
Reasoning Theories

Towards an Architecture for

Open Mechanized Reasoning systems

Fausto Giunchiglia

IRST and Universit�a di Trento

fausto@irst.it

Paolo Pecchiari

IRST and Universit�a di Genova

peck@irst.it

Carolyn Talcott

Stanford University

clt@sail.stanford.edu

Abstract:

Our ultimate goal is to provide a framework and a methodology which will allow
users, and not only system developers, to construct complex reasoning systems by com-
posing existing modules, or to add new modules to existing systems, in a \plug and play"
manner. These modules and systems might be based on di�erent logics; have di�erent
domain models; use di�erent vocabularies and data structures; use di�erent reasoning
strategies; and have di�erent interaction capabilities. This paper makes two main contri-
butions towards our goal. First, it proposes a general architecture for a class of reasoning
modules and systems called Open Mechanized Reasoning Systems (OMRSs). An OMRS
has three components: a reasoning theory component which is the counterpart of the
logical notion of formal system, a control component which consists of a set of inference
strategies, and an interaction component which provides an OMRS with the capability of
interacting with other systems, including OMRSs and human users. Second, it develops
the theory underlying the reasoning theory component. This development is motivated
by an analysis of state of the art systems. The resulting theory is then validated by us-
ing it to describe the integration of the linear arithmetic module into the simpli�cation
process of the Boyer-Moore system, NQTHM.

1. Plug and Play Reasoning Devices { An Impossible Dream?

An important problem in the domain of automated reasoning is the develop-

ment of mechanisms for the interoperation and integration of disparate provers. 1

The components of a prover may be tightly or loosely coupled, they may be based

on di�erent logics, they may have di�erent domain models, they may use di�er-

ent vocabularies, representations of information, and reasoning strategies, and they

may have di�erent interaction capabilities. We want to be able to compose complex

provers from existing modules

prover = tautology-checker + rewriter + simpli�er + uni�er + : : : ,

to add new modules to existing provers

enhanced-prover = add-decider(prover,decider,use-speci�cation),

and to form provers using multiple logics

multilogic-prover = HO-proof-checker

+ FO-rewriter

+ Modal-inferencer

+ Simpli�er

+ Model-checker,

in a \plug and play" manner.

The need for composing modules, or adding new modules to existing provers,

is motivated by the desire of not having to build from scratch a new prover for each

new problem or variation of an old problem. Multi-logic provers are needed in many

formalization problems, such as hardware and software veri�cation, which typically

rely on the use of a variety of decompositions and levels of abstraction. These in

turn are most naturally formalized using a variety of logics: higher-order logic for

general theory and methods; temporal and dynamic logics for behavior speci�cation;

�rst-order logics for reasoning about data structures; various decidable fragments

for veri�cation steps. Multi-logic provers are also needed in complex applications

which require embedding of reasoning modules inside other systems. Some examples

are: program transformation systems, including synthesis, partial evaluation and

compiling; planning systems; intelligent agents; and natural language systems.

Currently, if you need a prover there are two choices: (1) implement your own;

or (2) adapt an existing prover to your needs, or, more likely, adapt your needs to

an existing prover. Given the state-of-the-art of technology for building provers,

1 In this paper we use the word \prover" to mean any piece of software with reasoning capabilities,
e.g. mechanized decision procedures, automated theorem provers, interactive theorem provers.
When we want to distinguish stand alone provers from provers embedded inside other software
we refer to the former as systems and the latter as modules.

1

neither option is satisfactory. Serious provers are di�cult to build and there is little

in the way of generic parts or tools to help. Existing systems are di�cult to connect

{ they are packaged as stand alone software with inadequately described interfaces.

Furthermore it is di�cult to extract usable modules from existing provers, since

they typically depend upon internal structures of the host prover.

Is the dream impossible? We can compare the current state of automated rea-

soning technology to early computer technology which featured stand alone com-

puters with no capability to exchange data and no possibility of interchange of

hardware modules. If we take this analogy seriously, the current situation with

computer technology suggests there is hope.

2. Logical Services and OMRSs

To realize the dream we need to think of provers as logical services [62], and

to develop a general framework for specifying and structuring provers as logical

services. What is a logical service? That is, what is required of provers and their

speci�cations in order to be able to interconnect or integrate them in useful, se-

mantically meaningful ways? This is an open question and we do not expect there

is a unique answer. Below we give a preliminary, informal analysis. One of the

objectives of our work is to �nd helpful answers, as well as to develop tools for

meeting the resulting requirements. We note that many of the issues discussed are

not unique to the domain of automated reasoning. Solutions to problems found

here should also be relevant in other application domains.

The speci�cation of a logical service must include logical semantics, algorithmic

and control information, and information regarding interaction requirements and

capabilities. It must include information that allows for two way interactions with

the environment. To qualify as a logical service, a prover needs wrappings that

specify when, how, and for what purpose it can or should be used; and what services

or information it requires, or can use. These wrappings must support a mix of

openness and encapsulation that allows for the desiderata listed in the previous

section, namely linking separate, independent provers; adding new modules to an

existing prover; and extending and integrating modules. The speci�cation must be

such that integration activities should not require major redesign of the existing

provers; and in the case of highly tuned provers, the recoding should be driven by

local changes in a systematic, possibly partially automated manner.

Provers providing logical services must therefore be described at many levels:

traditional consequence relations; data structures used for mechanizing deduction;

inference algorithms; annotations and control information; interaction capabilities

and protocols and their translation into the underlying representations; and the

sharing and updating used for communication and for e�cient implementation. An

important gap that needs to be �lled is an analysis of the structures and protocols

that are needed in order to specify interactions, and to support mechanisms for

incremental, restartable, reactive deduction.

2

We introduce the notion of Open Mechanized Reasoning System (OMRS) as an

architecture for specifying and implementing logical services. This architecture has

three layers.

Reasoning Theory = Sequents + Rules

Reasoning System = Reasoning Theory + Control

OMRS = Reasoning System + Interaction

A reasoning theory consists of a set of assertions, called sequents, and a set of in-

ference rules. In an OMRS, the reasoning theory level is the counterpart of the

logical notion of formal system. A reasoning theory determines a set of proof frag-

ments called reasoning structures. Derivations and proofs are identi�ed as reasoning

structures satisfying certain conditions. A reasoning system consists of a reasoning

theory and a set of strategies for searching the space of possible applications of

inference rules. In an OMRS, the reasoning system level is the formal counterpart

of the informal notion of a prover without interaction capabilities (e.g. a decision

procedure module viewed as a black box). Finally, an OMRS is a reasoning system

extended with a set of interaction capabilities. This level is the formal counterpart

of the informal notion of a prover providing a logical service.

Notice that a logical system [43] also contains a notion of model, that is

Logical System = Reasoning Theory + Models

We realize that this is an important aspect of reasoning which must be eventually

included in our framework. However, at this stage we have not dealt with this

problem. It is a topic for future work.

Plan: The remainder of this paper develops the theory underlying the reasoning

theory component of OMRSs. It is organized in three main parts: (I) analysis of

the problem; (II) technical development; and (III) substantial example. Part I sur-

veys existing systems (x3) and discusses the features that are needed to provide an

adequate framework (x4). In part II, x5, x6 and x7 de�ne and illustrate the notions

of sequent system, rules, and reasoning theory, respectively. In x8 reasoning struc-

tures are de�ned as certain labelled graph structures and the notions of derivation

and proof are de�ned. In x9 a set of primitive operations for constructing reason-

ing structures is de�ned and shown to be complete. Rule application operations

corresponding to various directional modes are de�ned as sequences of primitive

operations. Part III sketches an analysis of the integration of linear arithmetic

into the Boyer-Moore prover, NQTHM, using the reasoning theory framework. x10

describes (brie
y) NQTHM and x11 gives an outline of our analysis of the prover.

In x12 the reasoning theory underlying the original prover is sketched. In x13 the

modi�cation of the reasoning theory to integrate linear arithmetic reasoning is dis-

cussed. In x14 some examples of reasoning structures of the NQTHM reasoning

theory are given. Among other things these examples illustrate the use of reasoning

structures to present proofs. Part IV contains end material. Related and future

work are discussed respectively in x15 and x16. x17 contains the proofs of the main

theorems about reasoning structures stated in the earlier sections.

3

I Analysis of the Problem

3. Existing systems

To give an idea of features that an architecture for provers must account for,

we brie
y examine a few existing systems. First we look at the variety of techniques

integrated into single logic provers. Then we look at some experiments with multi-

logic provers. We emphasize that this is not intended as a comprehensive survey, but

rather as a set of motivating examples. A database of automated reasoning systems

can be found in [63] along with links to related surveys and other information.

3.1. Single Logic Systems

NQTHM [9, 10] combines techniques for propositional reasoning, equality rea-

soning, typeset inference, term rewriting, and linear arithmetic. Several of these

techniques use data structures that encode special purpose representations of logi-

cal information. These data structures may also include control and heuristic infor-

mation that must be maintained and propagated by processes even if they do not

make use of it. The experience of integrating linear arithmetic reasoning into the

prover as reported in [8] provides strong evidence that in general it is not adequate

to simply integrate a decision procedure as a black box.

The LCF family of systems, that includes LCF itself [26, 52], HOL [25], NuPrl

[14], and Isabelle [53], all provide capability for user de�ned proof procedures (tac-

tics and tacticals) along with various builtin procedures. NuPrl provides for extrac-

tion of programs from proofs and a re
ection principle for turning veri�ed tactics

into �rst class inference rules. Isabelle provides mechanisms for de�ning proof sys-

tems by specifying their syntax and rules of inference.

FOL [67, 68, 69] provides for construction of and reasoning in an intended

model, rewriting, mixed syntactic and semantic simpli�cation, tautology checking

based on compiling formulas into a special representation, a decision procedure for

monadic predicate logic, and user de�ned simpli�cation sets (theory speci�c sets of

rewrite rules).

EKL [36, 38] has a highly developed rewriting component. The rewriter `com-

piles' contextual information and stores it as annotations to subexpressions in the

form of rewrite rules. There is a language for expressing rewriting control strategies.

EKL also incorporates a decision procedure for direct logic [37, 5] and some facility

for representing terms as data and carrying out meta-level reasoning.

RRL [34, 35] represents all axioms as equations and views theories as congru-

ence relations. The deductive machinery of RRL includes: a completion procedure;

4

rewriting; associative-commutative theories; linear arithmetic; Groebner basis over

boolean ring; inductionless and explicit induction. It can be used for generating

decision procedures for �rst-order theories, checking consistency and completeness

of equational speci�cations, and solving equations modulo an equational theory.

The KADS system [61] uses resolution augmented with special purpose de-

ciders. EHDM [66] and PVS [51] use a variety of ground decision procedures

combined with rules for interactive proving. PVS has a rich type system and pro-

vides the ability to postpone type checking, by making presumptions, analogous to

veri�cation conditions. The Ontic rule compiler [42] compiles sets of rules of suitable

form into e�cient decision procedures. The IMPS system [16] uses theory interpre-

tation maps to import results from one theory into another theory, and macetes

(tricks) to express theory speci�c rules. Hyperproof [3]provides two representations

of information, diagrams and �rst-order sentences, to reason about simple blocks

worlds problems. Inference rules are provided to move information between the two

forms as well as for reasoning within one paradigm.

3.2. Multi-logic Systems

The cooperating decision procedures (CDP) paradigm of Nelson and Oppen [49]

is a method of combining solver/simpli�er modules for disjoint theories to obtain

solvers/simpli�ers for combined theories. Shostak [59] gives an alternative algorithm

for combining solvers, for theories meeting certain constraints, to obtain decision

procedures for combined �rst order theories. As further evidence that it is not

adequate to simply integrate a decision procedure as a black box, we note that

most systems that incorporate a Nelson-Oppen type simpli�er require that the

simpli�er be able to accept and use lemmas. While the basic composition algorithm

is well-worked out and has clear semantics, the formal mechanism for introduction

of lemmas has not been worked out.

The SDVS system [15, 55] is a proof system currently used for various levels

of hardware veri�cation. The system contains a number of modules re
ecting the

factoring of proof development into reasoning about dynamic and static aspects.

Reasoning about static aspects uses a proof system for classical logic and domain

speci�c simpli�ers. Temporal logic and symbolic execution are used for the dynamic

aspects. The simpli�er module is based on the CDP paradigm. The EKL prover

is embedded and used for proving higher-order statements. The SDVS simpli�er

has been integrated into the Ada veri�cation system, Penelope, in order to provide

support for simplifying of veri�cation conditions [62].

NQTHM has been used as a component of various systems in which another

component of the system (possibly an ad hoc program or a person) transforms the

problem to suitable form. Veri�cation Condition checking is described in [7] (for

Fortran) and [48] (for Pascal). In [11] a general theory, MLP, for de�ning semantics

of synchronous circuits, was developed (informally) using function parameters. A

Lisp front-end was used to map circuit descriptions to a sequence of de�nition and

5

prove-lemma events for NQTHM. This simulated the needed higher-order capability

for expressing general de�nitions and quanti�cation over functions.

Recent proceedings of HOL User meetings [13, 29] report a variety of experi-

ments to incorporate additional inference capability, or to link HOL to other sys-

tems. FAUST [56] is a prover for full �rst-order logic developed for use with HOL.

Archer [1] describes work in progress to de�ne translations of certain HOL goals

to input for a resolution prover. Joyce and Seger [32] describe a link to the Voss

model checking tool to be used in hardware veri�cation. Additional work encoding

other formalisms in HOL includes: Boyer-Moore logic, Unity, a real number algebra

decision procedure, and AC uni�cation.

There is also a large amount of work in the area of hybrid systems. An overview

of this work can be found in [30]. To mention some examples: Bundy [12] proposes

using proof plans for combination of reasoning strategies; the blackboard model [31]

is a mechanism for coordination of problem solving activities of planners and rea-

soning experts with a common language; Myers [47] proposes universal attachment

with interfaces for calls to external procedures as a basis for integration of decision

procedures for domain speci�c theories within a single logic. Sikka [60] proposes a

generalization of this mechanism in which the external procedures are axiomatized

within the logic.

4. Issues

In this section we discuss the issues arising in the analysis of existing provers,

and the corresponding features which must be represented within reasoning theo-

ries. We �rst consider three aspects of existing systems corresponding to the three

main concepts underlying reasoning theories: sequents; rules; and reasoning struc-

tures and deductions. We conclude the section with a discussion of the problem of

integration of multiple heterogeneous reasoning theories.

4.1. Sequents

The sequents or assertions manipulated by actual provers typically have more

structure and information (procedural and contextual) than assertions of traditional

logical systems. The sequents of a simple natural deduction system are pairs con-

sisting of a set or list of open assumption formulae, and a conclusion formula. A

natural deduction system for a particular theory may also have a set of axioms usu-

ally left implicit, but still considered part of the sequent. Other traditional proof

calculi have sets or lists of formulae in the conclusion part as well. Resolution based

systems manipulate sets of clauses. Rewriters manipulate equalities between terms

relative to a context of assumptions. During simpli�cation using a Nelson-Oppen

type simpli�er, modules build up context as literals are assumed (and retracted).

Abstractly, a simpli�er context is a set of literals. Each participating module has

its own view of the context, containing information expressible in its language. The

internal logic of a simpli�er module uses representations of information suited to

6

its particular decision processes, for example: term graphs, simplex structures, bit

vectors, and binary decision diagrams. Highly tuned provers such as NQTHM have

a variety of special purpose inference modules, each with their own representation of

context and assertions. Diagrams are another form of assertion: Venn diagrams in

simple set theory; timing, state, and circuit diagrams used in hardware design and

veri�cation; and the notation systems of various software-design methodologies are

a few examples. The Hyperproof system manipulates simple diagrams representing

blocks world states.

Many provers make use of some form of schematic sequents. Languages that

allow assertion of axiom schemas usually allow deduction of schematic sequents {

theorem schemas. Axiom schemas are often used in �rst-order languages where

quanti�cation over predicate or function variables would be used in higher-order

languages. Axioms schemas restricted to formulas of certain forms can be used

to express classes of formulas that can not be expressed simply by object level

quanti�cation. Another use of schematic assertions is to provide the ability to

factor out constraints and solve them lazily. This is useful in provers that use forms

of higher-order uni�cation. Schematic variables can also be used to give a �rst-

order account of higher-order patterns in such as those of Combinatory Reduction

Systems [40, 45, 50, 65]. Another interesting example of deduction using schematic

variables is in the NQTHM linear arithmetic module, where a single derivation can

serve multiple purposes by using place holders to represent auxiliary information

that does not e�ect the polynomial derivation process.

