhancing the algorithm to arrive at a

complete solution. We proceed as follows:

In Section 2 we describe the class of queries that we consider. In Sections 3 and 4 we give

the intuition and develop the algorithm for pushing GPs down query trees for select-project-join

queries that do not preserve duplicates and that have no aggregation. In Section 5 we discuss how

generalized projections can be pushed down queries that do not preserve duplicates and that have

max-min operators. In Section 6 we give the intuition for how GPs are pushed down queries that

preserve duplicates. Then, we give the general algorithm for pushing GPs down SPJ queries that

may or may not preserve duplicates and that use the aggregation operators sum-avg-count-max-

min. In section 7 we brie
y discuss how to extend the GP pushing algorithm to query trees that

use union and di�erence.

In section 8 we discuss performance issues concerning our algorithm. We discuss the kind of

queries that we think will gain from pushing generalized projection. Finally, in Section 9 we sum-

marize the contributions of this paper and consider potential extensions of the technique introduced

in this paper.

1.1 Related Work

[Day87] mentions the importance of the relative positioning of aggregate computations and joins.

That paper describes algebraic operators that can represent general SQL queries and the paper also

describes how to choose orderings of these operators in order to get good query plans. The paper

considers the problem of discovering new join orders, and pipelining opportunities for general SQL

5

queries. In contrast, we consider the more speci�c problem of pushing and creating aggregations in

SQL queries that are expressible using query trees as discussed in Section 2. More recently, [YL93]

consider how to push groupby past joins. Their work was subsequently generalized in [CS94],

which discusses how to push down an aggregation operator that exists at the top of the query tree.

Aggregates are not introduced in query trees that had none to begin with. Our technique also

allows us to push aggregation operators past other aggregations that may be present in query trees,

and thus into views de�ned using aggregations.

[HG95] introduces the notion of tuple subsumption. Both conventional projections and aggregation-

groupby operators are tuple subsumption operators. The generalized projection we use in this paper

is based on this commonality.

2 Scope of our Results

In this paper, we consider the class of queries that can be expressed by query trees of the kind used

in the introduction. The permitted query trees have �ve types of nodes: selection nodes, projection

nodes, cross-product nodes, groupby nodes, and aggregate-groupby node pairs. The topmost node

is always a projection. This projection is the GP that is pushed down the query tree. Projections

may preserve duplicates or discard them. That is, the projection may or may not be \distinct".

In case an interior projection node discards duplicates, it can be replaced by a groupby node. We

assume that all distinct projections in the query tree are replaced by groupbys. The query tree

may also have interior duplicate-preserving projection nodes. Duplicate preserving projections in

interior nodes do not a�ect the results of a query, when the topmost node is a projection. Their

presence is purely for performance reasons, since they discard unneeded columns early and they do

not interfere with our algorithm for pushing GPs in any way.

Other than duplicate-preserving projection nodes, query trees have four other types of inte-

rior nodes. Selection nodes eliminate tuples from the input relation, groupby nodes do projec-

tion+duplicate elimination, and cross-product nodes output the cross product of two input rela-

tions. For ease of exposition we do not consider join nodes explicitly since a join is a cross-product

followed by a selection and can thus be expressed by cross-product and selection nodes. Aggregate-

groupby node pairs have a groupby node followed by an aggregate node. An aggregate-groupby

node pair produces as output a relation with one tuple for every distinct value in the input relation

of the groupby attributes. The output relation has as its attributes the groupby attributes and the

aggregate functions computed by the aggregate node.

The query tree we consider in this paper can represent single block SQL queries. The relations in

the from clause can be base relations or views. The views are themselves single block SQL queries

with the same structure. The query tree may thus have nested aggregates when the underlying

query uses nested views.

3 Intuition for Set Semantics Queries

In this section we restrict the discussion to queries whose trees have no aggregate nodes, and where

the topmost projection node eliminates duplicates. First we develop the intuition for pushing GPs

down query trees for such queries and then we develop the actual algorithm for pushing GPs. In

subsequent sections we extend the algorithm, �rst to queries that use aggregations like max and

min and �nally to queries that preserve duplicates and that use aggregations like sum. We follow

this sequence because set semantics query trees are easiest to understand and form the foundation

on which we build our algorithm.

6

Generalized Projections

The conventional projection operator is the only basic relational operator that manipulates at-

tributes (columns) of a relation. A conventional projection takes an input relation and produces

a new relation whose attributes are derived in some way from the attributes of the original rela-

tion. Aggregations in SQL are closely related to the relational projection operator. Aggregations

as de�ned in the SQL standard [ISO92] also produce a new relation given an input relation, by

manipulating attributes of the input relation.

We introduce a generalized projection operator, denoted by the symbol �, that is similar to

the aggregation operator.1 A GP takes as its argument a relation R and outputs a new relation

based on the subscript of the GP. The subscript speci�es the computation to be done on R. The

subscript has two parts:

1. A set of groupby components. We refer to them as components and not attributes because

they may be functions of attributes and not just attributes. For instance, the GP �A�B(R)

is written as the following SQL query:

select (A�B) from R groupby (A�B).

2. A set of aggregate components. For example, we can write the GP �D;max(S) (R) as the

query:

select D;max(S) from R groupby D.

Here D is the only groupby component and max(S) is the only aggregate component.

If a GP has only SQL aggregate components, like max or sum, then the GP can be expressed

using one SQL aggregate query. In the general case, GPs may have non-SQL aggregate components

in which case multiple SQL queries may be required to express them (refer to Example 3.1).

Conversely, an SQL aggregate query can be written using GPs, possibly more than one (refer to

Appendix A). In the next few paragraphs we restrict ourselves to single aggregate component GPs

for the sake of clarity. For such GPs the equivalent SQL query is obtained by copying the entire

subscript of the GP as the select clause of the SQL query and by copying the groupby components

as the arguments of the groupby clause of the SQL query. It is simple to observe that a GP has

exactly one tuple for each value of the groupby components and thus does not produce any duplicates

in its output. The conventional projection operator with set semantics �ts quite naturally into this

framework because the conventional projection �distinctD (R(D;S)) can be represented using GPs.

