
Emulating Soft Real-Time Scheduling Using Traditional

Operating System Schedulers �

Brad Adelbergy Hector Garcia-Molinaz Ben Kaox

April 26, 1994

Abstract

Real-time scheduling algorithms are usually only available in the kernels of real-time

operating systems, and not in more general purpose operating systems, like Unix. For some

soft real-time problems, a traditional operating system may be the development platform of

choice. This paper addresses methods of emulating real-time scheduling algorithms on top

of standard time-share schedulers. We examine (through simulations) three strategies for

priority assignment within a traditional multi-tasking environment. The results show that

the emulation algorithms are comparable in performance to the real-time algorithms and in

some instances outperform them.

Keywords: soft real-time, priority assignment, scheduling.

1 Introduction

Consider program trading, the use of computer programs to initiate trades in a �nancial market

with little or no human intervention [Voe87]. A �nancial market (e.g., a stock market) is a

complex process whose state is partially captured by variables such as current stock prices,

changes in stock prices, volume of trading, trends, and composite indexes. These variables and

others can be stored and organized in a database to model a �nancial market.

One type of process in this system is a sensor/input process which monitors the state of the

physical system (i.e. the stock market) and updates the database with new information. If the

database is to contain an accurate representation of the current market then this monitoring
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process must meet certain real-time constraints. A second type of process is an analysis/output

process. In general terms this process reads and analyzes database information in order to

respond to a user query or to initiate a trade in the stock market. An example of this is a

query to discover the current bid and ask prices of a particular stock. This query may have a

real-time response requirement of say 3 seconds. Another example is a program that searches

the database for arbitrage opportunities. Arbitrage trading involves �nding discrepancies in

prices for objects, often on di�erent markets. For example, an ounce of silver might sell for $10

in London and fetch $10.50 in Chicago. Price discrepancies are normally very short-lived and

to exploit them one must trade large volumes on a moment's notice. Thus the detection and

exploitation of these arbitrage opportunities is certainly a real-time task.

In addition to real-time tasks, the trading program will also have more traditional functions

to perform. The program may have to generate reports, interact with humans through a

graphical interface, etc. These functions do not require real-time support, and are actually

better performed with general purpose operating systems, systems that have built a large

suite of tools and applications over many years. Even if the di�erent functions of a single

application are split across two computers, it is still simpler to build the trading system for a

single operating system rather than two: Buying, maintaining, and developing on two di�erent

operating systems will divert resources from application development. So then, how can the

bene�ts of a general purpose operating system (GPOS) be combined with the need for real-time

response? Answering this question is the main goal of this paper.

Our focus is on soft real-time (SRT) systems, such as the example above. In these systems,

it is very di�cult to guarantee that all deadlines will be met, and hence one tries to minimize

the number of deadlines that are missed. Guaranteeing all deadlines is hard because it is

impractical to place an upper bound on the load. In our trading example, for instance, we may

want to estimate the maximum number of commodities which can change in value at once (or

within some small time frame). Unfortunately, the number of changing commodities is only

bounded by the total number of commodities (which can be orders of magnitude greater than

the number of changing commodities). Another reason why soft real-time systems may miss

deadlines is because the tasks they run are complex and it is hard to predict exactly how long

they will run or what resources they may need. For instance, it is hard to know in advance

how many rules the expert system in our example will trigger. In the database component, the

running time of a search will depend on what other transactions are concurrently running and
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holding locks. Furthermore, disk access times will depend on where the previous request left

the disk arm, again hard to determine in advance.

Soft real-time systems are di�erent from hard real-time (HRT) systems. The discovery of

new domains for soft real-time systems has led to research into new scheduling algorithms,

di�erent from the algorithms used in hard real-time systems (i.e. rate monotonic). Some

di�erences are

� HRT systems typically perform scheduling o�-line where as SRT systems perform schedul-

ing on-line;

� HRT algorithms are usually optimized for periodic tasks where as SRT algorithms are

designed for aperiodic tasks;

� HRT algorithms often require maximum task execution times to be known in advance

where as SRT systems require at most an estimate of execution time, and often times

require no knowledge at all.