To summarize, the notion of sequent should be abstract enough to express a

wide variety of information and forms of representation including the features of

the concrete assertions discussed above; it should allow for the use of local context;

it should allow for the use of schematic variables.

4.2. Rules

Inference rules of standard logical systems, for instance natural deduction and

resolution, are n-ary functions possibly with some side conditions which establish

their applicability. Most provers have schematic rules, i.e. rules which manipulate

sequents containing schematic variables; and many allow variable arity (variary)

inference rules. Inside a prover, rules can be implemented backward as in NuPrl,

forward as in FOL, both backward and forward as in HOL or GETFOL [20], or

as operations which link the premisses (asserted as theorems) to the conclusion

(asserted as an open goal) (in GETFOL this operation is called \matching").

Rules used by provers are often elaborations of purely logical rules to include

control and heuristic information used to constrain applicability. Side conditions

for rule application can be arbitrarily complicated and rely on the use of complex

reasoning modules, e.g. a tautology checker or some other decision procedure. One

simple example in natural deduction is the check of the occurrence of the free

variable in the application of universal quanti�er introduction.

7

To summarize, the notion of rule should allow for the speci�cation of concrete

rules which manipulate complicated sequents; it should allow for schematic reason-

ing, i.e. for the manipulation of sequents containing schematic variables; it should

allow for the possibility of a variable number of premisses. Rules should be de�ned

to be adirectional, therefore uniformly capturing all the possible modes of applica-

tion. Rules should allow for the speci�cation of applicability constraints separate

from the speci�cation of the sequents linked by the rule. This provides for separate

consideration of structural rule matching and more complex constraints, and for the

postponement of constraint checking. The notion of constraint should be abstract

enough to be applicable in the speci�cation of any prover.

4.3. Reasoning Structures and Derivations

Existing provers support one or more forms of interaction and deduction: for-

ward, backward, and mixed mode proof construction. NuPrl proofs are developed

by re�nement (goal directed construction). HOL allows both forward and goal

directed deduction. FOL proofs are forward. GETFOL proofs can be in mixed

mode.

Existing provers exhibit a variety of derivation structures ranging from deriva-

tions whose existence is implicit in the claim by a prover that an assertion has been

proved, to data structures representing complete proofs within a speci�ed formal

system. NQTHM provides no formal representation of proof, it only succeeds or fails

in determining whether or not a conjecture is a theorem (and reports the lemmas

used in case of success). On the other extreme, NuPrl constructs proof terms, and

provides for extraction of programs from proofs. In FOL, deductions are presented

as sequences of structures called veri�cation lines (VLs), representing a graph struc-

ture. Each VL has an identi�er, a formula, a set of dependencies, and a justi�cation.

A dependency is an identi�er of a VL whose justi�cation is by assumption. Another

kind of justi�cation is the application of a deduction rule to a list of VL identi�ers

(the premiss VLs). A VL may be used as a premiss in several rule applications,

providing a sharing of sub-deductions. In the IMPS system, derivations are rep-

resented as deduction graphs { labelled graphs with two sorts of nodes, sequent

and rule nodes. A sequent may be linked as premiss to any number of rule nodes

(possibly none) giving sharing of subderivations. A sequent may be the conclusion

of zero or more rule nodes, allowing multiple proof (attempt)s. Cycles are allowed,

expressing mutual derivability. Other forms of proof include Tableaux, Matings,

Proof nets, and Truth tables.

Experience shows that there is need to organize large complex structures hi-

erarchically, to be able to examine them at di�erent levels of depth and detail, or

to focus on meaningful substructures. This applies to programs, theories, logics,

and especially to proof structures. Tactics and tacticals provide a hierarchical way

of describing the search for or construction of a proof, but the resulting proofs (if

actually constructed rather than just checked) are
at. There is some work on pre-

sentation of proofs that address these issues (cf. [1, 33]). The problem needs to

be addressed at the proof construction level not just at the presentation level. It is

8

important to structure both the proof construction process and the resulting proof

structure. Hierarchical organization can be obtained by encapsulation of substruc-

tures as derived rule applications, procedure calls, lemmas, or simply boxes that

can be opened up and examined in more detail if desired.

Some provers also support provisional reasoning (structures that are valid de-

ductions when certain constraints are met). In these situations, checking for the

applicability of an inference rule is sometimes postponed until after the rule is ap-

plied. In this case we say that the system performs provisional reasoning. Some

examples are lazy occur check and lazy term uni�cation, and postponement of es-

tablishing hypotheses in conditional rewriting.

To summarize, the notion of deduction should allow for any possible mode of

construction and for provisional reasoning. It should provide for two dimensions of

exibility in the construction and structuring of derivations: horizontal
exibility

to combine and re�ne fragments; and vertical
exibility to choose the level of detail

exposed.

4.4. Integration of Reasoning Theories

As we noted in x3, many systems make use of multiple representations of infor-

mation, possibly in the context of multiple logics, and may even represent heteroge-

neous proofs that combine reasoning in the di�erent logics or di�erent mechaniza-

tions of the same logic. In these cases, inference rules with premisses and conclusions

corresponding to di�erent kinds of assertions are needed to glue the pieces together.

Examples of such rules in existing systems include: bridge rules in multi-language

systems [19, 21]; re
ection rules in FOL and NuPrl; meta-rules in the Boyer-Moore

logic [10]; and inference rules for reading information o� of a diagram, and for us-

ing linguistic assertions to extend diagrams in Hyperproof.NuPrl use these rules as

formal mechanisms for integration of inferencers proved to be sound. The Ontic

rule compiler provides a mechanism for integrating inferencers, when described by

suitable rules. The Nelson-Oppen and Shostak algorithms for combining decision

procedures suggest mechanisms for integration of additional inferencers, although

no formal mechanism has been fully spelled out.

To summarize, the notions of reasoning theory, sequent, inference rule, reason-

ing structure and derivation should be general enough to allow for the integration

of multiple reasoner, possibly implementing di�erent logics and using di�erent data

structures.

9

II Technical Development

In this part we de�ne the notions of sequent system, rule, reasoning theory, and

reasoning structure. These abstract concepts are illustrated with examples from

a proof system of classical logic (Natural Deduction) and existing provers, mainly

NQTHM. Further details of the NQTHM example are given in Part III of this paper.

A more complete analysis is presented in [22].

Before proceeding with the technical development, we introduce the mathe-

matical notation we will use. We use the usual notation for set membership and

function application. Let Y; Y0; Y1 be sets. We specify meta-variable conventions

in the form: let y range over Y , which should be read as: the meta-variable y and

decorated variants such as y0, y0, : : : , range over the set Y . Y0 � Y1 is the set of

pairs with �rst component from Y0 and second component from Y1. Y
� is the set of

�nite sequences of elements of Y . We write [y1; : : : ; yn] for the sequence of length

Len(�y) = n with ith element yi. (Thus [] is the empty sequence.) u � v denotes

the concatenation of the sequences u and v. P!(Y) is the set of �nite subsets of

Y . The empty set is denoted by ;. We use the convention that if y ranges over Y ,

then y ranges over Y � and ey ranges over P!(Y). [Y0
f

! Y1] is the set of �nite maps

from Y0 to Y1. We use ~; to denote the (unique) �nite map with empty domain.

[Y0 ! Y1] is the set of total functions, f , with domain Y0 and range contained in

Y1. We write Dom(f) for the domain of a function and Rng(f) for its range. If

f 2 [Y0 ! Y1] and g 2 [Y1 ! Y2], then g �f 2 [Y0 ! Y2] is the composition of f and

g: (g � f) = �y:g(f(y)). For any function f , ffy 7! y0g is the function f 0 such that

Dom(f 0) = Dom(f)[fyg, f 0(y) = y0, and f 0(z) = f(z) for z 6= y; z 2 Dom(f); and

f # Y is the restriction of f to the set Y . If �y = [yi i < n] 2 Y �

0 , ey 2 P!(Y0) and

f 2 [Y0 ! Y1], then we write f(�y) and f(ey) to denote respectively the sequence

[f(yi) i < n] 2 Y �

1 and the set ff(y) y 2 ey g 2 P!(Y1).

5. Sequent Systems

Only certain general features of sequents and rules are needed to describe the

notions of reasoning structure and derivation associated to a reasoning theory, and

the operations for constructing reasoning structures. These are abstracted in the

notion of sequent system. This allows us to decouple the de�nitions of reasoning

structure and derivation from the details of any speci�c sequent system.

10

5.1. De�nition

A sequent system is a structure:

Ssys = hS ;C ; j=; I ;_[_]i

S is the set of sequents { assertions or judgements for consideration. C is the set

of constraints, needed to allow for the construction of provisional derivations. j=�

(P!(C)� C), is a consequence relation on constraints, which abstractly represents

a constraint solving (satisfaction) mechanism. I is the set of instantiation maps

(or instantiations), and _[_] is the operation for application of instantiations to

sequents and to constraints, that is _[_] : [S�I ! S] and _[_] : [C�I ! C]. Thus,

both sequents and constraints can be schematic and instantiation provides a means

for �lling in schemata. From now on, we let s range over S , c range over C , and

� range over I . In the remainder of this subsection we describe the requirements that

such a structure must meet in order to qualify as a sequent system, and introduce

some auxiliary de�nitions.

Satisfaction must obey the basic laws for a (classical) consequence relation

(cf. [2, 43]):

(mon) if ec � ec 0 and ec j= c, then ec 0 j= c;

(ax) if c 2 ec , then ec j= c;

(cut) if ec j= c and fcg [ec 0 j= c0 then ec [ec 0 j= c0.

We extend satisfaction to a relation between sets of constraints by de�ning

ec j= ec 1 , (8c 2 ec 1)(ec j= c):

Let us call schematic entities the entities that I acts on producing entities of the
same sort. The collection of schematic entities includes sequents and constraints,

and it is closed under formation of �nite sets or sequences, and �nite maps whose

range is a set of schematic entities with instantiation extended pointwise. For X

any set of schematic entities:

ex [�] = fx[�] x 2 ex g for ex 2 P!(X)

x [�] = [xi[�] i < n] for x = [xi i < n] 2 X �

f[�] = �y:(f(y)[�]) = (�x:x[�]) � f for f 2 Y ! X

idi is the identity instantiation, x[idi] = x for any schematic entity x. Two

instantiations �; �0 agree on a set X , written � =X �0, if x[�] = x[�0] for x 2 X .

Two �nite sets X; Y of schematic entities are schematically separated if for any

instantiation � there is some �0 (restriction of � toX) such that �0 =X � and �0 =Y idi.

Instantiations are closed under composition. Thus if �0; �1 2 I then there is some

� = �1 � �0 2 I such that x[�] = x[�0][�1] for any schematic entity x.

11

We need to be able to produce \fresh" copies of schematic entities relative to

any other �nite set of entities. For this purpose we assume that there is a subset,

�� 2 II � I , of invertible instantiations called renamings. We further assume that

there is a su�cient supply of renamings so that any two �nite setsX; Y of schematic

entities can be renamed apart. That is, there is some renaming �� such that X[��]

and Y are schematically separated.

Instantiation preserves satisfaction: if ec j= c, then ec[�] j= c[�]. An instan-

tiation � satis�es or solves a constraint c (written � j= c) if c instantiated by �

holds, i.e. j= c[�], and similarly for sets of constraints. One of the most basic

kinds of constraints in a system allowing schematic entities is matching or uni�ca-

tion, i.e. equations between schematic entities. We require that this form of con-

straint be a part of all sequent systems. Thus, equations s � s 0 between sequents

are among the constraints, and instantiation propagates to the sequent terms {

(s � s 0)[�] = s[�] � s 0[�]. Also the usual laws for equality hold:

(re
exive) ; j= s � s ;

(transitive) fs � s 0; s 0 � s 00g j= s 0 � s 00;

(symmetric) fs � s 0g j= s 0 � s .

Typically schematic entities are obtained by including schematic variables of

various syntactic sorts among the basic syntactic entities from which others are

generated. Then instantiations are just (�nite) maps from schematic variables to

syntactic entities. The axioms for instantiations are intended to capture this intu-

ition without forcing this particular model. We say that s is fully schematic (i.e. a
schematic variable) if for any s 0 there is some � such that s 0 = s[�]. A sequent is

said to be ground (non-schematic) if s[�] = s , for � 2 I . Many sequent systems will

have both fully schematic and ground sequents, but this is not required.

5.2. Examples

We give two examples of sequent systems { the �rst from natural deduction,

and the second from NQTHM.

Example (ND sequent system): ND is a natural deduction system for clas-

sical �rst-order predicate logic [54]. SsysND is the sequent system underlying our

representation of natural deduction as a reasoning theory. Its sequents are pairs

� ` A consisting of a set of formulas, �, called assumptions, and a conclusion for-

mula,A. Term and formulameta-variables of traditional presentations are rei�ed as

schematic variables. Terms and formulas are built in the usual way, starting from in-

dividual constants, schematic variables for terms and formulas, individual variables,

function and predicate symbols, propositional connectives and quanti�ers. � ` A

states that A is a consequence of �. Constraints include equations between expres-

sions of the same syntactic sort. Additional constraints include predicates such as

the binary predicate Nofree, which holds of a set of formulas � and a variable a just

if a does not occur free in any of the formulas in �. Instantiations are �nite maps

from schematic variables to syntactic entities of appropriate sort, and instantiation

12

application is the homomorphic lifting of these maps to terms, formulas, and other

syntactic entities.

Example (NQTHM sequent system): In contrast to the ND sequent system,

the sequent system underlying NQTHM, called SsysNQTHM from now on (see part

III for more detail), includes a wide variety of data structures, needed because

NQTHM contains many special purpose reasoning modules. For example, the type-

set reasoning module uses structures called typeset alists, which associate sets of

types (shells) to terms. The linear arithmetic module manipulates a polynomial

data base. A polynomial contains a linear inequation, a set of literals that must

hold for the polynomial to be valid, the set of literals used in obtaining the polyno-

mial, and other heuristic information. In part III we present SsysNQTHM using six

sorts of sequent, each corresponding to the form of assertions manipulated by one

or more reasoning modules.

Here as an example we brie
y introduce four of these sequent sorts.

All the reasoning in NQTHM is carried out within the context of an NQTHM

theory, which is a sequence of events. Events include function and shell de�nitions,

axiom declarations, prove-lemma requests, and instructions for using lemmas. Con-

jectures are given by the user to the prover in form of terms construed as booleans.

Correspondingly in SsysNQTHM there is a sequent sort whose sequents have the

form h `U t , where h represents an NQTHM theory, t is a term construed as a

boolean and the sign U has been added to distinguish this sort of sequent from

other sorts of sequent used inside SsysNQTHM. In NQTHM the top level reasoning

processes manipulate clauses and sets of clauses. In SsysNQTHM this is represented

using assertions of the form h `W ecl or h `P cl ! ecl , where cl is a clause (dis-

junction of literals) and ecl is a �nite set of clauses. Reasoning performed by the

NQTHM rewriting module, called rewriter, is carried out within a local context

obtained by assuming false all literals of a clause except the one currently be-

ing rewritten. This information is stored both in typeset form and in polynomial

form. Rewriting reasoning is represented in SsysNQTHM using assertions of the form

h `R ti ; pi ; t !m ht 0; : : :i, where ti ; pi is the local context, ti is the typeset represen-
tation of the local context, pi is the polynomial representation of the local context,

m records the mode of rewriting (it can be I or B depending on whether the corre-

sponding rewriting step in NQTHM preserves equality or propositional equivalence)

and \: : :" represents information propagated but not used by the rewriter.

These sequents are built from various structures representing theories, local

context, rewriting formulas, and so on. Schematic entities and instantiations are

obtained as usual by including schematic variables for each sort of entity. In addi-

tion to the syntactic equation constraints, there are a variety of predicates de�ned

on syntactic entities. For example, imp(p) holds if the polynomial p contains an

impossible inequation (e.g. 2 � 0) and Ts(ti ; t1)\Ts(ti ; t2) � ; holds if the typesets

of t1 and t2 in the local context ti are disjoint.

13

6. Rules

As for sequent systems, only certain general features of rules are needed to

describe the notions of reasoning structure and deduction, and the operations for

constructing reasoning structures. In order to allow for provisional reasoning, we

treat applicability constraints as constituents of rules. Thus a rule is a relation on

tuples consisting of a non-empty sequence of sequents and a �nite set of constraints.

We require that rules be closed under instantiation. Typically such relations consist

of tuples of sequents of the same general structure, but this is not required. A rule

set is a �nite set of rules each associated with a unique identi�er. Such sets are

conveniently thought of as �nite maps from identi�ers to rules. Mathematically, the

use of rule sets is just a way of partitioning one rule into several parts and giving

each part a name.