That is,

�
distinct

D (R(D;S)) � GP : �D (R(D;S)) � select D from R(D;S) groupby D.

In general, a GP behaves exactly like a conventional projection with set semantics if the GP has

no aggregate components, and is the same as a groupby clause in SQL. We exploit this equivalence

to push duplicate elimination down query trees by pushing GPs and later replacing them with

groupby operators. The observation that duplication elimination has been pushed down has been

made earlier by researchers [CS94]. We defer to Section 6 a discussion of how to use GPs to

represent conventional projections that preserves duplicates.

The algorithm provided in this paper give rules for pushing generalized projection operators

down a query tree. Given that GPs can represent aggregation and projections (distinct and

duplicate-preserving), we provide a uni�ed method for pushing aggregates, duplicate elimination,

and column elimination down a query tree. Pushing generalized projections also lets us create

aggregations in query trees that do not originally use aggregation.

1We refer to the relational projection operator explicitly as a conventional projection

7

Set Queries with No Aggregate Subqueries

Consider any attribute that occurs in a query tree. If the attribute is needed as an output of the

query tree, we cannot delete any distinct value of this attribute by pushing GPs down. This is

true since in the general case every distinct value of the attribute may contribute to the result.

Similarly, all distinct values of an attribute are required if the attribute participates in an equality

predicate (=; 6=). For instance, consider a generalized projection �A being pushed down a query

tree, past a selection predicate �B=C . Since we require all distinct values of B;C to make the

comparison, and we need all the distinct values of A in the answer, the GP �A;B;C is introduced

below the selection predicate. However, if the attribute only occurs in an arithmetic comparison

(<;>;�;�), we can do better. The following example illustrates how.

EXAMPLE 3.1 Consider a GP �A being pushed down a query tree, past a selection predicate

�B�C . The GP �A says that above the selection predicate, only distinct values of attribute A are

needed. The selection predicate takes as input a relation that has (at least) three attributes A;B;C

because these attributes are needed to evaluate the selection. The question is if it is possible to

eliminate some tuples from the relation input to the selection node.

Eventually we want all those A values that have associated with them a B value that satis�es

�B�C . Consider two tuples t1 = (a; 20; c1) and t2 = (a; 40; c1). Whenever 20 � c1 then 40 � c1.

That is, if tuple t1 satis�es the selection predicate then so does tuple t2. Note, both tuples

contribute the same value of A to the answer and the answer does not retain duplicates. Thus, t1

can be discarded even before the selection node, without a�ecting the �nal answer. In general, if

a tuple with a non-maximum value of B for given values of A;C satis�es the selection predicate,

then the tuple that has the maximum B value for the same A;C value will also satisfy the selection

predicate. Thus, we can discard all non-maximum values of B and pick only the maximum value

for each value of A;C. Similarly, we can argue that for each value of A;B only the minimum value

of C is relevant.

At GP push down time it is not known which of the two alternatives is more attractive and

we annotate GPs in a manner that allows both options to be pushed down the query tree. Thus,

we push the GP �A;>(B);?(C) past the selection node, where function > says that the maximum

value of B is relevant and function ? says that the minimum value of C is relevant. Similar to

conventional projection pushing, we keep the original GP when we push GPs. In this case we keep

�A above the selection node. 2

In the above example the attributes B;C are merely �lters and their actual values are not

important. In general, an attribute that occurs in an arithmetic comparison >;� is merely a

\�lter" and it is useful to retain only its maximum or minimum value and not all its distinct values.

This property is used to introduce aggregates in query trees with arithmetic comparisons. Also note,

in the above example that the structure of tuples (A;B;C) has to be maintained while computing

the maximum value of B or the minimum value of C. That is, it is not correct to pick the max

value of B and min value of C for a given value of A, since max(B) andmin(C) might come from

di�erent tuples that have the same A value. We use the functions > and ? to denote computing

the maximum and minimum value while preserving the tuple structure. > and ? are di�erent

frommax and min because the latter aggregate computations break tuple associations. Below we

describe how to evaluate a GP that has one > label. We discuss how to evaluate GPs with multiple

aggregate components in Appendix B. Note, GPs with multiple aggregate components also can

be expressed as ordinary SQL aggregate computations and can be evaluated by aggregate-groupby

operators.

Consider the GP �A;>(B)(R(A;B)). The GP is equivalent to the SQL query:

8

select A;max(B) from R groupby A.

Expressions of attributes can be used in place of attributes: pushing �A past �(B+2�D�C) gives

�A;>(B+2�D);?(C).

The above discussion gives a
avor of how a generalized projection acquires components when

it is pushed down a query tree. The acquired components may be groupby components like A

or aggregate components like >(B). Generalized projections encounter di�erent types of nodes as

they are pushed down a query tree. Below we give the intuition for how GPs change as they are

pushed past selections and cross products.

Selection Nodes: A projection�A;>(B) when pushed past a selection �C=D becomes �A;C;D;>(B).

Why? The original projection �A;>(B) requires the maximum value of B for each value of A. In

addition, the GP introduced below the selection predicate �C=D should retain all the information

needed for evaluating the selection �C=D and for computing �A;>(B). The selection �C=D requires

all distinct values of C and D. Thus, the new projection �A;C;D;>(B) is forced to groupby A;C;D

and computes the maximum value of B for each distinct value of A;C;D. This computation of

maxima over a set of groupby components (A;C;D) that is a superset of the groupby compo-

nents (A) of the original projection leads to the computation of \partial" maxima. To compute

�A;>(B) now, we need to take the maxima of all these partial maxima which is what �A;>(B) does;

in other words �A;>(B)(�A;C;D;>(B)) = �A;>(B).
2 This reasoning also gives an indication of why

aggregates, like avg, whose computations cannot be decomposed into \partial" computations of

the same type cannot be pushed down a query tree. However, we can push such aggregations down

by expressing them in terms of other aggregates that can be decomposed. For instance, avg can

be broken down into sum and count and then pushed down (refer Section 6). When we push the

projection �A;>(B) past the arithmetic comparison �C�D we get �A;>(B);>(C);?(D), as discussed

earlier.

Cross Product Nodes: Let a GP �A;A0;>(B) encounter a cross product node with attribute A0

going down the right branch and A;B down the left. As in the case of conventional projections, �A0

is pushed down the right branch and �A;>(B) is pushed down the left branch. Why? Consider the

query tree before �A;A0;>(B) is pushed down the cross product. Let there be k tuples with a given

value of A0 = a0 in the right branch. Each tuple in the left branch is repeated k times in the cross

product due to its association with A0 = a0. Thus each B in the left branch now occurs k times in

the cross product with A0 = a0. This multiplicative e�ect of the cross product does not matter for

operations like max and >, since repeated occurrences of the same element in a set do not change

the max of the set. Thus, we can push �A;A0;>(B) past the cross product with �A0 going down the

right branch and �A;>(B) down the left. In other words: �A;A0;>(B)(�A;>(B)��A0) = �A;A0;>(B).

Aggregations like sum do change though, when elements of a set are repeated and have to account

for the multiplicative e�ect of the cross product.

Besides selection and cross product nodes, a query tree also has groupby and aggregate-groupby

node pairs. Groupby nodes and aggregation-groupby node pairs can be rewritten as GPs. In our

discussion henceforth, we assume that a query tree is rewritten to use generalized projections

in place of groupby nodes and aggregate-groupby node pairs. This rewrite does not reduce the

expressiveness of the language we are considering. It only makes the discussion simpler and more

intuitive. Another simpli�cation we make is that we eliminate interior projection nodes from

the query-tree. Intuitively, these nodes can be eliminated because interior duplicate-preserving

2Assume for now that the result of a unary aggregation over column X is referred to as X. Thus, we use B to

refer to the result of >(B).

9

projections do not a�ect the �nal result. We eliminate them to simplify the discussion. Also

note that pushing GPs is strictly more powerful than pushing conventional projections. Thus, if a

redundant column can be discarded safely by an interior projection, then the GP pushing algorithm

also infers that the column can be discarded.

Thus, we consider pushing GPs past selection nodes, cross product nodes, and GP nodes.

In the next section we describe a two step algorithm that in its �rst step pushes GPs down

query trees. The GPs introduced in the tree may not all improve the query plan. Thus, some GPs

generated in the pushing process may have to be eliminated. The query optimizer decides which

GPs it wants in the �nal query tree. Our algorithm eliminates unwanted GPs in its second step

and does not require that any intermediate GPs generated be present in the �nal query tree.

4 Queries with Set Semantics

In this section we develop the GP-pushing algorithm for queries whose trees have no aggregate

nodes, and where the topmost projection node eliminates duplicates. The selection nodes are a

conjunction of predicates that use the operators <;>;�;�;=; 6=.

First, we formally de�ne the syntax of generalized projections. The syntax is slightly di�erent

from what we have used until now. The di�erence is that for each aggregate function in the GP

we introduce a variable to hold the result of the aggregate function.

P : �(U;V;:::;W;R=Lx(X);S=Ly(Y);:::;T=Lz(Z))

Each of U; V;W;X;Y;Z may be a function of attributes. For instance, X may be f(A;B) where

A;B are attributes of the relation over which P is computed. Projection P is computed over an

input relation that provides the columns used to de�ne components U; V; : : :;W;X; Y; : : : ; Z. The

relation is grouped by U; V; : : :;W . For the aggregate components X; Y; : : :; Z the result of the

aggregate function Lx; Ly; : : :; Lz is assigned to the associated variable R; S; : : :; T . The result of

applying P to an input relation is a relation that has attributes U; V; : : :;W;R; S; : : :; T . These

attributes are used by nodes and GPs that occur above P in the tree.

4.1 Strategy

GPs are incorporated into query trees using a two step process:

1. Push GPs down a query tree and annotate the query tree with a GP above each node in the

tree.

2. Rewrite the annotated query tree to incorporate the GPs that the query optimizer chooses

to evaluate and to eliminate all other GPs introduced in the push-down process.

The annotation is done in a a top-down pass in which GPs are pushed down a node at a time.

When a GP P is pushed past node N , P and N are rewritten to use the attributes de�ned by

the new GP Q that is introduced below N . Thus, after the pushing step GP P stays above N ,

albeit altered a little. The GPs can be pushed all the way down to the leaves of the tree, or to

any point in the tree as dictated by the optimizer. Finally, once the query tree has been annotated

with generalized projections, the query optimizer chooses only a few GPs as being advantageous

to evaluate. Note, the optimizer can choose to evaluate any subset of the GPs introduced by the

top-down pass. Also, the optimizer is not forced to evaluate any GP because it decided to evaluate

some other GP. All the GPs not selected by the optimizer are removed from the tree in a bottom-up

pass that rewrites the nodes and remaining GPs appropriately. The following example illustrate

the two passes.

10

4.2 Example

Consider query Q2 from Figure 3 in Example 1.1 (page 3). We have modi�ed the original query

tree to express joins as cross products followed by selections. First, we consider the top-down pass

that pushes generalized projections down the query tree.

Figure 6 shows the top-down pass. In the �gure we write generalized projection �A;��� as (A; � � �).

The GP at the very top of the tree is �M#. The left half of the �gure shows how �M# changes

when pushed past the topmost selection node. As explained in Section 3, only the minimum value of

(0:85�SP) and maximum value of (CP�Factor) need to be computed below the selection node. Also,

St; St0;M#;M#0 are added as groupby components because their values are needed in equijoins

and in the answer. After the push down, the selection node is rewritten to use the output of the

GP; namely the attributes A and B are used by the selection instead of SP;CP; Factor. The right

half of the �gure shows the GPs obtained after a further push down step, past the topmost cross

product.