6.1. De�nition

Let Ssys = hS ;C ; j=; I ; _[_]i be a sequent system, and let Id be a set of

identi�ers. Then the set of rules R 2 Rule[Ssys] over Ssys, and the set of rule sets,

er 2 Rset[Ssys; Id] over (Ssys; Id) are de�ned by

Rule[Ssys] = fR � (S� � S � P!(C))

(8hs ; s ;eci 2 R)(8� 2 I)(hs ; s ;eci[�] 2 R)g

Rset[Ssys; Id] = [Id
f

! Rule[Ssys]]

If er 2 Rset[Ssys; Id] and id 2 Id we say that hs ; s ;eci 2 er (id) is an instance of

id with premisses, s , conclusion, s , and applicability conditions, ec . We may write

hid ; s ; s ;eci 2 er for hs ; s ;eci 2 er (id), and say that hid ; s ; s ;eci is an instance of er .
A rule generator is any subset rg of S� � S � P!(C). The rule generated by rg

is the set rg[I]. An n-ary rule is a rule contained in Sn � S � P!(C), i.e. a rule

such that its instances have all the form hs ; s ;eci where s is a list of n sequents.

Classical rules, e.g. the rules of ND, have a �xed number n of premisses and are

presented with a schema. In our framework these rules correspond to n-ary rules

whose generator is a singleton set (see example below). Our framework allows also

the de�nition of more complex rules like rules with a variable numbers of premisses

and rules with more variance in the structure of the premisses and conclusion.

6.2. Examples

We start with some simple examples of inference rules from ND, and then move

to examples of increasing complexity.

Example (ND { propositional rules): We use the ND sequent system SsysND,
de�ned in x5.2. The set IdND includes identi�ers for the inference rules for assump-

tion introduction, _ introduction, : introduction and elimination, and for ?.

IdND � fASS; _ Ir; _ Il;:E;:I;?c;?ig

14

The informal notation used for the corresponding inference rules is

ASS fAg ` A

_ Ir
� ` A1

� ` A1 _ A2
_ Il

� ` A1

� ` A2 _ A1

:E
�1 ` A �2 ` :A

�1 [�2 ` ?
:I

� ;A ` ?

� ` :A

?c
� ;:A ` ?

� ` A
?i

� ` ?

� ` A

where �1, �2 are schematic variables standing for (�nite) sets of formulas (the

assumptions), and A1, A2 are schematic variables standing for formulas. We will

use this informal notation in the rest of the paper. The schemas like those above

should be thought of as presenting the rule generators for the rules considered. For

instance the schemas for ASS and :E present respectively the rule generators

fh[]; fAg ` A; ;ig

fh[�1 ` A;�2 ` :A];�1 [�2 ` ?; ;ig

Note that instances of these rules may contain schematic variables. (For example

the generating element is an instance.) In our framework this corresponds to the

possibility of representing schematic reasoning.

Example (ND { 8 introduction): The propositional rules for ND can all be

expressed without explicit constraints, since all of the restrictions on their applica-

bility can be expressed schematically in the form of their premisses and conclusion

(e.g., in the above example, :E can be applied only if the conclusion of the �rst

premiss is the negation of the conclusion of the second). However this is not always

the case. The rule for 8 introduction requires an additional constraint on the oc-

currences of free variables. We add 8I to the set of rule identi�ers. The informal

notation used to present the rule associated to 8I is the following:

� ` A

8I if NoFree(� ; x)

� ` (8x)A

Recall that NoFree(�; x) holds just if the variable x does not occur free in any of the

assumptions in �. In this case the notation used above presents the rule generator

fh[� ` A];� ` (8x)A; fNoFree(� ; x)gig

The presence in this rule generator of a non-empty constraint corresponds in our

framework to the possibility of representing provisional reasoning.

15

In the de�nitions of sequent and inference rule we have made explicit the no-

tions of constraint and constraint satisfaction but have not speci�ed any particular

constraint solving or checking mechanisms. This allows
exibility in the presenta-

tion of rules and (as we will see later) in the construction of derivations. It also

allows
exibility in the structure of derivations in that we can hide as much or as lit-

tle information in constraints as we choose. This is illustrated by the two examples

below.

Example (A simple tautology rule): Many systems have tautological de-

ciders implemented as primitive inference rules (for example FOL, GETFOL). We

represent this situation by inference rules with constraints that can be checked by

invoking the decider. We extend ND by adding a simple form of tautology rule,

TAUT,

TAUT if TautConseq(� ;A)

� ` A

where TautConseq(� ;A) holds just if the formula A is a tautological consequence

of � (cf. [58], p. 26).

An alternative to the black-box view of tautology checking is to include a

tautology checker, TC, as a part of the reasoning theory. Thus we would add a new

sort of sequent
b� `TC bA

corresponding to the representation of formulas used by TC along with the inference

rules upon which TC is based. We could then replace the above rule by:

b� `TC bA
TAUT

� ` A

Example (The NQTHM typeset reasoning module): The typeset reasoning

module of NQTHM is directly represented via typeset sequents and rules for typeset

deduction in [22]. In part III an alternative approach is taken in which typeset rea-

soning is represented by adding typeset constraints to the inference rules introduced

to describe rewriting and linear arithmetic reasoning. An example is the inference

rule for equality reasoning used by the rewriter.

NE if Ts(ti ; t1) \ Ts(ti ; t2) � ;

h `R ti ; pi ; (EQUAL t1 t2)!I hF; ;; ;i

According to this rule, an equality is rewritten to F (meaning false) if the typesets

of the two terms t1 and t2, are disjoint in the context ti . The mode I, subscripting

the arrow in the conclusion of the rule, indicates that this rewriting step preserves

term identity.

16

Our de�nitions do not make any assumption about the arity of inference rules.

This allows us, among other things, to de�ne variary inference rules with corre-

sponding variary rule generators. Consider the two examples below.

Example (A variary tautology rule): The variary tautology rule nTAUT

has as premisses a �nite list of sequents �1 ` A1; : : : ;�n ` An and conclusion the

sequent �1 [: : :[�n ` A under the constraint that A tautologically follows from

A1 ^ : : :^An.

�1 ` A1
...

�n ` An

nTAUT if TautConseq(A1 ^ : : :^ An;A)

�1 [: : :[�n ` A

The rule generator presented by the notation introduced above is the following:

[

n2Nat

fh[�1 ` A1; : : : ;�n ` An];�1 [: : :[�n ` A; fTautConseq(A1^ : : :^An;A)gig

Example (An NQTHM variary rule): An example of a variary NQTHM rule is

the rule introduced to represent the application of replacement rules during rewrit-

ing reasoning.

h `R ti ; pi ; l1 !B hT; : : :i
...

h `R ti ; pi ; ln !B hT; : : :i

rewR if rrMatch(h; [li]1:::n; t ; t
0;m)

h `R ti ; pi ; t !m ht 0; : : :i

where T is a constant meaning true and rrMatch(h; [li]1:::n; t ; t
0;m) is the constraint

that there is a replacement rule in h with hypotheses l 01; : : : ; l
0

n and conclusion tl !m

tr, and a substitution (instantiation) s such that t = tl[s], t
0 = tr[s], and li =

l 0i[s], for 1 � i � n. This rule is discussed in more detail in x12.2 and x13.3.

7. Reasoning Theories

We think of a reasoning theory as presenting a formal system or theory. It

speci�es a set of sequents, and a set of rules.

17

7.1. De�nition

A reasoning theory, Rth , is a structure

Rth = hSsys; Id ; er i

such that Ssys is a sequent system, Id is a set of identi�ers, and er 2 Rset[Ssys; Id]
is a rule set.

7.2. Examples

The ND reasoning theory is an example of a (simple) reasoning theory.

Example (ND):

RthND = hSsysND; IdND; erNDi

where SsysND is the sequent system described in x5. IdND includes the rule names

given in the ND example in x6.2 and additional names for the remaining quanti�er

rules. er ND associates to each ND rule name the corresponding rule, as described in

the ND example in x6.2.

7.3. Composing Reasoning Theories

As discussed in x3 and in x4.4, provers often integrate special purpose reasoning

modules which in turn use their own data structures and inference strategies. The

natural way to structure such provers using our framework is as the gluing together

of separate reasoning theories using additional inference rules. To illustrate this

idea we de�ne a simple operation for gluing together a family of disjoint reasoning

theories.

Let

Rth1 = hSsys1; Id1; er 1i

: : :

Rthn = hSsysn; Idn; er ni

be disjoint reasoning theories, with Ssysi = hSi;Ci; j=i; Ii; _[_]ii and er i 2 Rset[Ssysi; Id i]
for 1 � i � n. By disjointness we mean that the families of sets Si, Ci, Ii, and Id i
for 1 � i � n are each pairwise disjoint. Thus Si \ Sj = ;, for 1 � i 6= j � n, etc.

The (disjoint) union, Ssys, of the sequent systems Ssysi for 1 � i � n is de�ned

by

Ssys =
[

1�i�n

Ssysi = hS ;C ; j=; I ;_[_]i

18

S =
[

1�i�n

Si

C =
[

1�i�n

Ci [
[

1�i6=j�n

fs � s 0 s 2 Si; s
0 2 Sjg

I = I1 � : : :� In

j= and _[_], the identity instantiation, and composition are de�ned as follows.

ec j= c i� ec \ Ci j=i c if c 2 Ci

ec 6j= s � s 0 if s 2 Si ^ s 0 2 Sj ^ i 6= j

x[�] = x[� # i]i if x 2 Si [Ci

idi = hidi1; : : : ; idini

� � �0 = h� # 1 � �0 # 1; : : : ; � # n � �0 # ni

where � # j is the j-th element of the tuple �. It is easy to check that C ; j=

satisfy (ax), (mon), (cut), and that the other requirements for a sequent system are

satis�ed.

Let Id =
S
1�i�n Id i, and let IdB be a set of identi�ers disjoint from Id . Let

er =
S
1�i�n er i (er (id) = er i(id) if id 2 Id i), and let er B 2 Rset[Ssys; IdB] be a set

of inference rules over the joined sequent system. The gluing of the Rth i via erB is

de�ned by

Rth = glueRth([Rth1; : : : ;Rthn]; IdB ; erB) = hSsys; Id [IdB ; er [erBi

We say that Rth is a composite reasoning theory , with components Rth i, and glue

IdB ; erB . The elements of the rule sets er i are called the internal rules (brie
y

i-rules) of Rth i. The elements of erB are called bridge rules .

In addition to the isolated components of a composite reasoning theory, it is also

useful to consider these components combined with the bridge rules that link them

to other components, i.e. (instances of) rules whose conclusion sequent belongs

to that component. We call these open structures reasoning theory fragments , or
simply fragments. Given a family of reasoning theories and a set of bridge rules as

above, we de�ne the i-th fragment Fragi as follows.

Fragi = hSsysi; Id i [IdB ; er i [(erB # i)i

is a fragment (of Rth), where erB # i is de�ned by

(erB # i)(id) = fhs ; s ;eci hs ; s ;eci 2 erB(id) ^ s 2 Sig

for id 2 IdB .

19

In general a fragment Fragi will not be a proper reasoning theory. This is

because bridge rules may mention sequents (and constraints) not in Ssysi. In fact

in the examples of which we are aware bridge rules always have premisses and

conclusions in di�erent component sequent systems, although this is not a require-

ment. If we relax the disjointness requirement for the component theories additional

structure will be required of constraints and instantiations in order to produce a

composite reasoning theory, and there may be `bridge' constraints in addition to

sequent equations. Part III describes in detail how to structure NQTHM as a com-

posite reasoning theory.

8. Reasoning Structures and Derivations

A reasoning theory determines a set of proof structure fragments that we call

reasoning structures . Reasoning structures represent stages in the construction of

proofs. The proof fragments represented by reasoning structures can be schematic

and/or provisional. Certain reasoning structures are singled out that represent

derivations and proofs in the traditional sense. This allows us to decouple the

speci�cation of derivability from the control strategies for constructing derivations,

and gives greater
exibility for algorithm design and for de�nition of high-level

control abstractions.

Reasoning structures provide two independent forms of
exibility: horizontal

and vertical. Horizontal
exibility is
exibility in mode of proof construction, ab-

straction and reuse of derivations, and schematic reasoning. It comes from being

able to stitch together fragments rather like a patchwork quilt and to incrementally

re�ne schematic information. Vertical
exibility provides control over the level of

immediately visible detail. It comes from nesting of reasoning structures and the

ability to encapsulate a substructure into a nesting link, or open up a nesting link.

In this section, we let Rth = hSsys; Id; er i be an arbitrary but �xed reasoning

theory. We let SN (sequent nodes) and LN (rule nodes) be two disjoint countable

sets, used to construct reasoning structures.

We give the de�nition of reasoning structures in two steps. First we de�ne basic

reasoning structures. They provide the horizontal dimension of
exibility. Next we

add the vertical dimension of
exibility. Finally we de�ne derivations and proofs as

reasoning structures satisfying certain additional conditions, and show that these

restricted classes of structures can be easily mapped to standard tree-like proof

structures.

8.1. Reasoning Structures

A reasoning structure, rs , is a labelled graph. The nodes of rs are partitioned

into two sets: sequent nodes and link nodes. The edges of rs go from link nodes

to sequent nodes or from sequent nodes to link nodes. For each link node there

is a unique outgoing edge. The target sequent node is called the conclusion. The

remaining (incoming) edges are ordered and the target sequent nodes are called

20

the premisses.2 Sequent nodes are labelled by sequents and link nodes are labelled

by justi�cations. One kind of justi�cation is a rule application { represented by a

rule identi�er and a set of constraints. We call link nodes with such justi�cations,

rule application links. Another kind of justi�cation is a 4-tuple consisting of a set

of constraints, an instantiation map, a sequence of sequent nodes, and a reasoning

structure. The instantiation map relates schematic variables of the nested structure

to those of its containing structure. The sequent nodes are the nodes in the nested

reasoning structure which correspond to the premiss and conclusion nodes of the

labelled link node. We call link nodes with such justi�cations, nesting links. These
are the only kinds of justi�cation we consider for the present.

Basic reasoning structures over a reasoning theory Rth and nodes SN ;LN are

those with no nesting links.

De�nition (Basic Reasoning Structures, Rs0[Rth ; SN ;LN]):

Rs0[Rth ; SN ;LN] is the set of structures

rs = hSn;Ln; g ; sg; sL; lLi

such that

(1) Sn 2 P!(SN) is the set of sequent nodes of rs , and Ln 2 P!(LN) is the set of

link nodes of rs ;

(2) g : [Ln ! Sn] maps each link node to its associated goal sequent node;

(3) sg : [Ln ! Sn�] maps each link node to its (possibly empty) associated se-

quence of subgoal sequent nodes;

(4) sL : [Sn ! S] is the sequent node labelling map;

(5) lL : [Ln ! [Id � P!(C)]] is the link node labelling map. This map must be

such that for ln 2 Ln if lL(ln) = hid ;ec i, s = sL(sg(ln)), and s = sL(g(ln)),
then hs ; s ;ec 0i 2 er (id) for some ec 0 such that ec j= ec 0.

De�nition (Graph(rs)): The directed graph, Graph(rs), underlying a basic rea-
soning structure rs = hSn;Ln; g ; sg; sL; lLi is the graph with nodes Sn [Ln and

edges

f(ln; g(ln)) ln 2 Lng [f(sn; ln) ln 2 Ln ^ sn 2 sg(ln))g:

Notice that a sequent node may be the conclusion or a premiss of more than one

link node. This allows representation of multiple proof attempts for a given goal,

and sharing of substructures.

Example (ND basic reasoning structure): Figure 1 gives a graphical repre-

sentation of a reasoning structure. Circles represent sequent nodes, squares repre-

sent link nodes. Arrows go from premiss nodes to rule nodes, and from rule nodes to

2 The directionality of the edges is simply a device to distinguish the premisses from the conclusion
of a link node. We sometimes reverse the directions and correspondingly refer to the conclusion
as the goal and the premisses as subgoals.

21

ASS3

i f:wg ` :w3
if:wg ` w 6

:E7

i f:wg `?7?i 9 �

6

?c8

i ; ` w8

?

�
�
�
�
�)

P
P
P
P
Pq

?

?

?

Figure 1. ND reasoning structure rs1

ifu; vg `? 4

:I 5

ifvg ` :u 5

?

?