(M#,M#’,St,St’,A= (R),B= (L))(M#, M#’, St, St’, A= (0.85*SP),

X

X

M#’=M#’’

M#

cost(M#’,CP)

(distinct)

X

X

M#’=M#’’

M#

cost(M#’,CP)

sales(VId,M#,SP,
 Dealer,St)

factor(M#’’,St,Factor)

sales(VId,M#,SP,
 Dealer,St)

factor(M#’’,St’,Factor)

M#=M#’, A<B
 St=St’

M#=M#’, A<B, St=St’

 B= (CP*Factor))

(distinct)

(M#’, St’, L= (CP*Factor))

(M#, St,
 R= (0.85*SP))

Figure 6: Pushing GPs down Query Q2

The GP above base relation sales cannot be pushed further. However, on the left branch the

GP can be pushed further down as discussed in Section 4.3. For the time being, we assume that

the GP push-down process stops here.

Now, the query optimizer chooses which of the GPs introduced in the tree should be evaluated.

For example, say the optimizer decides to evaluate only the generalized projection above relation

sales, i.e.,

�M#;St;R=>(0:85�SP)

(circled in Figure 7). This GP summarizes the sales table which can be expected to be very

large. The GP computes the minimum value of (0:85 � SP) for every model and state value. This

aggregate computation reduces the size of the sales table from the number of cars sold by the

company, to a table with as many tuples as the product of the number of distinct (M#; St) value

pairs.

Now, we proceed bottom-up and eliminate the other GPs from the tree. First we eliminate

�M#0;St0;L=>(CP�Factor). The elimination results in the query tree shown in the left half of Figure 7.

Next, the GP above the cross-product is eliminated to give the query tree in the right half of the

�gure. The highlighted parts of the trees show the rewriting that is done as a part of the elimination

process. The GP over relation sales can be written as an aggregation computation as shown in

Figure 4.

In the next section we describe in detail the algorithm for pushing GPs down query trees and for

rewriting the query tree based on the GPs that are selected by the optimizer.

11

M#=M#’, R<(CP*Factor),
 St=St’

(M#,M#’,St,St’,A= (R),
 B= (CP*Factor))

X

X

M#’=M#’’

M#

cost(M#’,CP)

(distinct)

factor(M#’’,St’,Factor)

M#=M#’, A<B, St=St’

sales(VId,M#,SP,
 Dealer,St)

X

X

M#’=M#’’

M#

cost(M#’,CP)

(distinct)

factor(M#’’,St’,Factor)

sales(VId,M#,SP,
 Dealer,St)

(M#, St,
 R= (0.85*SP))

(M#, St ,
 R= (0.85*SP))

Figure 7: Eliminating GPs not selected by the query optimizer

4.3 Top-down Pass

We present the algorithm for pushing GPs down a query tree in the form of a table that gives

the algebraic transformations needed for pushing GPs. In later sections, the table is enhanced to

handle queries with aggregates like sum and to handle queries that preserve duplicates.

The topmost GP is the same as the projection node that speci�es the attributes in the �nal

answer. As a GP P is pushed down the tree, the intermediate nodes determine how P changes. As

mentioned before, a query tree has three types of internal nodes, selection, cross product, and GP.

In this section we are considering queries that have no aggregate subqueries. Thus, we consider GP

nodes N that have only groupby components, and no aggregate components. Table 1 summarizes

how to determine the GP Q below a node N when a GP is a P is pushed past N . We use the

shorthand \agg" for \aggregate," \cmp" for \component," \gby" for \groupby," and \attrs" for

\attributes."

Node Contents of N Add this to P E�ect on N E�ect on P

Type to get Q

Select X = Y X and Y as gby cmps No e�ect No e�ect

X � Y , X > Y X 0 = >(X), Replace X; Y by Replace each agg cmp

Y 0 = ?(Y) as Agg cmps X 0; Y 0 A = >(B) by A = >(B0).

Add B0 = >(B) to Q

X � c X 0 = >(X) replace X by X 0 same as above

X � c X 0 = ?(X) replace X by X 0 same as above

Cross Separate GPs are pushed down the two branches L;R. Table 2 describes how

Product to infer the GP for only branch L. GP for branch R is derived similarly.

GP set of gby attrs. Copy P into Q No e�ect Eliminate P

Table 1: How to push generalized projections for distinct queries

The algorithm is very similar in structure to pushing conventional projections down a query

tree and the only di�erences are the introduction of the > and ? functions and the new attribute

names.

Note, each GP computes a conservative estimate of the amount of information needed above

any node. Thus, we do not lose any answers by computing GPs. This claim can be proved correct

by using an inductive argument.

Theorem 4.1 Consider for a distinct query Q the corresponding query tree that uses only selec-

tion, X-product, and GP nodes, and that has a distinct projection node at the top. After GPs have

12

component Property E�ect on P E�ect on QL

type

Groupby Uses attributes No e�ect Add X as a gby cmp of QL

X from only L

Uses attributes No e�ect All attributes of L that are used in

from L, R X , are made gby cmps of QL

aggregate Uses attributes Replace X = >(Y) add X 0 = >(Y) to QL

X = >(Y) from only L by X = >(Y 0)

Uses attributes No e�ect All attributes of L that are used in

from L, R Y , are made gby cmps of QL

Table 2: How to get the GP QL for branch L when GP P is pushed past a cross product

been pushed down this tree according to Table 1, the resulting tree computes the same answer as

query Q. 2

Proof: (Outline:) GPs are pushed down one node at a time. Thus the above theorem is proved by

induction over the height of the query tree. For each type of node, we prove that the answer computed by

the node is unchanged after a GP is introduced below the node.

Appendix B discusses some subtle but interesting issues related to evaluating GPs.

The next section discusses the bottom-up phase of rewriting query trees after the query optimizer

selects the GPs that should be computed.

4.4 Bottom-up Pass

After the top-down pass associates a GP above some or all nodes of the query tree, the query

optimizer decides which GPs improve the query plan. The other GPs are removed from the tree.

To remove a GP Q that is rejected by the optimizer, we rewrite the node N above Q and the GP

above node N . The rejected GPs are eliminated bottom-up. We illustrate the elimination process

by referring back the discussion of Section 4.2:

EXAMPLE 4.1 In Figure 6 the query optimizer decides to compute only the GP above relation

sales. The other GPs are eliminated. First we eliminate the GP �
M#0;St0;L=>(CP�Factor) from the

left branch. The elimination causes component L in all higher GPs to be replaced by the de�nition

of L, namely >(CP �Factor). The left tree in Figure 7 shows the resulting tree. Next we eliminate

the GP on the stem of the tree. Thus, components A and B are no longer available to higher nodes

and GPs. In the selection node, A is replaced by R and B is replaced by (CP �Factor). 2

The bottom-up rewrite pass is an exact inverse of the push-down process. Thus, the rules used

to push down the generalized projections are also used to eliminate GPs.

5 Aggregates: max and min

In this section we extend the class of queries considered in Section 4. We show how to push GPs

down query trees for queries that have set semantics, use arithmetic comparisons, and that may

use aggregate subqueries with the max and min operators. In section 6 we generalize our results

13

to also handle sum, count, avg, and other aggregate functions. We treat max-min di�erently

from sum-count-avg because max and min do not need duplicate semantics in the underlying

set. By contrast, a subquery that uses sum requires duplicate semantics in its subtree even though

the top-level query may be a distinct query.

GPs can be pushed down queries that use max and min subqueries, with little change from

the way GPs are pushed down SQL queries that use arithmetic comparison operators. Recall, we

use generalized projections to write aggregate-groupby node pairs. Thus, in this section the GPs

that are pushed down query trees use two more aggregate functions: max and min. There is

no di�erence in the way GPs with functions max and min are pushed past selections and cross

products. The only di�erence occurs when a GP P is pushed past a GP node N that has aggregate

functions. Intuitively, the resulting GP Q has aggregate components corresponding to max and

min computations in N . We give the algorithm for pushing GPs past max-min as a part of the

complete GP pushing algorithm, in Table 3.

max seems similar to > because both > andmax compute the maximum value of an attribute.

However, to see the di�erence consider a GP with two components labelled max. When this GP is

computed, the maximum for both the attributes can be computed in the same groupby operation.

However, as discussed in Section 3 and Appendix B if two components are labelled > we cannot

compute the GP the same way. The di�erence between > and max arises because > maintains

tuple association for the di�erent components, while max does not.

The bottom-up pass is exactly the same as in the case when no aggregate computations were

done in the original tree. It should be noted that the query optimizer may retain some or all the

preexisting generalized projections (aggregate-groupby node pairs) because unlike the GPs intro-

duced during push-down, all preexisting GPs are not optional. It is possible for our algorithm to

eliminate correctly some classes of preexisting aggregations, but we do not discuss how to eliminate

preexisting aggregations in this paper.

6 Duplicates: Intuition

Consider a simple select-project-join query tree with only conventional projections (c-projections).

It can be rewritten using exactly one c-projection occurring at the top of the tree. The query

tree may have either duplicate or set semantics, that is, it may or may not preserve duplicates.

There is no way to tell by just looking at the query tree which of these semantics is required.

Since the underlying base relations have set semantics (no tuple occurs more than once), duplicates

are created only when we delete columns. Thus it is the conventional projection (c-projection)

that determines if set or duplicate semantics are to be followed. The joins and selections behave

identically in both cases. The set semantics c-projection and the duplicate semantics c-projection

are two very di�erent operators. The set semantics c-projection does duplicate elimination and

thus drops rows as well as columns; more importantly in a query tree, it does not require duplicates

be preserved in the nodes below it (its input) for correctness. The duplicate semantics c-projection

on the other hand just drops attributes and may produce a table with duplicates as output and

thus requires that duplicates be preserved in its input. The conventional projection is overloaded

with both these meanings and depending on which meaning we assign, we get the corresponding

semantics for the query tree.

The output of a generalized projection is always a set, i.e., there are no duplicates. It is still

possible to write a duplicate semantics c-projection as a GP. For instance, the c-projection �A that

preserves duplicates is written as the GP �A;count(�). There is only a syntactic di�erence in the

results of these two projections, even though the output of the latter is a set and the output of the

14

former may have duplicates. By dropping duplicates and incorporating a count column to indicate

multiplicity, we do not lose any information: it is easy to go from one form to another. Thus we

do not need to change the output semantics of GPs to accommodate duplicates. GPs only produce

sets as outputs (no duplicates). Duplicates semantics are simulated using count.

It is not the output, but the requirement on the input that distinguishes the conventional set

semantics and duplicate semantics projection. For instance, while aggregations like max do not

require duplicates to be preserved in their input, aggregations like sum do require duplicates. It

is possible to determine if the input to a generalized projection should have duplicates by looking

at the components of the GP. Thus, the GP pushing algorithm should ensure that when a GP P

is pushed past a node N , the resulting GP Q does not destroy duplicates if either P or N need

duplicates.

For notational convenience only, we use �set to denote a generalized projection that does not

require duplicates to be preserved in its input. �dup denotes a projection that requires duplicates to

be preserved. It is important to note that the superscripts set and dup are purely syntactic sugar.

The components of the generalized projection unambiguously tell us if duplicates are needed in the

input: GPs are labelled �dup if they have aggregation components which require preservation of

duplicates in their input like sum and count; otherwise they are labelled �set. Thus for example,

GP �A;sum(B) must have superscript dup, GP �A must have superscript set.

In the previous sections we have concerned ourselves with pushing �set down a query tree. In

the following discussion we shall focus on �dup and give rules for pushing it down a query tree

which will enable us to push aggregations like sum and also create aggregations like count where

none existed. As before, the push-down process has two phases: top-down and bottom-up.

It should be noted again that our algorithm does not require any intermediate GP nodes be

present in the �nal tree. The query optimizer can pick whichever GPs, and thus aggregations, it

wants.

6.1 Top-Down with duplicates

We discuss how to push generalized projections down a query tree that maintains duplicate seman-

tics. The �rst point to note is that a duplicate preserving GP cannot introduce the labels > and

? because both these labels are introduced based on the intuition that duplicates do not matter.

However, > and ? may already exist in a GP before it gets duplicate semantics, for instance when

a distinct query has a subquery that uses sum. Thus, we do have to consider pushing > down

trees with duplicate semantics.