Figure 2. ND reasoning structure rs2

conclusion nodes. The numbers inside are used to refer to node occurrences. Labels

are put on the side of nodes. Rule application links whose justi�cation contains an

empty set of constraints are labelled only with a rule name. This reasoning struc-

ture has a cycle which corresponds in one direction to the application of ?i and,

in the other direction, to the application of :E. Figure 2 gives another reasoning

structure. These two reasoning structures can be stitched together to obtain the

reasoning structure in Figure 3 (u, v and w are schematic variables for formulas).

Notice that to obtain this result we have constructed a third reasoning structure

deriving fAg ` A _ :A , which we have then linked to the �rst two using link

node 4. Notice also that sequent node 3 is the premiss of two di�erent link nodes.

This form of sharing corresponds to the introduction in two di�erent places of the

assumption :(A _ :A) in a traditional proof �gure.

Part III gives examples of NQTHM reasoning structures spanning multiple het-

erogeneous reasoning theories.

We de�ne general reasoning structures by allowing successively deeper levels of

nesting, starting with basic reasoning structures at level 0.

22

ASS 1

ifAg ` A 1

_ Ir 2

ifAg ` A _ :A 2

From rs1 (w � A _ :A)

ASS3

i f:(A _ :A)g ` :(A _ :A)3

:E 4

From rs2 (u � A, v � A _ :A)

ifA;:(A _ :A)g `? 4

:I 5

if:(A _ :A)g ` :A 5

_ Il 6

if:(A _ :A)g ` A _ :A 6 :E7

i f:(A _ :A)g `?7

?c8

i ; ` A _ :A8

?i 9 �

6

�
�
�
�)

X
Xz

-

?

?

?

?
?

?

?

?

?

?
?

?

?

Figure 3. Stitching together rs1 and rs2.

De�nition (Reasoning Structures, Rs[Rth; SN ;LN]): The set,Rs[Rth; SN ;LN],

of reasoning structures is de�ned as follows.

Rs[Rth ; SN ;LN] =
[

n2Nat

Rsn[Rth; SN ;LN]

where Rsn[Rth; SN ;LN] is the set of reasoning structures of level n. The reasoning

structures of level 0 are the basic reasoning structures de�ned above. The reasoning

structures of level n + 1 are the structures

rs = hSn;Ln; g ; sg; sL; lLi

such that conditions (1-4) in the de�nition of basic reasoning structures holds, and

(5n+1) lL : [Ln ! [Id � P!(C)] + [P!(C)� I � [Sn�; Sn] � Rsn[Rth ; SN ;LN]]]

such that if ln is a rule application link then condition (5) for basic reasoning

structures holds and if ln is a nesting link with lL(ln) = hec ; �; [sn ; sn]; rs0i and

23

ASS 1

ifAg ` A 1

_ Ir 2

ifAg ` A _ :A 2

From rs1 (w � A _ :A)

ASS3

i f:(A _ :A)g ` :(A _ :A)3

:E 4

ifA;:(A _ :A)g `? 4
0

h;; �2; [[4]; 5]; rs2i 10

if:(A _ :A)g ` :A 5
0

_ Il 6

if:(A _ :A)g ` A _ :A 6 :E7

i f:(A _ :A)g `?7

?c8

i ; ` A _ :A8

?i 9 �

6

�
�
�
�)

X
Xz

-

?

?

?

?
?

?

?

?

?

?
?

?

?

where: �2 = fu A; v A _ :Ag

Figure 4. Nesting rs2.

rs0 = hSn0;Ln0; g 0; sg 0; sL0; lL0i then [sn ; sn] 2 (Sn 0)�, and sL0([sn ; sn])[�] =

[sL(sg(ln)); sL(g(ln))].

Example (ND nested reasoning structure): The reasoning structure in Fig-

ure 2 can be connected to the reasoning structure in Figure 1 by using a vertical

nesting node rather than horizontal stitching. The result is the reasoning structure

in Figure 4. The label of rule node 10 h;; �2; [[4]; 5]; rs2i contains the empty set of

constraints, the instantiation map �2, the premiss list [4] and conclusion 5, and the

nested reasoning structure rstr2. Thus the premiss sequent 4 of rs2 is associated

with the sequent node 40 of the outer structure, and the conclusion sequent 5 of rs2
is associated with the sequent node 50 of the outer structure.

24

8.2. Derivations

In order to de�ne the notion of derivation we need to de�ne how instantiations

are applied to reasoning structures.

De�nition (instantiation, rs[�]): If rs = hSn;Ln; g ; sg; sL; lLi 2 Rs[Rth; SN ;LN]

and � 2 I , then
rs[�] = hSn;Ln; g ; sg; sL[�]; lL0i

where, for ln 2 Ln

(ra) if lL(ln) = hid ;ec i, then lL0(ln) = hid ;ec[�]i,
(nest) if lL(ln) = hec ; �1; [sn ; sn]; rs1i, then lL0(ln) = hec[�]; � � �1; [sn ; sn]; rs1i.

Intuitively a reasoning structure is a derivation of a conclusion sequent from a

set of assumption sequents, if it represents a traditional proof �gure. That is, if it

satis�es conditions 1-5 below.

(1) Each rule application link has no unsolved constraints.

(2) Each sequent node is the conclusion of at most one inference (link node).

(3) There is a unique sequent node that does not occur as the premiss of any

inference. The sequent labelling this node is the conclusion of the derivation.

The sequents labelling occurrences which are not the conclusion of any inference

are the open assumptions.

(4) The underlying graph is acyclic.

(5) For each nesting link, the associated tuple hec ; �; [sn ; sn]; rsi is such that ec is

the empty set and the reasoning structure rs[�] is a derivation with conclusion

node sn and open assumption nodes sn .

A reasoning structure is a proof if it is a derivation with no open assumptions.

A sequent s is Rth-derivable from a set of sequents es if there exists a derivation

rs 2 Rs[Rth ; SN ;LN] with conclusion s and open assumptions contained in es . A
sequent s is Rth-provable if it is Rth-derivable from the empty set of sequents.

In general a derivation is a DAG (directed acyclic graph) rather than a tree,

since we allow a sequent node to be a premiss of more than one inference. This

allows not only the traditional sharing of lemmas, but even the sharing of subderiva-

tions. The next few lemmas state basic properties of derivations, and relate them to

traditional proof �gures. The �rst says that the underlying graph of a derivation is

rooted in the conclusion. The second says that instantiation preserves the property

of being a derivation. The third and fourth show that, for consideration only of

derivability, nesting links and sharing of subderivations can be eliminated (vertical

and horizontal unfolding). (Proofs can be found in x17.)

Lemma (reach): Let rs = hSn;Ln; g ; sg; sL; lLi be a derivation with conclusion

node sn0, then every sequent node is reachable from sn0 by a chain of subgoal

links, i.e. for each sn 2 Sn there is a sequence [lnj ; snj+1 0 � j < n] such that

g(lnj) = snj , snj+1 2 sg(lnj) for 0 � j < n, and snn = sn.

25

Lemma (derivation instantiation): If rs is a derivation of s from es then

rs[�] is a derivation of s[�] from es [�] for any instantiation �.

Lemma (elimination of nesting): If rs is a Rs[Rth; SN ;LN] derivation of s

from es then we can �nd a level 0 derivation rs0 2 Rs0[Rth; SN ;LN] of s from es .
Lemma (derivation trees): Let rs be a level 0 derivation of s from es then

there exists a level 0 derivation rs0 of s from es such that Graph(rs0) is a tree.

[A]1

A _ :A [:(A _ :A)]2

?

1

:A

A _ :A [:(A _ :A)]2

?

2

A _ :A

Figure 5. ND classical proof of A _ :A

Example (ND proof): The reasoning structures in Figure 3 and Figure 4 both

contain proofs of A _ :A. These proofs are representations of the standard natural

deduction style proof shown in Figure 5 (here assumptions discharged are put in

square parentheses and discharging points are labelled by numbers).

9. Operations on Reasoning Structures

We start by giving a set of primitive operations for construction of basic rea-

soning structures and top level manipulation of nested structures. These are then

extended uniformly to build nested reasoning structures. Finally we show how

inference rule applications can be de�ned in terms of the primitive operations.

9.1. Primitive Operations

To construct basic reasoning structures we de�ne one constant, mtrs, the empty

reasoning structure, and four operations: add a sequent, addS; add a rule application

link, linkR; solve constraints, solveC. To construct nested reasoning structures

we add an operation, linkN, that adds a nesting link. We show that this set of

operations is complete in the sense that all reasoning structures can be generated

from the empty structure using only these operations.

26

De�nition (empty reasoning structure, mtrs): The empty reasoning struc-

ture mtrs is the structure hSn;Ln; g ; sg; sL; lLi where Sn and Ln are the empty set

and g ; sg; sL; lL are the function with empty domain.

mtrs = h;; ;;~;;~;;~;;~;i

Each operation, O, has two arguments: a reasoning structure occurrence and

a tuple of additional parameters. The reasoning structure occurrence is either a

reasoning structure (top level occurrence) or a reasoning structure together with a

path consisting of a sequence of nesting links that selects a nested structure. In the

following we let rs stand for a reasoning structure hSn;Ln; g ; sg; sL; lLi. We begin

by describing the tuple of arguments, A, appropriate for each operation, O, and

the top level action O(rs; A). We then show how this is uniformly lifted to nested

substructures. 3

De�nition (adding a sequent, addS(rs ; s)): If s 2 S , then addS(rs; s) is

hSn [fsng;Ln; g ; sg; sLfsn 7! sg; lLi

where sn 2 SN � Sn.

Note that this and other operations are only functions modulo choice of new nodes.

This can be �xed in various ways. We will leave it informal for now and in the

following we will assume that two reasoning structures are equal if they are equal

modulo node renaming.

De�nition (rule linking, linkR(rs; sn ; sn; r)): If sn 2 Sn, sn 2 Sn�, r =

hid ; s ; s ;eci 2 er , j= fs � sL(sn); s � sL(sn)g, then linkR(rs ; sn ; sn; r) is

hSn;Ln [flng; gfln 7! sng; sgfln 7! sn g; sL; lLfln 7! hid ;ec igi

where ln 2 LN � Ln.4

3 Note that we write O(rs ; a1; : : : ; an) rather than O(rs ; ha1; : : : ; ani), and we use the same name
O for top level and nested application.

4 In this paper, we require that rule node labels in reasoning structures satisfy condition (5) given
in x8, that is:

(5) lL : [Ln ! [Id � P!(C)]] such that for ln 2 Ln if lL(ln) = hid ;ec i, s = sL(sg(ln)), and

s = sL(g(ln)), then hs ; s;ec 0
i 2 er (id) for some ec 0 such that ec j= ec 0.

In an early version of this paper, we considered an apparently more
exible alternative (5'):

(5') lL : [Ln ! [Id � P!(C)]] such that for ln 2 Ln if lL(ln) = hid;ec i, s = sL(sg(ln)), and

s = sL(g(ln)), then for any � 2 I such that j= ec [�] there is some ec 0 such that j= ec 0 and

hs [�]; s[�];ec 0i 2 er (id).
and the following de�nition of primitive rule linking

De�nition (rule linking, linkR0(rs; sn ; sn; r)): If sn 2 Sn, sn 2 Sn�, s ; s;ec is schematically
separated from rs (i.e. from the sequents and constraints occurring in node labels), and r =

27

Note that sn can be a sequence with repetitions. An example in which this pos-

sibility can be useful, is application of conjunction introduction to obtain A ^ A

from A. Depending on circumstances, one may or may not want to identify the

derivations of two occurrences of A in the premiss. If sharing is desired then the

linking uses two occurrences of the same sequent node in the premiss list.

De�nition (constraint solving, solveC(rs; ln;ec 0)): If ln 2 Ln, lL(ln) =

hid ;ec i, and ec 0 j= ec , then

solveC(rs ; ln;ec 0) = hSn;Ln; g ; sg; sL; lLfln 7! hid ;ec 0igi

and if ln 2 Ln, lL(ln) = hec ; �; [sn ; sn]; rs1i, and ec 0 j= ec , then

solveC(rs; ln;ec 0) = hSn;Ln; g ; sg; sL; lLfln 7! hec 0; �; [sn ; sn]; rs1igi

Note that we can use solveC to add constraints to a link node as well as to eliminate

solved constraints.

Nesting links are introduced with minimal structure justi�cations, just the

required sequent nodes, their corresponding sequent labels and the instantiation

to put in the link. These can then be extended by applying operations to nested

substructures.

De�nition (nesting link, linkN(rs; sn ; sn0; �; s ; s0)): If sn0 2 Sn, sn =

[sn1; : : :snn] 2 Sn�, s0 2 S , s = [s1; : : :sn] 2 S�, and sj[�] = sL(snj) for 0 � j � n,

then linkN(rs; sn ; sn0; �; s ; s0) is

hSn;Ln [flng; gfln 7! sn0g; sgfln 7! sn g; sL; lLfln 7! h;; �; [sn 0; sn00]; rs0igi

where ln 2 LN � Ln, Sn0 = fsn00; sn
0

1; : : :sn
0

ng � SN � Sn (distinct fresh se-

quent nodes), sn 0 = [sn01; : : :sn
0

n], sL0(sn
0

j) = sj for 0 � j � n, and rs0 =

hSn0; ;; ;; ;; sL0; ;i.

To de�ne the general application of operations on reasoning structures we �rst

de�ne the set of paths of a reasoning structure. Each path selects a nested sub-

structure. We represent paths as sequences of nesting link nodes.

De�nition (path in reasoning structure): ln 2 LN � is a path in a reasoning

structure rs = hSn;Ln; g ; sg; sL; lLi selecting rs 0 i� one the following conditions is

satis�ed:

hid ; s ; s;ec i 2 er , then linkR
0(rs; sn ; sn; r) is

hSn;Ln [flng; gfln 7! sng; sgfln 7! sn g; sL; lLfln 7! hid ;ec y
igi

where ln 2 LN � Ln, and ec y = ec [fs � sL(sn); s � sL(sn)g.

This option was rejected because it is not possible in general to construct all reasoning structures
using the primitive operations { since for a given link node there may be no one rule instance
that covers all satis�able instances of the constraints.

28

(1) ln = [], and rs0 = rs; or

(2) ln = [ln] � ln 0, where ln 2 Ln, lL(ln) = hec ; �; [sn ; sn]; rs1i, and ln 0 is a path

in rs1 selecting rs0.

Note that [] is the only path in a basic reasoning structure.

De�nition (General application of operations): If O is one of the primitive

operations, rs = hSn;Ln; g ; sg; sL; lLi is a reasoning structure, ln is a path in rs ,

and A is a tuple of arguments appropriate for O and the nested structure selected

by ln in rs, then we de�ne O(hrs; ln i; A) by induction on ln as follows:

(mt) if ln = [], then O(hrs; ln i; A) = O(rs; A)

(nmt) if ln = [ln] � ln 1, lL(ln) = hec ; �; [sn ; sn]; rs1i, then

O(hrs; ln i; A) = hSn;Ln; g ; sg; sL; lLfln 7! hec ; �; [sn ; sn]; O(hrs1; ln 1i; A)igi

The reasoning structure operations presented above are sound and complete

in the sense made precise by the following two theorems. (Proofs can be found in

x17.)

Theorem (soundness):

(1) mtrs is a basic reasoning structure.

(2) The operations addS, linkR, solveC, and linkN all map reasoning structures

to reasoning structures (when applied to appropriate arguments).

(3) The operations addS, linkR, and solveC all map basic reasoning structures

to basic reasoning structures (when applied to appropriate arguments).

Theorem (completeness): If rs 2 Rs[Rth ; SN ;LN], then rs can be con-

structed from the empty reasoning structure using only the operations addS, linkR,

solveC, and linkN. The basic reasoning structures are generated by excluding

linkN.

Theorem (independence): (completeness) fails if any of the operations in

the list are omitted.

9.2. Inference Rules as Operations on Reasoning Structures

The soundness and completeness results given in x9.1 guarantee that the prim-

itive operations de�ned there allow us to construct any given reasoning structure

from the empty structure. More work is necessary to guarantee that other maps on

reasoning structures can be de�ned by simple compositions of these primitives.

Rules of a reasoning theory are relations that don't impose any directionality

of application. Thus there is complete
exibility in their use to construct reasoning

structures. They can be used for forward or backward chaining, or in various mixed

modes to hook together derivation fragments. In this subsection we show how

operations on reasoning structures corresponding to di�erent modes of application

of inference rules can be de�ned as simple compositions of the primitive operations.

29

In particular we de�ne forward and backward application of an inference rule. We

de�ne these operations for basic reasoning structures. These can be lifted uniformly

to nested reasoning structures in the same manner as primitive operations are lifted.