First, let us see intuitively how �
dup behaves when pushed past selection and cross product

nodes.

Selection Nodes: When we push a �dup past a selection node we just acquire the attributes

occurring in the selection nodes. Unlike with �set, arithmetic comparisons do not help in creating

aggregates. To see why, consider pushing a projection �
dup

A;count(�) past a selection node �C�D . In

this case for a given value of A we are not just interested in seeing if there exists some C;D that

will cause the value of A to be selected. Instead we are interested in the number of times such a

value will be selected. Adding >(C) and ?(D) to the projection pushed past �C�D allows us to

determine only if there exists some C;D such that C � D. In some sense we end up getting only

a TRUE/FALSE answer for each A value where we wanted a number. So on pushing �
dup

A;count(�)

past �C�D we get �
dup

A;C;D;count(�). In Table 3 we describe the syntactic changes that need to be

made to the tree when a �dup is pushed past a selection node.

Cross Product Nodes: As explained in Section 3, a cross product has a multiplicative e�ect.

15

If we push an aggregation computation down one branch we have to account for the multiplicative

e�ect of the other branch. For instance, let �
dup

A;A0;X=sum(B)
be pushed down a cross product where

attributes A;B go down the left branch and A0 down the right. If we push �
dup

A;X=sum(B)
down the

left branch we get partial sums for B for each value of A. Note, that each B will repeat itself above

the cross product due to its association with the each tuple from the right branch. Thus, if there

are k tuples with A0 = a0 then each B value on the left hand side occurs k times with A0 = a0. If we

push �set
A0 down the right branch we lose the information that A0 = a0 occurs k times and consider

each B only once for A0 = a0 while computing the �nal sum from the partial sums provided by

the left branch. What is missing is the value of k and we get it by pushing a count down the

right branch. That is, we push �
dup

A;L=sum(B)
down the left branch and �

dup

A;R=count(�)
down the

right branch. The original projection is rewritten as �
dup
A;X=L�R. The function (multiplication:`�')

with which we compose the count (R) with the partial aggregate computed (L) to get the total

aggregate (X) depends on the aggregation (sum). For common aggregations like sum and count

this function is �. In Table 5 we enumerate how to decompose (and compose) some commonly

occurring aggregate functions. For Table 5 we assume that the aggregates are all single argument

aggregates and that the argument is provided by the left branch of the cross product. Aggregate

functions that use multiple attributes as arguments can also be decomposed when a cross product

node is encountered. For instance, most statistical aggregations can be decomposed and pushed.

For query trees that have either select, cross product, or GP interior nodes, and that have either

a set or duplicate preserving projection node at the top of the tree, Table 3 gives the algebraic

transformations needed to push GPs down. As before, we state the algorithm in tabular form to

facilitate understanding. The corresponding version of Theorem 4.1 that uses Table 3 holds for the

more general trees. The bottom-up pass uses Table 5 when eliminating any GP that was obtained

by decomposing aggregates at a cross product node.

Node Contents of N To get Q, add E�ect on N E�ect on P

Type this to P

Select X op Y X and Y as nothing Replace each agg cmp

gby cmps. as per Table 4

X-prod Table 5 describes how to infer the GP for branch L for some functions.

For >;?;max;min the discussion in Table 2 applies

GP has only gby GP becomes �set from �
dup.

components Rules of Section 5 become active.

X = agg(Y) If X is used in P Replace X = agg(Y) No e�ect

add X 0 = agg(Y) by X = agg(X 0)

gby(X) 3 Add X as gby attr nothing nothing

Table 3: How to push GPs

3An aggregate component of GP P can appear as an aggregate component in Q even when the component appears

as a groupby attribute in node N [HG94]. We omit discussing these further optimizations to retain clarity of the

discussion.

16

Component What to add E�ect on P

form to P to get Q

X = >(Y) Y 0 = >(Y) Replace X = >(Y) by X = >(Y 0)

X =max(Y) Y 0 =max(Y) Replace X =max(Y) by X =max(Y 0)

X =min(Y) Y 0 =min(Y) Replace X =min(Y) by X =min(Y 0)

X = sum(Y) Y 0 = sum(Y) Replace X = sum(Y) by X = sum(Y 0)

X = count Y 0 = count Replace X = count by X = sum(X 0)

X = avg(Y) Xs = sum(Y) Replace X = avg(Y)

Xc = count by X = sum(Xs)=sum(Xc)

Table 4: How to push aggregate components through selections (used in Table 3)

Component in GP Left Branch Right Branch Change to GP

X = sum(Y) Ls = sum(Y) Rc = count X = Ls �Rc

X = count Lc = count Rc = count X = Lc �R

X = avg(Y) La = avg(Y) X = La

Table 5: Decompositions for some commonly used aggregation functions

7 Di�erence and Union Queries

In this section we give only the intuition for pushing GPs past union and di�erence nodes, assuming

that the query tree has been extended with the appropriate nodes. Note, both di�erence and union

nodes take as input two relations that have the same set of attributes. We assume we are dealing

with multiset di�erence and union. First we discuss brie
y di�erence nodes.

Consider the di�erence of relations R(A;B) and S(A;B). Let the GP �A;>(B) be present above

the di�erence node R�S. That is in R�S we need the maximum value of B for each value of

A. It is not possible to push > down R because the tuple with maximum B value in R may also

occur in relation S, and thus will not occur in the di�erence. Potentially no tuple in R can be

eliminated before the di�erence because that tuple may be the only tuple in the di�erence of R�S.

Thus, aggregate component >(B), when pushed past a di�erence, becomes groupby component

B. Similarly, it is not possible to push any of the aggregate computations ?, max, min, or

sum, past di�erence nodes. However, it is possible to push the aggregates count and avg past

di�erence [HG94]. Set di�erence is similarly handled.

Consider the union of relations R(A;B) and S(A;B). Let the GP �A;>(B) be present above

the union node R [S. That is, in R [S we need the maximum value of B for each value of A.

The maximum values B for each A, from relations R and S can be used to obtain the maximum

value after the union. Intuitively, this is possible because the maximum of the union must be

the maximum of one of the two input relations. Similarly, it is possible to push ?, max, sum,

count, and avg, past unions. Set based unions can be handled using a conservative approach that

composes a duplicate preserving union node with a groupby node.

For both di�erence and union nodes, the bottom-up pass is more involved than before because

it is necessary to ensure that the schema of the two input relations is the same. That is, the GPs

that are pushed past the union and di�erence nodes all are not independent. Thus, it is necessary

to consider the GPs selected for evaluation in the left branch of the union, while choosing the GPs

17

that are evaluated in the right branch. Some GPs may necessarily have to be evaluated if some

other GPs are selected.

The ability to push aggregations down union nodes is of importance in distributed database

systems where data may be horizontally partitioned [OV91]. Pushing aggregations in such an

environment helps increase parallelism since aggregation computation in di�erent branches of a

union node can be done simultaneously on di�erent sites.

8 Performance Issues

No optimization technique reduces the cost of query execution in all cases. There are always cases

where the cost of doing the optimization is greater than the bene�t. In other words, the number of

irrelevant tuples removed may be too small to warrant doing an operation early. For an optimization

technique to be practically useful, it should provide considerable cost reduction improvements in a

signi�cant fraction of the queries executed. In this section, we identify the issues relevant to the

performance of the optimization technique we outline in this paper.

Our algorithm works best on queries when the groupby attributes we push down do not have

too many distinct values in the underlying relation. In other words, the less key-like a groupby

attribute is, the more useful our optimization is. Most joins involve at least one non-key attribute

because otherwise the relations being joined would not have been stored as separate relations in the

�rst place. The number of distinct values of an attribute in a relation is a commonly maintained

database statistic [OV91] and so the query optimizer can have a good estimate of the cost of

performing the aggregate and also of the number of tuples in the output.

In typical decision support queries there is often at least one very large relation involved in

the query. This relation often is time dependent: for example, the sales history of the previous

year. The historic nature of data results in enormous relations. Most queries are not interested

in individual tuples of this relation, but rather aggregate properties of this relation. Thus in most

cases, we need to do a groupby on a non-key attribute of this relation. When this relation is joined

with some other relation, it is often with a smaller \reference" or \algorithm" table, that need not

be aggregated. In such cases, our optimization technique would reduce considerably the size of the

massive table before we did a join. It can be argued that in such cases a join algorithm like a hash

join could be used to achieve a similar result. However, hash joins are di�cult to implement in

practice and not commonly implemented. Single table aggregations being a commonly used feature

of SQL exist in most systems. Our technique only requires the use of these operators. In addition,

our technique works in many cases where hash joins do not do well: for instance, if two very large

tables were joined. Note, decision support queries also use non-equijoin joins that can be optimized

by introducing aggregations as illustrated by query Q2 in Example 1.1.

Indexes on the groupby attributes are of great help and can be used to do e�cient aggregate-

groupby operations. In the absence of indexes, for our technique, it would help greatly if hashing is

used in doing the groupby rather than a sort [HJT94]. In such a scheme, we read in the large table

and hash each of its tuples on the groupby attributes and then update the aggregation required

which we maintain in the hash table. Typically our optimization will be picked if the number

of distinct values of the groupby attributes are small. In such cases, the hash table will �t in

memory and so the entire aggregation-groupby operator scans the table just once and reduces it

tremendously. Single-table aggregation-groupby operators are not the focus of this paper and we

do not go into any more details. It su�ces to note that most commercial systems have existing

e�cient implementations that our technique uses.

Our optimization, when applied to query plans, potentially interferes with join ordering, since

18

we reduce the size of the relations participating in the join. However, the technique can be used

advantageously as a post join-ordering step. Note, for greater performance gains our push-down

algorithm should be integrated with the join ordering module.

Our algorithm can be used in computing semijoins e�ciently. Current semijoin algorithms do

not treat non-equijoins any di�erently from equijoins. Using our algorithm we can use such non-

equijoins to reduce the size of the semijoin through aggregate computation. The semijoin of a

relation R with respect to a relation S and a join predicate F is given by �R(R 1F S) where the

R subscript for the conventional projection operator � is used to indicate the attributes of R. It

should be observed that the c-projection �R has set semantics and is thus equivalent to the GP �R.

We can push this GP past the join using our algorithm and thus apply groupby and aggregations

in computing a smaller semijoin reducer. Using aggregations can decrease the size of a semijoin

greatly, when non-equijoins are present. Reducing the size of a semijoin has considerable impact

in distributed query processing where semijoins are used frequently in computing joins [OV91].

Though we have only mentioned non-equijoins here, the GP pushing algorithm can be used to �nd

e�cient semijoin reducers for any simple SPJ query with aggregation and groupby nodes.

In summary we wish to stress again that all the building blocks required to implement our

optimization are already present in most commercial systems. All we are doing, in some sense, is

to link them together. Our method will be most useful when there are massive underlying relations

and we are required to do joins on them. We believe that with the advent of decision support

systems and the ever increasing size of databases, our optimization is viable in a practical setting.

9 Conclusions and Future Work

In this paper we introduce generalized projections (GP) that unify aggregations, groupbys, con-

ventional projection with duplicate elimination (distinct), and duplicate preserving projections.

We describe how to push GPs down query trees that use arbitrary aggregate functions and that

may or may not preserve duplicates. This treatment allows us to create and push aggregations and

duplicate elimination in a uniform way. We are able to use aggregations to substantially reduce the

size of intermediate relations in duplicate preserving queries, without changing the way joins are

done. We are also able to push function computations to lower levels in a query tree. We believe

that our technique yields new insight into how to write and optimize SQL queries with aggregation,

arithmetic, and function computations.

As future work we are looking at the following problems:

� Extend our technique to queries that use exists, in, and more involved SQL constructs.

� Carry out experimental performance studies.

� Explore how to eliminate preexisting aggregations. It is di�erent from eliminating the optional

GPs introduced by GP-pushdown.

� Integrate our technique with predicate-move-around [LMS94] to see if the tighter constraints

derived by their algorithms can be used by our algorithm.