Let r = hid; s ; s0;ec i be a rule instance, with s = [s1; : : : ; sn] such that j= ec .
De�nition (Forward application of r): Let rs = hSn;Ln; g ; sg; sL; lLi be a

reasoning structure with sn = [sn1; : : : ; snn] 2 Sn�, and sL(snj) = sj for 1 � j � n.

Assume sn0 62 Sn and ln0 62 Ln. Then fwdR(rs; r ; sn) = rs 0, where rs 0 is obtained

by the following sequence of primitive operations:

(add sequent node) rs0 = addS(rs; s0) introducing sn0;

(add link node) rs1 = linkR(rs0; sn ; sn0; r) introducing ln0; and

(solve constraints) rs0 = solveC(rs1; ln0; ;).

De�nition (Backward application of r): Let rs0 = hSn;Ln; g ; sg; sL; lLi be

a reasoning structure, sn0 2 Sn, sL(sn0) = s0. Assume sn = [sn1; : : : ; snn] with
snj 62 Sn for 1 � j � n, and ln0 62 Ln. Then bkwdR(rs0; r ; s0) = rs 0, where rs0 is

obtained by the following sequence of primitive operations:

(add sequent nodes) rsn is de�ned by rs i+1 = addS(rsi; si+1), introducing sni+1
for 0 � i < n;

(add link node) rsn+1 = linkR(rsn; sn ; sn0; r) introducing ln0; and

(solve constraints) rs0 = solveC(rsn+1; ln0; ;).

We have de�ned forward and backward rule applications as partial operations

whose domain consists of rule instances in which the constraints are satis�ed. They

correspond to traditional operations for constructing derivations. In our framework

it is also possible to de�ne lazy forms of rule application that allow us to postpone

solving constraints, and to de�ne mixed mode applications of inference rules, i.e.

applications where nodes labelled by some subset of the premisses and conclusion

sequents are present, and nodes labelled by the remainder are created. An interest-

ing particular case is when no new node is added and the application of an inference

rule consists only of adding a link and the constraints. In this case an inference rule

application amounts to an application of linkR.

Example (ND rule linking): One example of a linking application is the stitch-

ing together of the reasoning structures in Figure1 and Figure 2 to obtain the rea-

soning structure in Figure3. The link node ln6 is added to \link" together the

sequent nodes sn5 (the premiss of the rule application) and sn6 (the conclusion).

The rule instance r used in this case is

h _ Il; [f:(A_ :A)g ` :A]; f:(A_ :A)g ` A _ :A; ;i:

Notice that, even if an inference rule application is always directional, a proof

or derivation can be \read" out of a reasoning structure according to the desired

mode of application. Reasoning structures do not include information about how

they have been constructed. This information could be introduced as rule node

annotations.

30

III. An Analysis of the Integration of Linear Arithmetic in NQTHM

10. The NQTHM theorem prover

NQTHM is a sophisticated prover with complex reasoning heuristics, data struc-

tures and algorithms designed for e�cient representation and processing of various

sorts of information, and coded for optimal performance. The logic of NQTHM is

a quanti�er-free �rst-order logic of tree structured data and functions de�ned by

recursion on well-founded orderings. The search for a proof in NQTHM is driven by

heuristics (called processes) that integrate several proof techniques: simpli�cation;

destructor elimination; cross-fertilization; generalization; elimination of irrelevance;

and induction. Each process maps a formula in clausal form to a set of clauses

(considered conjunctively) and can be considered as a derived rule of inference that

runs backwards (cf. p. 129 [10]).

�� ��

�� ��

�� ��

�� ��

�� ��

�
�

�
�

�
�

�
�

�� ��

?

?

?

HHHj

?

S
S
S
SSo

A
A
A
A
A
A
A
A
AK HH
HY

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BBM

B
B
B
B
B
B
B
B
B
B
B
B
B
BM

�����)

6

6

e

cl

clause cl

poured over the topTOP

POOL

SIMPLIFICATION

cl

DESTRUCTOR
ELIMINATION

cl

CROSS-
FERTILIZATION

cl

GENERALIZATION

cl

ELIMINATION OF
IRRELEVANCE

cl

INDUCTION

cl

When a process succeeds,
it returns its output to the top

Figure 6. The NQTHM waterfall

31

The top level control can be described in analogy to a waterfall. (See Figure6.)

Conjectures to be proved are converted to clausal form and poured in at the top.

Repeatedly, a clause is removed from the top and poured over the waterfall, until

none remain. A clause is poured over the waterfall by trying on it, in order, simpli-

�cation, destructor elimination, cross fertilization, generalization and elimination of

irrelevance. If some process succeeds, it returns a set of clauses. These clauses are

put into the top part (shades of Escher). If none succeeds, the clause is put into

the pool. When top is empty the pool is cleaned up, i.e. the subsumed clauses are

deleted. Then a clause is selected from the pool for induction, an induction schema

is applied and the result is poured in at the top. When there is no clause left both

in the top and in the pool, the initial conjecture has been proved.

A theory is built up in NQTHM by processing a sequence of events (called

a history). Events include function and shell de�nitions, axioms, and proofs of

lemmas. Shell de�nition is the NQTHM mechanism for de�ning �nite recursive data

types. A history also includes information describing the use of lemmas by various

heuristics. For example some lemmas are tagged as rewrite rules for use by the

rewriter.

11. Outline of our analysis of NQTHM

The original prover, called from now on pNQTHM, did not include any special

arithmetic reasoning capability. In [8] the integration of a linear arithmetic module

into pNQTHM and the interactions of the rewriter and linear arithmetic modules

within the simpli�cation process are described in detail. In the following sections we

represent this integration at the reasoning theory level, describing the corresponding

modi�cations to the pNQTHM reasoning theory. We have chosen this example

because of the signi�cance of the system (NQTHM is state-of-the-art, and a better

understanding of how it works is by itself of considerable interest), because it is

thoroughly documented, and it constitutes one of the most challenging case studies

we could think of.

One of the main di�culties in the integration of a new module into a tightly

coded system like NQTHM is that the existing procedures must be modi�ed to

generate, manipulate and propagate the information needed or generated by the

new module. For example, in the case of integration of linear arithmetic, the local

context information is represented in two ways: as typeset information and as poly-

nomial information. In addition, the linear arithmetic module generates additional

assumptions and dependency information that the rewriter must propagate. One

of our main goals here is to show how the extra information and modi�cations can

be isolated inside the de�nition of the sequent system and rules of the modi�ed

system. The methodology we use is the following:

(1) Speci�cation of the original system;

(2) Speci�cation of the module to be added;

32

(3) Re�nement of the speci�cation of the original system to incorporate the addi-

tional information passed to and from the new module.

(4) \Gluing together" of the new module and the modi�ed system, which might

require the addition of new bridge rules.

We focus on the simpli�cation process and only sketch our analysis. In partic-

ular we describe sequents informally and only present some (of the many) internal

and bridge rules. A more complete speci�cation, based on the description given

in [8] and examination of the NQTHM code, is given in [22].

We conclude our analysis of NQTHM by giving some example reasoning struc-

tures representing NQTHM deductions. We do this in order to give more realistic

examples than the natural deduction examples in part II, and also to suggest how

this methodology can be applied to provide NQTHM with the (presently missing)

capability of producing proof structures.

We stress that of course we do not mean that the reasoning theory level of

integration is all (or even most of) the work which must be done to complete the

integration of a new reasoning module. The code of a highly tuned implementation

must be modi�ed according to the transformation described at the reasoning theory

level. This means at least specifying the conditions under which a new module

should be invoked, the rule that justi�es the invocation, and the mode of rule

application. For instance, in the case of integration of linear arithmetic into NQTHM

this means adding clauses to the rewriter and other modules, allowing them to

invoke the linear arithmetic module using appropriate bridge rules. Much work

needs to be done in order for this to be truly systematic, much less automatic.

However, even before that is possible, it seems likely that there is something to be

gained from this level of speci�cation in documenting decisions and guiding hand

recoding. One further caveat is that some experience is needed to determine the

kinds of speci�cations that are amenable to such re�nements and extensions.

12. The Reasoning Theory RthpNQTHM

The inference modules of the simpli�cation process of pNQTHM are the typeset

specialist, the rewriter and the sweeping process (sweeper). The typeset specialist

computes the type information associated to a term, e.g. that a term is a number

or a list, under some type assumptions on terms (hereinafter we refer to such as-

sumptions as typeset information). The rewriter rewrites an input term by applying

rewrite rules obtained from axioms and lemmas contained in the current theory and

unfolding function symbols. The rewriter performs these tasks in a context contain-

ing many kinds of information, the most important for our analysis being typeset

information. The sweeper is the module which interacts with the rewriter in order

33

#
"

!

#
"

!

C
C
C
C
C
C
CCW

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z~

�
�

�
�

�
�

�
�

�
��+

-

?

#
"

!RthP

-

In: cl

Out: ecl

#
"

!RthS

?

In: ti, l

Out: l
0

#
"

!RthR

t term to prove

In: ecl

Out: yes/no

In: cl

Out: ecl

In: cl

Out: ecl

........................

.............................

INDUCTION
SIMPLIFICATION

RthW

RthU

Figure 7. The Reasoning Theory RthpNQTHM

to rewrite (sweep) all the literals of the clause given in input to the simpli�cation

process.

In order to make the module structure explicit, we present the pNQTHM rea-

soning theory

RthpNQTHM = hSsyspNQTHM; IdpNQTHM; er pNQTHMi

as a composite reasoning theory constructed out of �ve component reasoning theo-

ries

RthpNQTHM = glueRth([RthU;RthW;RthP;RthS;RthR]; IdB ; erB)

where each component reasoning theory corresponds to a reasoning module of pN-

QTHM, and erB is a set of bridge rules (partially) described below. Figure7 provides

an overview of the organization of RthpNQTHM. RthU corresponds to (the reasoning

theory view of) the module in charge of interaction with the user. RthW corresponds

34

to the master module of the waterfall, the module which controls the interactions

with the modules implementing the various waterfall processes. RthP corresponds

to the master module of the simpli�cation process. Finally RthS and RthR corre-

spond respectively to the sweeper and the rewriter modules. The arrows in Figure 7

between component reasoning theories correspond in our framework to bridge rules

of RthpNQTHM. Bridge rules describe interactions between inference modules of

pNQTHM. Arrows of this kind are labelled by the data structures passed (In) and

returned (Out) in the interaction (see below).

The reasoning theory level description of pNQTHM can be done in many ways,

and at many levels of detail. The description given here is aimed at understanding

the interactions among the modules of the simpli�cation process. We do not consider

therefore the other waterfall processes. Moreover, since typeset reasoning does not

interact with other modules, we treat the typeset reasoning module as a collection

of primitive operations on typeset information structures and do not formulate a

reasoning theory for this module. The context and data structures manipulated by

NQTHM contain additional (non-logical) information used to control the heuristic

proof strategies. We have omitted this information for the present, as we are not

treating issues of control in this paper.

12.1. The RthpNQTHM Sequent System

The RthpNQTHM sequent system

SsyspNQTHM = hSpNQTHM;CpNQTHM; j=pNQTHM; IpNQTHM; _[_]pNQTHMi

is de�ned as

SsyspNQTHM =
[

i2fU;W;P;R;Sg

Ssysi

where each component sequent system has its own sequents, and constraints. There

are schematic variables for the various sequent sorts and other syntactic sorts, such

as terms and clauses. Instantiations are �nite maps (substitutions) from schematic

variables to syntactic entities of the appropriate sort, and application is as usual.

In pNQTHM all reasoning takes place in the context of some pNQTHM theory.

At the user level, assertions are conjectures to be proved within this context. At

the waterfall level processes manipulate clauses and clause sets. Internal to the

simpli�cation process, attention is focused on a single term occurring somewhere

in the clause being simpli�ed. This term might be one of the literals of the clause,

and hence considered to denote a boolean, or it might be a proper subterm of some

literal and hence considered to denote an individual. Often additional assumptions

can be made when reasoning about a term, based on its location in a clause. Such

assumptions are kept in a local context. Thus we structure pNQTHM sequents as

pairs consisting of an pNQTHM theory h and a current conjecture. The conjecture

35

may be further decomposed into local context information and focus information.

The notation for these sequents is summarized below.

(U) h `U t (W) h `W ecl

(P) h `P cl ! ecl (S) h `S ecl ! ecl 0

(R) h `R ti ; t !m t 0

Turnstyles are labelled to keep track of the component sequent system. For the

sort U, the conjecture is a term, t , representing the formula t 6= F (i.e. viewed

as a boolean). A sequent of sort U, asserts that the formula represented by t is a

consequence of the theory h. For the sort W, the conjecture is a set of clauses ecl
(considered conjunctively). A clause is a set of literals (considered disjunctively),

and a literal is a term viewed as a boolean. The interpretation of sequents of sort

W is analogous to those of sort U. For the sort P, the conjecture is cl ! ecl
where cl is a clause (corresponding to the input to the process) and ecl is a set of

clauses (corresponding to the output of the process). A P-sequent asserts that cl is

a consequence of the theory h, under the additional assumptions ecl . For the sort

S, the conjecture is ecl ! ecl 0. An S-sequent asserts that ecl is equivalent to ecl 0
in h. In pNQTHM when a clause is simpli�ed, each literal is rewritten in a local

context containing the typeset information that the remaining literals are false. We

represent this by using a typeset information structure, ti , as the local context of

an R-sequent. The focus information of an R-sequent is a triple t !m t 0 where t
and t 0 are terms and m is a mode (B if t is to be viewed as a boolean, I if t is to be

viewed as an individual). An R-sequent asserts that t is equivalent (relative to the

mode) to t 0 in the theory h (under the additional assumptions contained in ti).

12.2. The RthpNQTHM Rules

To provide some intuition for each rule we explain the reasoning step of pN-

QTHM that the rule is intended to describe. Notice that we present these rules

using the classical forward form, i.e. from the premisses to the conclusion, even

though the rule is adirectional and their intended use in the prover is backward.

The W-rule qed expresses the fact that there are no clauses (subgoals) left both in

the pool and in the top of the waterfall. It means that the initial conjecture has

been proved.

qed

h `W ;

The R-rule rewR represents the application of a replacement rule, i.e. a rewriting

rule obtained from an axiom or a lemma in the current theory, to a term. The

replacement rules of a theory are pairs of the form h^1�i�n l
0

i ; tl !m tri, where

36

^1�i�n l
0

i are the hypotheses of the rule and tl !m tr is the conclusion. Logically

speaking a replacement rule represents the formula

^1�i�n l
0

i) (tl eqm tr)

where eqm is =, if m is I, and , , if m is B.

[h `R ti ; li !B T 1 � i � n]

rewR if rrMatch(h; [li]1:::n; t ; t
0;m)

h `R ti ; t !m t 0

where T is a constant used for denoting truth and rrMatch(h; [li]1:::n; t ; t
0;m) is the

replacement rule matching constraint. This holds if there is a replacement rule in

h with hypotheses ^1�i�n l
0

i and conclusion tl !m tr; and a substitution, s, that

matches tl to t , tr to t 0, and l 0i to li, for 1 � i � n.

The bridge rule clausify represents a call of the master module of the waterfall.

This invocation is done with the goal of putting the clausi�cation of the initial

conjecture at the top set of clauses of the waterfall (arrow from RthU to RthW in

Figure 7).

h `W preprocess(h; t)

clausify

h `U t

where preprocess(h; t) expands abbreviations (recorded in h) and converts the result

to clausal form.

The bridge rule select represents the fact that, in the waterfall process, clauses in

the top-pool are selected and then fed into the special purpose deduction modules

(arrow from RthW to RthP in Figure 7). The sequents of the reasoning theories

associated to the high-level processes have all the same form of P-sequents, as all

of them take as input a clause and return a set of clauses.

h `P cl ! ecl 1 h `W ecl [ecl 1
select

h `W ecl [fclg

The bridge rule swInit represents the call of the sweeper by the master module of

the simpli�cation process. The goal of this call is the rewriting of each literal of a

clause (arrow from RthP to RthS in Figure7).

h `S fclg ! ecl
swInit

h `P cl ! ecl

37

The sweeper invokes the rewriter with the goal of simplifying the literals contained

in a clause. The rewriter takes as input a literal of the clause and the typeset

information that the remaining literals of the clause are false. If the answer of the

rewriter is T, this means that the clause is true. The bridge rule swT describes this

situation in our framework (arrow from RthS to RthR in Figure 7).

h `R initTI (cl); l !B T

swT

h `S ecl [fcl [flgg ! ecl

where initTI (cl) is the typeset information structure corresponding to assuming

the negation of each literal in cl . From a logical point of view the premiss of this

rule corresponds to the formula

(
^

l
0
2cl

:l 0)) (l , T):

13. The RthNQTHM Reasoning Theory

The modules of the NQTHM simpli�cation process are: the master simpli�er;

the sweeper; the rewriter; and the linear arithmetic specialist. The linear arithmetic

specialist reasons about linear inequalities over the natural numbers. The other

modules correspond to modules of pNQTHM modi�ed in a suitable way in order to

integrate the linear arithmetic specialist into NQTHM.

#
"

!RthP

-

In: pi, cl

Out: ecl

?

In: ti, cl

Out: pi

#
"

!RthS0

?

In: ti , pi, l

Out: l 0, hyps, deps

#
"

!RthL

-

In: ti, pi

Out: t , hyps, deps
#
"

!RthR0

�

In: ti, pi, l

Out: hyps, deps

Figure 8. The Reasoning Theory of the NQTHM simpli�cation process

38

As for pNQTHM, we present the NQTHM reasoning theory as a composite

reasoning theory

RthNQTHM = hSsysNQTHM; IdNQTHM; erNQTHMi

constructed by putting together the reasoning theory RthL corresponding to the

linear arithmetic module and a modi�ed version of RthpNQTHM as follows

RthNQTHM = glueRth([RthU;RthW;RthP;RthS0 ;RthR0 ;RthL]; IdB0 ; erB0)

where RthS0 and RthR0 are suitable modi�cations of RthS and RthR. In Figure 8 we

show the part of the structure of RthNQTHM relevant to the simpli�cation process.

Below we �rst describe RthL. Then we discuss how RthS0 and RthR0 are ob-

tained from RthS and RthR, by re�ning the S and R sequent sorts and suitably

revising the rules involving these sorts to include the additional information passed

to and from the linear arithmetic specialist. Finally, we describe some of the bridge

rules which must be added to link RthL to RthR0 and RthS0 .

13.1. The RthL Reasoning Theory

The linear arithmetic specialist gets as input a data structure, called polyno-

mial database, typeset information to be used by the typeset specialist and a set of

literals to be translated into the linear arithmetic world, and returns a new poly-

nomial database. A polynomial database contains a set of data structures, called

polynomials, which are used for representing linear arithmetic inequalities. A poly-

nomial contains a linear inequation of the form z0 + z1 � t1 : : : zn � tn � 0 (where

the zi are integers and the ti are terms), a set of literals, lh, called linearization

hypotheses, and a set of literals, ld , called linearization dependencies. The formula

represented by a polynomial is lh) p. The linearization dependencies are the

literals from which a polynomial is derived, and are used to project di�erent views

of the polynomial database. More explicitly, in NQTHM each literal of a clause is

rewritten in the local context where the remaining literals are assumed false. In

the presence of linear arithmetic, these literals assumed to be false are represented

in two ways: as typeset information to be used by the typeset module and as a

polynomial database used by the linear arithmetic module. Rather than build a

polynomial database for each complement to a literal in a given clause, the polyno-

mial database corresponding to assuming false each literal in the clause is built. The

polynomial database corresponding to the complement of a given literal is obtained

by hiding any polynomial having that literal in its set of dependencies.

The linear arithmetic module can add a set of literals, producing a new poly-

nomial database, and it can be asked if the polynomial database so obtained is

inconsistent, i.e. if some impossible linear arithmetic consequence, e.g. 2 � 0, can

be derived from the database. If so, an impossible polynomial is returned as wit-

ness. The linearization hypotheses of this polynomial must be incorporated in the

interpretation of the inconsistency.

39

In our framework L-sequents have the form:

(L) h `L ti ; pi ! pi 0

where the local context, ti , is a typeset information structure and the focus in-

formation, pi ! pi 0, consists of a pair of polynomial information structures that

represents a pair containing (the logical part of) a polynomial database and a set of

literals to be translated into the linear arithmetic world. The sequent asserts that

pi 0 is equivalent to pi in the theory h under the assumptions in ti .

The internal rules for RthL correspond to linearization (transforming literals to

a canonical polynomial form) and simple linear arithmetic reasoning such as \cross-

multiply" polynomials to obtain new polynomials. We will not discuss these rules

further. We include here only one rule, for the sake of completeness, as it is used

in the examples. This is the L-rule transla that expresses transitivity of the !

relation on polynomial information structures.

h `L ti ; pi0 ! pi1 h `L ti ; pi1 ! pi2

transla

h `L ti ; pi0 ! pi2

13.2. The modi�ed RthpNQTHM Sequent System

In NQTHM the sweeper is given, in addition to a clause, the polynomial database

built from the negations of the literals of this clause. Correspondingly, the S-

sequents of the NQTHM reasoning theory are modi�ed to have as local context the

polynomial information structure for the clause being swept. (Notice that in the

following, to keep the notation simple, we use S and R instead of S0 and R0.)

(S) h `S pi ; ecl ! ecl 0

A polynomial database is added to the context of the rewriter. The output of

the rewriter contains, in addition to the simpli�ed input term, two sets of literals:

the linearization hypotheses and the dependencies tracked for use in polynomials.

Correspondingly, the R-sequents of the NQTHM reasoning theory are modi�ed to

include a polynomial information structure in the local context, and to add two sets

of literals to the focus information.

(R) h `R pi ; ti ; t !
m
ht 0;el 1;el 2i

An NQTHM R-sequent asserts that t is equivalent (relative to the mode) to t 0 in

the theory h under the additional assumptions in pi , ti , el 1 and el 2.

40

13.3. The modi�ed RthpNQTHM Rules

The R-rule rewR is modi�ed to propagate the polynomial information compo-

nent of the local context along with the typeset information, and to accumulate the

linearization hypotheses and dependencies generated in relieving the hypotheses.

Note that the rule matching constraint is unchanged.

[h `R ti ; pi ; li !B hT;el 1;i;el 2;ii 1 � i � n]

rewR if rrMatch(h; [li]1:::n; t ; t
0;m)

h `R ti ; pi ; t !I ht
0;
S
1�i�n

el 1;i;
S
1�i�n

el 2;ii

The bridge rule swInit is modi�ed to provide for initialization of the polynomial

information structure.

h `L initTI (cl); initPI (cl)! pi h `S pi ; fclg ! ecl
swInit

h `P cl ! ecl

where initPI (cl) inserts the negations of the literals in cl into the empty polynomial

information structure.

The bridge rule swT is modi�ed to propagate the restricted polynomial information

structure, and to take account of the linearization hypotheses accumulated during

rewriting. At this point, the linearization dependencies can be discarded.

h `R initTI (cl); hide(pi ; l); l !B hT;el 1;el 2i
swT

h `S pi ; ecl [fcl [flgg ! ecl [split(cl [flg;el 1; l)

where hide(pi ; l) e�ectively removes from pi any polynomial with l among its lin-

earization dependencies. Thus if pi is the result of assuming the negation of each

literal in cl [flg, then hide(pi ; l) is e�ectively the result of assuming the negation

of each literal in cl . split(cl [flg;el 1; l) is the set of variants of cl [flg that must

be established to account for the additional hypotheses el 1.
We include one further rule, for the sake of completeness, as it is used in the

examples. This is the R-rule reflr that expresses re
exivity of the ! relation on

terms, in either mode.

reflr

h `R ti ; pi ; t !m ht ; ;; ;i

41

13.4. New Bridge Rules

We present three additional bridge rules. They represent respectively the invo-

cation of the linear arithmetic specialist by the top level part of the simpli�cation

process, the invocation of the linear arithmetic specialist by the rewriter, and the

invocation of the rewriter by the linear arithmetic specialist.

The top level part of the NQTHM simpli�cation process invokes the linear arith-

metic specialist to derive an impossible polynomial (i.e. a polynomial containing an

impossible inequation, e.g. 2 � 0) from the negation of the clause cl given in input

to the process. When this succeeds, this means that cl has been proved by linear

arithmetic reasoning under additional hypotheses corresponding to the linearization

hypotheses of the impossible polynomial found. The bridge rule buildPI represents

in our setting this interaction between the two modules (arrow from RthP and RthL
in Figure 8).

h `L initTI(cl); initPI (cl)! pi

buildPI if impos(pi ; hel 1;el 2i)
h `P cl ! splitc(cl;

el 1)

The constraint impos(pi ; hel 1;el 2i) means there is a polynomial in pi , deduced from

the literals in el 2, which is impossible given the additional assumptions el 1. These

can be considered as a case split and splitc(cl ;
el 1) yields the clauses that must be

proved for the remaining cases.

The linear arithmetic module is invoked by the rewriter for proving by linear arith-

metic reasoning that certain expressions are true or false. This interaction can be

explained informally as follows. Suppose the rewriter is trying to prove that a lit-

eral l is true (the case for false is analogous). Then the linear arithmetic module

is invoked to �nd an impossible polynomial from the negation of l (as the linear

arithmetic module works by refutation) and the current polynomial database and

typeset information. When this succeeds, it means that l is true under the ad-

ditional assumptions corresponding to the the set of linearization hypotheses and

dependencies of the impossible polynomial found. These assumptions are accu-

mulated and returned at the end of the rewriting process. The bridge rule rewT

represents in our framework this interaction (arrow from RthR to RthL in Figure8).

h `L ti ; assertneg(pi ; l)! pi1

rewT if impos(pi1; h
el 1;el 2i)

h `R ti ; pi ; l !B hT;el 1;el 2i

where assertneg(pi ; l) adds the negation of l to the literals assumed in pi .

The linear arithmetic module invokes the rewriter to �nd rule instances of a suit-

able form (called linear rules) in the current theory that might be used to generate

additional polynomials. If a suitable rule instance is found, and its hypotheses

42

can be established in the current context, then its conclusion is rewritten and lin-

earized, the linear hypotheses and dependencies accumulated while establishing the

hypotheses and rewriting the conclusion are added, and the resulting polynomial

is added to the polynomial database. The bridge rule for this interaction, laR, is

de�ned as follows (arrow from RthL to RthR in Figure 8).

[h `R ti ; pi ; li !B hT;el 1;i;el 2;ii 1 � i � n]

h `R ti ; pi ; x!I hx1;el 1;n+1;el 2;n+1i
h `R ti ; pi ; y !I hy1;el 1;n+2;el 2;n+2i

laR if lrMatch(h; [li]1:::n; x; y; t)

h `L ti ; pi ! addPoly(pi ; hL(x1; y1);el 1;el 2i)

where el 1 =
S
1�i�n+2

el 1;i, l2 =
S
1�i�n+2

el 2;i, addPoly(pi ; p) adds the polynomial

p to pi and lrMatch(h; [li]1:::n; x; y; t) is the linear rule matching constraint. It

holds if there is a linear rule in h with hypotheses ^1�i�n l
0

i , conclusion L(x0; y0); s

is a substitution (actually in NQTHM this substitution has to satisfy some further

heuristic conditions); li is the result of applying s to l 0i , for 1 � i � n; and x; y are

the results of applying s respectively to x0; y0.

14. Examples of RthNQTHM Reasoning Structures

ih `L initTI (cl); initPI(cl) ! pi 1

buildPI; fimpos(pi; hel 1;el 2i)g 1

ih `P cl ! split
c
(cl;el 1) 2

i h `S pi; fclg ! ecl3

swInit2

i h `P cl ! ecl4

?

?

H

H

H

H

H

H

H
Hj
?

?

Figure 9. RthNQTHM Reasoning Structure Fragment

We mentioned above that, to simplify a clause, the top level part of the NQTHM

simpli�cation process invokes the linear arithmetic module to attempt to derive an

impossible polynomial from its negation. When this fails, the sweeper is invoked to

rewrite each of the literals. The sweeper is given both the clause and the polynomial

database returned by the linear arithmetic module. In our setting this corresponds

to a reuse of the derivation which constructs the polynomial database as one of

premisses in the rule swInit. Figure9 shows a schematic reasoning structure where

43

this reuse is made explicit by sharing of graph structure. This reasoning structure

provides also an example of provisional reasoning (see the constraint contained in

the justi�cation of link node 1).

As a more concrete example we show how to represent the NQTHM proof

described on p. 29-30 in [8]. (In the following reasoning structures are presented

and discussed \backward", in order to follow the reasoning steps performed by

NQTHM.) The conjecture to prove comes from a simple step in the proof of the

correctness of the Boyer-Moore fast string searching algorithm [6].

(lp+ lt � maxint ^ i � lt)) (i+ delta1(pat; lp; c)� maxint)

where lp, lt, maxint and i are natural numbers and delta1 satis�es the axiom

delta1(pat; lp; c)� lp:

A sequence of commands (events) that will lead NQTHM to prove the conjecture

is given below. The �rst command declares the function DELTA1. Then the axiom

DELTA is added to the rewrite rules (it is stored as a linear rule by NQTHM) and

the last command is used to prove the theorem.

(DCL DELTA1 (X Y Z))

(ADD-AXIOM DELTA (REWRITE) (NOT (LESSP LP (DELTA1 PAT LP C))))

(PROVE '(IMPLIES (AND (LEQ (PLUS LP LT) MAXINT)

(LEQ I LT))

(LEQ (PLUS I (DELTA1 PAT LP C)) MAXINT)))

The output we get from NQTHM is:

This formula simpli�es, using linear arithmetic and applying the lemma

DELTA, to: T.

Q.E.D.

Figure 10 summarizes the notation used to abbreviate complex expressions in the

reasoning structures representing this proof.

We use the vertical
exibility of reasoning structures to present di�erent levels

of detail of the proof. The top level reasoning structure corresponds roughly to the

information that the user gets from the prover. This is shown in Figure 11. We use

two presentations: linear and graphical. The �rst uses notation similar to Kleene's

presentation of proofs [39]. The columns in the table of the �gure correspond

respectively to a sequent node, its label, the link node having the sequent node as

conclusion, the subgoals of the link node and its justi�cation. The nested reasoning

structures rsa and rsc use pure linear arithmetic and we omit details. The nested

reasoning structure rsb uses the lemma DELTA. This reasoning structure is shown

in Figure 12. This illustrates the use of lemmas during linear reasoning.

In Figure 11, the repeated use of transla clutters the presentation of the proof.

In Figure 13 we show a reasoning structure which contains the sequent and link

44

Symbol Abbreviation for

t (lp+ lt �maxint ^ i � lt)) (i + delta1(pat; lp; c) �maxint)

l1 maxint < lp+ lt

l2 lt < i

l3 :(maxint < i + delta1(pat; lp; c))

l4 :(lp < delta1(pat; lp; c))

cl fl1; l2; l3g = preprocess (h1; t)

t1 lp

t2 delta1(pat; lp; c)

ti initTI (cl)

p1 hlp+ lt�maxint � 0;;; fl1gi

p2 hi � lt � 0; ;; fl2gi

p3 h1� delta1(pat; lp; c) � i +maxint � 0; ;;fl3gi

p4 hdelta1(pat; lp; c) � lp � 0; ;;fl4gi

p5 h1� i � lp+maxint � 0; ;; fl3; l4gi

p6 h1� lp� lt+maxint � 0; ;; fl2; l3; l4gi

p7 h1 � 0; ;; fl1; l2; l3; l4gi

pi
0

initPI (cl)

pi i contains the polynomials pj for 1 � j � i

h1 the theory resulting from the �rst two commands

Figure 10. Abbreviations

nodes 5{9 of the reasoning structure in Figure11, where we use the rule transla�

to hide sequent and link nodes 7. transla� can be considered as simply an abbre-

viation for a nested reasoning structure that contains the hidden detail. We could

also have chosen this as an o�cial rule. Or it could be considered as a derived rule

{ replacing syntactic sugar by a �rst class rule. Work is ongoing to develop a theory

of admissible derived rules. (See section x16 on the future work.)

45

sn sL ln sg lL

1 h1 `U t 1 2 clausify

2 h1 `W fclg 2 3; 4 select

3 h1 `P cl ! ; 3 5 buildPI

4 h1 `W ; 4 ; qed

5 h1 `L ti ; pi
0
! pi

7
5 6; 7 transla

6 h1 `L ti ; pi
0
! pi

3
6 ; h;; idi; [[];60]; rsai

7 h1 `L ti ; pi
3
! pi

7
7 8; 9 transla

8 h1 `L ti ; pi
3
! pi

4
8 ; h;; idi; [[];80]; rsbi (using axiom DELTA)

9 h1 `L ti ; pi
4
! pi

7
9 ; h;; idi; [[];90]; rsci

i1 h1 `U t

1 clausify

i2 h1 `W fclg

2 select

i3h1 `P cl ! ;

3buildPI

i4 h1 `W ;

4 qed

i5 h1 `L ti; pi
0
! pi

7

5 transla

i6h1 `L ti; pi
0
! pi

3

6h;;idi; [[]; 60]; rsai

i7 h1 `L ti ; pi
3
! pi

7

7 transla

i8h1 `L ti; pi
3
! pi

4

8h;;idi; [[]; 80]; rsbi

i9 h1 `L ti; pi
4
! pi

7

9 h;;idi; [[]; 90]; rsci

�

��

H

Hj

? ?