� It appears that GPs can be used for doing constraint checking and data warehousing [Z+94]

e�ciently. We are investigating this relationship currently.

Acknowledgements

We would like to thank Surajit Chaudhuri, Laura Haas, Je� Ullman, and Jennifer Widom for

valuable comments and suggestions.

19

References

[CS94] S. Chaudhuri and Kyuseok Shim. Including Group-By in Query Optimization. In Pro-

ceedings of the Twentieth International Conference on Very Large Databases (VLDB),

pages 354{366, Santiago, Chile, 1994.

[Day87] U. Dayal. Of Nests and Trees: A Uni�ed Approach to Processing Queries That Con-

tain Nested Subqueries, Aggregates, and Quanti�ers. In Proceedings of the Thirteenth

International Conference on Very Large Databases (VLDB), pages 197{28, Brighton,

England, 1987.

[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An Extended Relational Algebra with Control

over Duplicate Elimination. In Proceedings of the ACM Symposium on Principles of

Database Systems, 1982, pages 117-123.

[HFLP89] Laura M. Haas, J. C. Freytag, Guy M. Lohman, and Hamid Pirahesh. Extensible

query processing in starburst. In Proceedings of ACM SIGMOD 1989 International

Conference on Management of Data, pages 377{388, Portland, OR, May 1989.

[HG94] Venky Harinarayan and Ashish Gupta. Generalized Projections: a Powerful Query-

Optimization Technique. Technical report, Department of Computer Science, Stanford.

[HG95] Venky Harinarayan and Ashish Gupta. Optimization Using Tuple Subsumption. To

appear in ICDT 95, January 1995.

[HJT94] F. Ho, R. Jain and J. Troisi. An Overview of NonStop SQL/MP. In Tandem Systems

Review, pages 6-17, July 1994.

[ISO92] ISO. Database Language SQL ISO/IEC. Document ISO/IEC 9075:1992. Also available

as ANSI Document ANSI X3.135-1992, 1992.

[LCW93] H. Lu and C. C. Chan and K. K. Wei. A Survey of Usage of SQL. In SIGMOD Record,

Vol 22, No. 4, 1993.

[LMS94] Alon Levy and Inderpal Singh Mumick and Yehoshua Sagiv. Query Optimization by

Predicate Movearound. In VLDB 1994, pp: 96-107.

[OV91] Tamer M. Oszu and P. Valduriez. Principles of Distributed Database Systems. Prentice

Hall, Englewood Cli�s, New Jersey, 1991.

[S79] P. G. Selinger et. al . Access Path Selection in a Relational Database Management Sys-

tem. In Proceedings of ACM SIGMOD 1979 International Conference on Management

of Data, pages 23-34, 1994.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Com-

puter Science Press, New York, 1989.

[YL93] W. P. Yan and P. A. Larson. Performing Group-By Before Join. In International

Conference on Data Engineering, 1993.

[Z+94] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom. View up-

date anomalies in a warehousing architecture. unpublished manuscript, October 1994.

20

A Writing SQL Aggregate Queries Using GPs

We show here how to represent SQL aggregate-groupby queries using GPs. Consider an SQL query

Q that we wish to write as a GP P . First we write all the attributes occurring in the groupby

clause of Q as the groupby components of P . We then append to P the aggregate computations

that occur in the select clause of Q. The resulting GP P is equivalent to the given SQL query Q

if the groupby attributes of Q all occur in the select clause of Q. Otherwise, we have to project

out those groupby attributes of Q that do not occur in the select clause. That is, we need to

follow GP P with a conventional projection. Since we can express conventional projections using

GPs, we can write any SQL aggregate query using GPs.

B Evaluating GPs

B.1 How should generalized projection of the form �D;>(S);?(A) be evaluated?

It can be shown that >(E) = ?(�E), where E is any expression involving attributes. So

�A;>(B);?(C) can be rewritten as �A;>(B);>(�C) which is

E: select A;max(B;�C) from R groupby A.

max(B;C) is not the same as max(B);max(C). max(B;C) is the set of all B;C tuples fb1; c1g,

such that there is no other tuple fb2; c2g, where b2 � b1 and c2 � c1. The following example

illustrates this point:

EXAMPLE B.1 Let GPE be evaluated on relation emp(Dept; Sal; Age) that has tuples (toy; 21K; 10yrs),

(toy; 15K; 8yrs), and (toy; 21K; 9yrs). GP E computes the least age for the most highly paid

employee in each department and returns as answer the pair of tuples emp(toy; 21K; 9yrs) and

emp(toy; 15K; 8yrs). If instead we computed select D;max(S);max(�A) from R groupby D,

we would get as answer the tuple emp(toy; 21K; 8yrs). 2

Thus, if several aggregate components use functions ? and >, they all cannot be computed

as a part of the same groupby. Rather, only one aggregate computation can be done at a time

while treating all other components as groupby components. In order to compute a GP with k

aggregate computations, k aggregate computations have to be cascaded where each step computes

one aggregate while treating all other components as grouping attributes. It is not necessary to

evaluate all the k aggregate computation step; any or all of them can be omitted without compro-

mising correctness. That is, any or all the aggregation components of a generalized projection can

be replaced by groupby components.

B.2 Can one GP be transformed into another GP?
EXAMPLE B.2 Consider the table r(A;B;C;D)with the GP P : �(D;U=?(A);V=>(A);W=>(B+C)).

To compute the component U = ?(A), we �nd the minimum value of column A for each value of

the triple (A;B + C;D). This computation computes the minimum value for A while grouping by

A and thus is a useless computation. Thus, the GP is better replaced by �(A;D;W=>(B+C)). The

GP and node immediately above P are rewritten to use A in place of U and V because U and V

are no longer computed by P . 2

There are some obvious cases when a GP should be replaced by another. For instance, if a GP

has both U = >(A) and V = >(A), then U and V can be both replaced by only one component.

If U = >(A) and V = ?(A) both occur in P then U and V could be replaced by A as a groupby

component. There are other simple rules that can be made available to a query optimizer to

transform one GP into another GP.

21