?

?

?

�

��

H

Hj

? ?

?

?

�

��

H

Hj

? ?

Figure 11. The user-level reasoning structure

IV Concluding Matter

46

sn sL ln sg lL

80 h1 `L ti ; pi
3
! pi

4
10 10; 11 laR (using axiom DELTA)

10 h1 `R ti ;pi
3
; t1 !I ht1; ;;;i 11 ; reflr

11 h1 `R ti ;pi
3
; t2 !I ht2; ;;;i 12 ; reflr

i80 h1 `L ti; pi
3
! pi

4

10 laR

i10h1 `R ti;pi
3
; t1 !I ht1; ;; ;i

11reflr

i11 h1 `R ti;pi
3
; t2 !I ht2; ;; ;i

12 reflr

?

��	 @@R

? ?

Figure 12. Opening up the reasoning structure rsb

i5

5 transla
�

?

?

�

�

�

�

�

�

��+

Q

Q

Q

Q

Q

Q

QQs

i6

6

?

i8

8

?

i9

9

?

Figure 13. Generalized Transitivity

15. Related Work

Reasoning theories, and in particular composite reasoning theories, are sim-

ilar in spirit to multi-language systems [21, 19]. They can be considered an in-

tensional view of the deductive aspect of logic (cf. entailment theories and proof

calculi [43]). In multi-language systems, sequents may have hypotheses and con-

clusion from di�erent languages (sequent systems), and bridge rules may discharge

hypotheses across languages.

47

The notion of inference rule generalizes the notion of deduction rule described

by Prawitz [54]. There, a deduction rule is considered as a relation on pairs (called

sequents) consisting of a list of assumption formulas and a conclusion formula, and

proofs are tree-like structures. The notion of n-ary rule generator generalizes the

notion of rule introduced by Scott [57]. Here (propositional) systems are determined

by a set of sentences and a relation ` between �nite sets of sentences. A rule is

expressed using meta variables for sentences combined using �nite set formation,

`, conjunction and implication. A rule is correct for a system if it is valid in the

system. Notions of a rule following from a set of rules and a rule being derivable

from a set of rules are also de�ned.

Reasoning structures generalize the deduction graphs used in IMPS [46, 16] in

several ways: a richer domain of sequents; using constraints for provisional reason-

ing; and nesting.

The work presented in this paper is an attempt at an axiomatic presentation of a

wide class of deductive systems in the spirit of the work on general logics [43]. Other

meta-logical frameworks have focused on notational systems for presenting logics

(more precisely, deductive or entailment systems using the classi�cation of [43], as

they treat only syntax and deduction, not models). Some examples are: LF [27, 28]

{ a meta-logical system for describing and prototyping logics; lambda-prolog [45] {

a meta programming language for manipulating syntactic entities such as programs,

formulas, and proof structures; and Feferman's formalism based on inductive def-

initions for specifying syntax, proofs, and in some cases models of logical systems

[17, 18]. The closest in spirit to our work is the work on LF, as both approaches

share the main goal of characterizing formal systems and provability at an abstract

level. However there are important di�erences, all consequences of the di�erent tar-

gets: LF focuses on formalizing (the deductive aspects of) logics while the work on

reasoning theories focuses on formalizing and specifying provers, and on analyzing

the data structures that support their design and integration. The following points

provide a more detailed comparison.

1. LF is a formalism for presenting logics [formal systems]. The objective is

to unify and abstract commonality from the plethora of logics, and to provide

a generator of proof editors/checkers from presentations. Reasoning theories are a

mathematical framework for designing and specifying the (operational) semantics of

reasoning modules. Reasoning theories are the declarative component of reasoning

systems. The objective of this work is to provide a framework for interoperation

and integration of logical services.

2. The basic notions of LF are: judgments (formulas as types); proofs as elements

of judgements (typed terms); rules as elements of higher-order judgements (higher

typed terms). The basic notions of reasoning theories are: sequents (considered as

data structures) and constraints; rules (relations on sequents and constraints); and

reasoning structures (data structures representing provisional derivation fragments).

Presentations of reasoning theories are expected to be �rst-order theories.

48

3. An LF presentation is an LF signature assigning types and kinds to a �nite set

of constant symbols. There is only limited ability to de�ne operations and relations

on syntactic entities. In LF binding and schematic abstraction and instantiation

are expressed using lambda-abstraction and binding. Variables don't exist at the

object level. This provides an elegant treatment of binding, but it is not convenient

as a basis for manipulating judgements as data structures. LF does not allow for

provisional reasoning.

4. In LF application and abstraction give an elegant account of assumption

discharge for certain `nice' natural deduction systems, however many logics (in

particular those used inside mechanized reasoning systems) don't �t this niche. In

reasoning theories it is expected that assumptions are carried as part of the sequent

structure and there is no bias towards (or against) natural deduction.

16. Future Work

We are at the beginning of a long term project which still needs to be developed

in many directions.

One line of research will aim at completing our characterization of reasoning

systems. To begin with, this will require a further development of the current no-

tion of reasoning theory. In this paper we have allowed justi�cations in the form

of nested reasoning structures. A natural and important extension is to associate

nested reasoning structures to the application of derived inference rules. This will

allow us to have a notion of deduction where it is possible to call complex infer-

ence procedures as single inference rules (this being already possible in the cur-

rent notion of reasoning structure), and, under request, to provide the reasoning

structures built by such procedures as a justi�cation for their applications. For

instance, in x6, we have used constraints whose testing requires a lot of reasoning,

e.g. TautConseq(A1 ^ : : : ^ An; A). In the actual FOL implementation of TAUT,

the constraint TautConseq(A1^ : : :^An; A) is decided using a module which takes

a formula, and, using truth tables, tests whether it is a tautology. This module

implements an e�cient generalization to non-clausal formulas of the Davis Putnam

procedure. With this extension it will be possible to open up the application of a

derived inference rule, e.g. TAUT, and substitute it with the reasoning structures

built by the embedded decider, e.g. a David Putnam procedure. Conversely, it will

also allow us to hide a complex reasoning structure in the application of a derived

inference rule. This feature is very important as, among other things, it will allow

us to check (e.g. via a simple proof checker whose correctness we trust) the correct-

ness of complex inference rule applications whose correctness we do not trust. It

will also allow us to have a notion of correctness of a proof \modulo the correctness

of a subset of the inference rules applied in its development". For more on the issue

of the correctness of mechanized reasoning systems see [4]. Technically, this can be

done by allowing the use of nested reasoning theories, and of linking nodes with

both a rule identi�er and a pointer to a nested reasoning structure. Some of the

49

complications are due to the fact that di�erent inferencers use di�erent languages,

and to the fact that constraints must propagate correctly.

The second component of a reasoning system is control. Here the goal is to be

able to specify complex provers as reasoning systems with a functional (tactical)

language calling appropriate inference rules. The problem is that control in general

makes use of a lot of state (e.g. the number of times a formula has been used), whose

manipulation is usually hardwired in some ad hoc way in the system code. Our idea

is to decorate sequents with annotations which make explicit these manipulations.

The open question is whether it will be possible to identify (at least a subset of) the

state which is used by a large number of systems and a general system independent

syntax for describing it.

The third component of a reasoning system is interaction. Here we need to �nd

a general language which can be used to specify the possible requests to a reasoning

system, and to provide it with an extensional semantics. Some examples of possible

requests are: prove this goal, give me a proof of this goal, add this lemma to your

database of rewriting rules, add this axiom to your database of axioms, add this

information to your local context, and so on. Then we must be able to translate

these operations into the reasoning systems' internal operations, e.g. into calls to

appropriate control procedures, and to prove that this translation preserves the

semantics. Some preliminary ideas and results are reported in [64].

The applicability of our proposed methodology must be tested against impor-

tant, non-trivial examples. Currently, work is underway to develop speci�cations of

the logical services provided by NQTHM and its component modules. In [22] we have

already provided a speci�cation of the reasoning theory associated to the simpli�-

cation process. We plan to extend this analysis to consider also control and inter-

action. Additional case studies are being considered including: the Nelson-Oppen

cooperating decision procedures and simpli�er (this having the highest priority);

Ontic; PVS; resource limited logics; semantic tableaux base provers, resolution or

mating based provers, systems which integrate provers and symbolic mathematical

systems.

A formal notation is needed for presenting the syntax and semantics of sequent

systems and for de�ning relations between sequent systems. To account uniformly

for notions of binding we will build on the work on binding structures [65]. As a

starting point we expect to use a notation for �rst-order theories such as OBJ [24]

or Maude [41]. The module composition capability of these systems will also serve

as a starting point for developing a richer calculus of reasoning theories.

So far we have considered only the operational and proof theoretic aspects of

reasoning systems. We need to add a semantic component to the framework to

provide a notion of model for reasoning theories and to reason about how semantics

compose when we connect together heterogeneous reasoning systems. The work on

general logics [43] provides the starting point for this work. A very powerful notion

of module composition is that based on theory mappings [43]. This is a central idea

in the work on the Clear speci�cation language[23] and is the basis for the module

50

level of the OBJ language[24]. Theory mappings (also called Views) insure not only

syntactic, but also semantic composability of modules.

Some of the problems that the work on reasoning systems addresses are general

problems of modularization, composability, and interoperability that are not speci�c

to the domain of automated reasoning. As the ideas and techniques become better

developed, we expect that general principles will emerge that can be used in other

application domains.

Acknowledgements. The authors would like to thank the Open Architectures

for Reasoning Systems working group at Stanford, Jussi Ketonen for many stimu-

lating discussions during the course of the work, Maura Cerioli and Toby Walsh for

pointing out errors and omissions in an earlier draft.

This research was partially supported by ARPA grants NAG2-703, NAVY N00014-94-1-

0775, NSF grants CCR-8917606, CCR-8915663, ONR grant N00014-94-1-0857, and CNR grant

CN 92.03006.CT26.

51

17. Proofs

17.1. Derivations

Lemma (reach): Let rs = hSn;Ln; g ; sg; sL; lLi be a derivation with conclusion

node sn0, then every sequent node is reachable from sn0 by a chain of subgoal

links, i.e. for each sn 2 Sn there is a sequence [lnj ; snj+1 0 � j < n] such that

g(lnj) = snj , snj+1 2 sg(lnj) for 0 � j < n, and snn = sn.

Proof (reach): By reductio ad absurdum. Let sn 2 Sn be a sequent node that

is not reachable from sn0. The case sn = sn0 is trivial. Suppose that sn 6= sn0. By

(3) in the de�nition of derivation, sn must be the premiss of a link node ln 2 Ln.
Let sn0 be the conclusion node of ln. From the hypothesis that sn is not reachable

from sn0, it follows that also sn
0 is not reachable from sn0. Iterating this reasoning,

we can build an in�nite sequence of nodes without repetitions (there are no cycles

in rs). But then we get an inconsistency since Sn is �nite.

reach

Lemma (derivation instantiation): If rs is a derivation of s from es then

rs[�] is a derivation of s[�] from es [�] for any instantiation �.

Proof (derivation instantiation):

By induction on the level n of Rsn[Rth; SN ;LN].

Base case: rs 2 Rs0[Rth; SN ;LN]. Let � be an instantiation. From the

fact that rs is a derivation, it is easy to prove that rs[�] satis�es conditions (1)-

(5) in the de�nition of derivation. Condition (1) holds trivially because rs has no

unsolved constraints. Conditions (2)-(4) are satis�ed because rs and rs[�] have

the same graph structure. Condition (5) holds because rs has no nesting link. The

conclusion of rs[�] is s[�] and its open assumptions are contained in es [�], because,
as already observed, the graph structure of rs is preserved under instantiation.

Induction step: rs 2 Rsn+1[Rth ; SN ;LN]. Let � be an instantiation. As

done in the previous case, we can prove that rs[�] satis�es conditions (1)-(4) in

the de�nition of derivation. It remains to prove that rs[�] satis�es condition (5).

Let ln be a nesting link of rs whose associated justi�cation is h;; �0; [sn ; sn]; rs0i. It
follows that the justi�cation of ln w.r.t. rs[�] is h;; �� �0; [sn ; sn]; rs0i. As rs0[�0] 2
Rsn[Rth; SN ;LN], by induction hypothesis we have that rs0[�0][�] is a derivation

of the sequent labelling sn (in rs 0[�0][�]) from the premiss sequents labelling sn .

Finally, as done above, we can prove that the conclusion of rs[�] is s[�] and that

its open assumptions are contained in es [�].

derivationinstantiation

Lemma (elimination of nesting): If rs is a Rs[Rth; SN ;LN] derivation of s

from es then we can �nd a level 0 derivation rs0 2 Rs0[Rth; SN ;LN] of s from es .

52

Proof (elimination of nesting): We prove this lemma by well-founded induc-

tion w.r.t. the relation � de�ned on Rs[Rth; SN ;LN] as follows. Let

rs1 = hSn1;Ln1; g1; sg1; sL1; lL1i

and

rs2 = hSn2;Ln2; g2; sg2; sL2; lL2i

be two reasoning structures in Rs[Rth ; SN ;LN], then rs1 � rs2 i� one of the

following conditions is satis�ed:

(1) there exists a number n such that rs1 2 Rsn[Rth; SN ;LN] and rs2 62 Rsn[Rth ; SN ;LN];

(2) the previous condition is not satis�ed and the cardinality of Ln1 is less than

the cardinality of Ln2.

Let rs be a derivation of s from es whose conclusion node is sn. Let ln be

the unique link node (from condition (2) in the de�nition of derivation) such that

g(ln) = sn (the case when there is no such a link node is trivial). There are two

cases.

(i) ln is a rule application link. Let sg(ln) = [sn1; : : : ; snk] be the sequence of

premisses of ln. For each sni there is in rs a subderivation rs i of the sequent
labelling sni, say si, from es . Since rs i � rs , it follows by induction hypoth-

esis that there exists a level 0 derivation rs 0i 2 Rs0[Rth ; SN ;LN] of si from
es . Therefore we can construct a level 0 derivation rs0 of s from es using as

ingredients the sequence of reasoning structures rs01, ..., rs
0

k, the link node ln
and the sequent node sn.

(ii) ln is a nesting link. Let lL(ln) = h;; �; [sn ; sn]; rs0i; then, as done before, we

obtain by induction hypothesis a sequence of level 0 derivations rs 01, ..., rs
0

k

such that rs 0i is a derivation of the sequent labelling the i-th subgoal of ln from

es . Moreover since rs 0[�] � rs, by induction hypothesis there exists a level 0

derivation rs00 of s from the set of sequents labelling the subgoals of ln. In this

case the ingredients for building a level 0 derivation rs0 of s from es are the

sequence of reasoning structures rs 01, ..., rs
0

k and the reasoning structure rs00.

eliminationofnesting

Lemma (derivation trees): Let rs be a level 0 derivation of s from es then

there exists a level 0 derivation rs0 of s from es such that Graph(rs0) is a tree.

Proof (derivation trees): By induction on the number n of rule application

link nodes of rs .

Base case: n = 0. Trivial.

Induction step. Let sn be the conclusion node of rs, ln be the unique link

node such that g(ln) = sn (from condition (2) in the de�nition of derivation) and

sg(ln) = [sn1; : : : ; snk] be the subgoals of ln. By induction hypothesis for each i,

1 � i � k, there exists a level 0 derivation rsi of the sequent labelling sni from es
such that Graph(rsi) is a tree. It follows that we can construct a level 0 derivation

53

rs0 of s from es such that Graph(rs0) is a tree, using the reasoning structures rs1,

..., rsk , the link node ln and the sequent node sn.

derivationtrees

17.2. Operations

Theorem (soundness):

(1) mtrs is a basic reasoning structure.

(2) The operations addS, linkR, solveC, and linkN all map reasoning structures

to reasoning structures (when applied to appropriate arguments).

(3) The operations addS, linkR, and solveC all map basic reasoning structures

to basic reasoning structures (when applied to appropriate arguments).

Proof (soundness): (1) is trivial. The proof of (2) is straightforward from the

de�nitions of addS, linkR, solveC, and linkN. (3) follows from the fact that addS,

linkR, and solveC do not add nesting links.

soundness

Theorem (completeness): If rs 2 Rs[Rth ; SN ;LN], then rs can be con-

structed from the empty reasoning structure using only the operations addS, linkR,

solveC, and linkN. The basic reasoning structures are generated by excluding

linkN.

Proof (completeness):

By induction on the level n of Rsn[Rth; SN ;LN].

Base case: rs = hSn;Ln; g ; sg; sL; lLi 2 Rs0[Rth; SN ;LN]: We sketch an

algorithm for the construction of rs .

(add sequent nodes) Use addS to obtain the reasoning structure 5 (from the empty

reasoning structure)

rsaddS = hSn; ;;~;;~;; sL;~;i:

(add rule application links) Let Ln = fln1; : : : ; lng, where n � 0, and rs0; : : : ; rsn
be a sequence of reasoning structures de�ned as follows.

(i) rs0 = rsaddS .

(ii) For 1 � i � n, let lL(lni) = hid i;ec ii, s i = sL(sg(lni)), si = sL(g(lni)), and
ri = hs i; si;ec 0ii 2 er (id i) such that ec i j= ec 0i. Then

(add link node) rs0i = linkR(rsi�1; sg(lni); g(lni); ri) introducing lni; and

5 Note that we are imposing a choice on the nodes generated by addS (and below by linkR and
linkN). This is not necessary, because we have already observed that equality on reasoning
structures is de�ned modulo node renaming. Anyway we do so in order to simplify the proof.

54

(solve constraints) rsi = solveC(rs0i; lni;ec i).
It is easy to verify that rsn = rs .

Notice that in this algorithm we have not mentioned linkN. Hence it follows

that the basic reasoning structures are generated by excluding linkN.

Induction step: rs = hSn;Ln; g ; sg; sL; lLi 2 Rsn+1[Rth; SN ;LN]. Let Ln =

Ln1 [Ln2, where Ln1 (Ln2) is the set of rule application (nesting) link nodes.

The construction of rs can be divided in two steps.

(top level) Construct with the process sketched for the base case the reasoning

structure

rs0 = hSn;Ln1; g # Ln1; sg # Ln1; sL; lL # Ln1i:

(add nesting links) Let Ln2 = fln1; : : : ; lnng, where n � 0, and rs0; : : : ; rsn be a

sequence of reasoning structures de�ned as follows.

(i) rs0 = rs0.

(ii) For 1 � i � n, let lL(lni) = hec i; �i; [sn i; sni]; rs
0

ii, s i = sL(sg(lni)), s =

sL(g(lni)). Then

(add link node) rs0i = linkN(rsi�1; sg(lni); g(lni); �i; s i; si) introducing lni,sn i

and sni;

(solve constraints) rs00i = solveC(rs0i; lni;ec i);
(add nested reasoning structure) rs i is the reasoning structure obtained from rs00i

adding to the justi�cation of ln the nested reasoning structure rs 0i. The con-

struction of rs0i is obtained with the basic operations using the non-empty

path ln i = [lni] (this step is guaranteed by induction hypothesis as rs0i 2
Rsn[Rth ; SN ;LN]).

It is easy to verify that rsn = rs .

completeness

Theorem (independence): (completeness) fails if any of the operations in

the list are omitted.

Proof :

Without linkN, only (and all) level 0 reasoning structures can be constructed.

Without addS, only the empty structure can be constructed since the other op-

erations preserve the number of sequent nodes.

Without linkR, only structures with no rule application links can be constructed

(if the set of rules is empty then linkR is not needed).

Without solveC reasoning structures with constraints in their nesting links can-

not be constructed (if the set of constraints is empty then solveC is not needed).

independence

55

18. References

[1] M. Archer, G. Fink, and L. Yang. Linking other theorem provers to HOL using

PM: Proof manager. In Claesen and Gordon [13], pages 539{549.

[2] A. Avron. Simple consequence relations. LFCS Report Series, Laboratory for

the Foundations of Computer Science, Computer Science Department, Univer-

sity of Edinburgh, 1987.

[3] J. Barwise and J. Etchemendy. Valid inference and visual representation. In

W. Zimmerman and S. Cunningham, editors, Visualization in Mathematics.

Mathematical Association of America, 1990.

[4] D. Basin, F. Giunchiglia, and M. Kaufmann, editors. Proceedings of the Work-
shop on Correctness and Metatheoretic Extensibility of Automated Reasoning

Systems, Nancy, France, 1994. Held in conjunction with CADE-12. Also IRST-
Technical Report 9405-10, IRST, Trento, Italy.

[5] G. Bellin. Mechanizing Proof Theory: Resource-Aware Logics and Proof-

Transformations to Extract Implicit Information. PhD thesis, Stanford Uni-

versity, 1990. Available as University of Edinburgh Department of Computer

Science Report CST-80-91.

[6] R. S. Boyer and J. S. Moore. A fast searching algorithm. Comm. ACM,

20(10):762{772, 1977.

[7] R. S. Boyer and J S. Moore. A veri�cation condition generator for FORTRAN.

In R. S. Boyer and J S. Moore, editors, The Correctness Problem in Computer
Science. Academic Press, London, 1981.

[8] R. S. Boyer and Moore. J. S. Integrating decision procedures into heuristic

theorem provers: A case study with linear arithmetic. In Machine Intelligence
11. Oxford University Press, 1988.

[9] Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic

Press, 1979.

[10] Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook.
Academic Press, 1988.

[11] Alexandre Bronstein. MLP: String-Functional Semantics and Boyer-Moore

Mechanization for the Formal Veri�cation of Synchronous Circuits. PhD thesis,

Stanford University, 1989.

[12] A. Bundy. The use of proof plans for normalization. In R.S. Boyer, editor,

Essays in Honor of Woody Bledsoe, pages 149{166. Kluwer, 1991. Also available
from Edinburgh as DAI Research Paper No. 513.

[13] L. J. M. Claesen and M. J. C. Gordon, editors. Higher Order Logic Theo-

rem Proving and its Applications. Elsevier Science Publishers B. V. (North-

Holland), 1993.

56

[14] R. L. Constable and et. al. Implementing mathematics with the Nuprl develop-

ment system. Prentice-Hall, 1986.

[15] J.V. Cook, I.V. Filippenko, B.H. Levy, L.G. Marcus, and T.K. Menas. Formal

Computer Veri�cation in the State Delta Veri�cation System (SDVS). In Pro-

ceedings of the AIAA Computing in Aerospace Conference. American Institute

of Aeronautics and Astronautics, 1991.

[16] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: an Interactive Math-

ematical Proof System. Jorunal of Automated Reasoning, 11:213{248, 1993.

[17] S. Feferman. Inductively presented systems and the formalization of meta-

mathematics. In D. van Dalen, D. Lascar, and J. Smiley, editors, Logic collo-

quium 80, pages 95{128. North-Holland, 1982.

[18] S. Feferman. Finitary inductively presented logics. In Logic colloquium 88,
pages 191{220. North-Holland, 1988.

[19] F. Giunchiglia. Multilanguage systems. In Proceedings of AAAI Spring Sympo-

sium on Logical Formalizations of Commonsense Reasoning, 1991. Also IRST-
Technical Report no. 9011-17.

[20] F. Giunchiglia. The GETFOL Manual - GETFOL version 1. Technical Report

92-0010, DIST - University of Genova, Genoa, Italy, 1992.

[21] F. Giunchiglia. Contextual reasoning. Epistemologia, special issue on I Lin-
guaggi e le Macchine, XVI:345{364, 1993.

[22] F. Giunchiglia, P. Pecchiari, and C. Talcott. An analysis of the reasoning

structures and rules underlying the integration of linear arithmetic in to the

Boyer-Moore prover, in preparation.

[23] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for

speci�cations and programming. Journal of the ACM, 39(1):95{146, 1992.

[24] Joseph Goguen, TimothyWinkler, Jos�eMeseguer, Kokichi Futatsugi, and Jean-

Pierre Jouannaud. Introducing OBJ. Technical Report SRI-CSL-92-03, SRI

International, Computer Science Laboratory, 1993. To appear in J.A. Goguen,

editor, Applications of Algebraic Speci�cation Using OBJ, Cambridge Univer-

sity Press.

[25] M. Gordon. HOL: A proof generating system for higher-order logic. In

G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Speci�cation, Veri�-

cation, and Synthesis. Kluwer, 1987.

[26] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF: A mecha-
nized logic of computation. Number 78 in Lecture Notes in Computer Science.

Springer-Verlag, 1979.

[27] R. Harper, H. Honsell, and G. Plotkin. A framework for de�ning logics. In

Second Annual Symposium on Logic in Computer Science. IEEE, 1987.

57

[28] R. Harper, D. Sannella, and A. Tarlecki. Structure and representation in LF.

In Fourth Annual Symposium on Logic in Computer Science, pages 226{237,

1989.

[29] HUG'93 HOL User's Group Workshop, 1993.

[30] Principles of Hybrid Reasoning, 1991 Fall Symposium. AAAI, 1991. Working

notes distributed to conference attendees.

[31] M. V. Johnson and B. Hayes-Roth. Integrating diverse reasoning methods in

the BBI blackboard control architecture. In J. Halpern, editor, Proceedings of
the Conference on Theoretical Aspects of Reasoning about Knowledge, pages

83{98. Morgan-Kaufman, 1987.

[32] J. Joyce and C. Seger. The HOL-Voss system: Model-Checking inside a

General-Purpose Theorem-Prover. In HUG [29], pages 187{200.

[33] D. Kapur, D.R. Musser, and X. Niem. The tecton proof system. In Proceedings

of a Workshop on Formal Methods in Databases and Software Engineering,
Workshops in Computing, pages 54{79. Springer-Verlag, 1992.

[34] D. Kapur and H. Zhang. First-order theorem proving using conditional rewrite

rules. In 9th International Conference on Automated Deduction, number 310

in Lecture Notes in Computer Science, pages 1{20, 1988.

[35] D. Kapur and H. Zhang. An overview of RRL (rewrite rule laboratory). In

Third International Conf. of Rewriting Techniques and Applications, 1989.

[36] J. Ketonen. EKL: An mathematically oriented proof checker. In R. E. Shostak,

editor, Seventh International Conference on Automated Deduction, volume 170

of Lecture Notes in Computer Science, pages 65{79. Springer-Verlag, 1984.

[37] J. Ketonen and R. W. Weyhrauch. A decidable fragment of predicate calculus.

Theoretical Computer Science, 32:297{307, 1982.

[38] J. A. Ketonen and J. Weening. EKL: An interactive proof checker. Technical

Report CS Report STAN-CS-84-1006, Stanford University, 1984.

[39] S. C. Kleene. Introduction to metamathematics. North-Holland, Amsterdam,

1952.

[40] J. Klop. Combinatory Reduction Systems. Number 127 in Mathematical Centre

Tracts. Mathematisch Centrum, Amsterdam, 1980.

[41] Narciso Mart��-Oliet and Jos�e Meseguer. Rewriting logic as a logical and seman-

tic framework. Technical Report SRI-CSL-93-05, SRI International, Computer

Science Laboratory, August 1993.

[42] D. A. McAllester. Ontic: A Knowledge Representationt System for Mathemat-
ics. MIT Press, 1989.

[43] Jos�e Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Logic Col-
loquium'87, pages 275{329. North-Holland, 1989.

58

[44] D. Miller. A logic programming language with lambda abstraction, function

variables, and simple uni�cation. In P. Schroeder-Heister, editor, Extensions of

Logic Programming, volume 475 of Lecture Notes in Computer Science, pages
253{281. Springer-Verlag, 1991.

[45] L. G. Monk. Inference rules using local contexts. Journal of Automated Rea-
soning, 4:445{462, 1988.

[46] K. L. Myers. Attachment methods for integration. In Hybrid [30], pages 49{55.

Working notes distributed to conference attendees.

[47] J. Nagle and S. Johnson. Pratical program veri�cation for automatic program

proving for real-time embedded software. Technical Report WDL-TR9859,

Ford Aerospace and Communications Corp., December 1982.

[48] G. Nelson and D. Oppen. Simpli�cation by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems, 1(2), October

1979.

[49] T. Nipkow. Higher-order critical pairs. In Sixth Annual Symposium on Logic

in Computer Science. IEEE, 1991.

[50] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype veri�cation system,

1992.

[51] L. C. Paulson. Logic and Computation. Cambridge University Press, 1987.

[52] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,

Logic and Computer Science, pages 361{385. Academic Press, 1990.

[53] D. Prawitz. Natural Deduction: A Proof-theoretical Study. Almquist and Wik-

sell, 1965.

[54] T. S. Redmond. Simpli�er description. Technical Report Aerospace Report

No. ATR-86A(8554)-2, The Aerospace Corporation, 1987.

[55] K. Schneider, R. Kumar, and T. Kropf. Automating most parts of hardware

proofs in HOL. In Proceedings of the Third Workshop on Computer Aided

Veri�cation, CAV 91, pages 454{465, 1991.

[56] D. S. Scott. Rules and derived rules. In S. Stenlund, editor, Logical Theory
and Semantic Analysis, pages 147{161. D. Reidel, 1974.

[57] J. R. Shoen�eld. Mathematical Logic. Addison-Wesley, 1967.

[58] R. E. Shostak. Deciding combinations of theories. Technical Report Technical

Report CSL-132, SRI International, 1982.

[59] Vishal Sikka. Integrating specialized procedures in proof systems. Technical

Report Logic-94-3, Stanford University, Computer Science Department, 1994.

[60] M. Stickel. KLAUS automated deduction system. In Proceedings of the ninth
conference on automated deduction, number 310 in Lecture Notes in Computer

Science, pages 750{751. Springer-Verlag, 1988.

59

[61] Ian Sutherland and Richard Platek. A plea for logical infrastructure. In TTCP

XTP-1 Workshop on E�ective Use of Automated Reasoning Technology in Sys-

tem Development, pages 1{3, 1992.

[62] C. Talcott. accessible by anonymous ftp or www { URL =

�le://sail.stanford.edu/pub/clt/ARS.

[63] C. L. Talcott. Reasoning specialists should be logical services, not black boxes.

In Proceedings of CADE-12 workshop on Theory Reasoning in Automated De-

duction, pages 1{6, 1994.

[64] C.L. Talcott. A theory of binding structures and its applications to rewriting.

Theoretical Computer Science, 112:99{143, 1993.

[65] The SRI Sta�. The SRI speci�cation and veri�cation system, users guide.

Technical report, SRI International, 1986.

[66] R. W.Weyhrauch. A Users Manual for Fol. Technical Report STAN-CS-77-432,

Stanford University Computer Science Department, 1977.

[67] R. W. Weyhrauch. Prolegomena to a theory of formal reasoning. Arti�cial

Intelligence, 13:133{170, 1980.

[68] R. W. Weyhrauch and C. L. Talcott. The logic of fol systems: Formulated in

set theory. In M. Hagiya, N. D. Jones, and M. Sato, editors, Festschrift in

honor of Professor Satoru Takasu, number 792 in Lecture Notes in Computer

Science. Springer-Verlag, 1994.

60

Contents

1. Plug and Play Reasoning Devices { An Impossible Dream? . . 1

2. Logical Services and OMRSs 2

I Analysis of the Problem. 4

3. Existing systems 4

3.1. Single Logic Systems 4

3.2. Multi-logic Systems 5

4. Issues 6

4.1. Sequents 6

4.2. Rules 7

4.3. Reasoning Structures and Derivations 8

4.4. Integration of Reasoning Theories 9

II Technical Development. 10

5. Sequent Systems 10

5.1. De�nition 11

5.2. Examples 12

6. Rules 14

6.1. De�nition 14

6.2. Examples 14

7. Reasoning Theories 17

7.1. De�nition 18

7.2. Examples 18

7.3. Composing Reasoning Theories 18

8. Reasoning Structures and Derivations 20

8.1. Reasoning Structures 20

8.2. Derivations 25

9. Operations on Reasoning Structures 26

9.1. Primitive Operations 26

9.2. Inference Rules as Operations on Reasoning Structures . 29

i

III. An Analysis of the Integration of Linear Arithmetic in NQTHM. . 31

10. The NQTHM theorem prover 31

11. Outline of our analysis of NQTHM 32

12. The Reasoning Theory RthpNQTHM 33

12.1. The RthpNQTHM Sequent System 35

12.2. The RthpNQTHM Rules 36

13. The RthNQTHM Reasoning Theory 38

13.1. The RthL Reasoning Theory 39

13.2. The modi�ed RthpNQTHM Sequent System 40

13.3. The modi�ed RthpNQTHM Rules 41

13.4. New Bridge Rules 42

14. Examples of RthNQTHM Reasoning Structures 43

IV Concluding Matter. 46

15. Related Work 47

16. Future Work 49

17. Proofs 52

17.1. Derivations 52

17.2. Operations 54

18. References 56

ii