Along with the renaissance in real-time scheduling algorithms, the notion of an appropriate

operating system for soft real-time systems has begun to change. Previously, most researchers

assumed a dedicated machine running a real-time operating system (RTOS). Now, however,

there is interest in techniques for developing real-time applications on general purpose operating

systems (GPOSs), like Unix. At least one implementation study [MT89] has demonstrated that

using a GPOS eases an application's implementation and results in extremely high quality code.

This is especially promising since in practice, general purpose operating systems (GPOSs) are

much more common than RTOSs.

While there will probably always be a need for RTOSs, there are at least three reasons to

believe that GPOSs will become more popular for soft real-time applications

� As real-time system design moves out of its closed community and into the general com-

puting population, programmers will want to develop on the platforms which they're

familiar with. Traditional operating systems, like Unix, have accumulated a large suite

of development tools. In addition, programs written in a GPOS are more portable than

programs written for proprietary operating systems.
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� Many applications will be split across the real-time/batch processing boundary. For

example, investment bankers may interface with a real-time system to monitor trading

opportunities, while at the same time using spreadsheets, news readers, and other non-

critical applications. Also, the inclusion of multimedia will introduce time constraints

(20 frames/sec) into otherwise non-real-time applications. Running all components of

an application under a single OS will ease development as compared to a heterogeneous

approach.

� Using only a GPOS will reduce total system cost. Economy of scale has driven the price

of a GPOS much lower than that of a real-time kernel. Increased speed of development

and code quality will also reduce product expense.

This is why we believe that soft real-time processing must be intergrated into traditional OSs.

In fact, the research we report on here was motivated by our implementation of a real-time

database at Stanford [AGMK94]. We do not have the resources to purchase a real-time OS, nor

the sta� to maintain it. Hence, we are implementing our database system on a conventional

Unix system, HP-UX from Hewlett Packard. We suspect many other users of soft real-time

systems will be in the same situation.

In this paper we study the real-time emulation (RTE) problem, which we de�ne as how

to build soft real-time scheduling on top of a traditional OS. In Section 3, we look at three

approaches to RTE and settle on one: design an algorithm to assign a priority to a new process

according to its real-time constraints in such a way that the priority scheduling done by the

GPOS mimics that of a real-time scheduler (such as earliest deadline �rst, least slack �rst). We

call this type of algorithm a priority assignment algorithm because it must use the real-time

information about a task (i.e. deadline, slack, ...) to determine which OS priority level to assign

to it.

To illustrate the di�culties we will face in emulating a real-time scheduler, suppose we have

an OS with 5 priority levels, number 0 to 4. Initially, the system is idle, and a task A arrives.

What priority do we run it at? Well, suppose we run it at a middle priority, in this case 2. While

A is running, task B arrives with an earlier deadline than A. Since the OS should schedule B

�rst, we will assign it a priority of 1. Of course, if a new task arrives with a deadline in between

those of A and B, we are stuck since there is no priority to assign to it. The algorithms we

will present will have to cope with situations like this. We will also evaluate the performance
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of our new algorithms, and compare them against conventional real-time ones. As we will see,

not only do the emulation algorithms perform well, in some cases they outperform the real-time

algorithms.

The priority assignment algorithms which we develop will have applicability in other sce-

narios. For instance, designers trying to interface real-time systems to token-ring networks

need to assign priorities. Tasks in the real-time system have deadlines associated with them,

but the token-ring only supports message priorities, usually 8 levels. Somehow a message's

priority must be assigned based on the deadline of the task that sends it. This is similar to the

RTE problem applied to earliest deadline �rst scheduling studied in this paper, although the

token-ring problem requires extensions for distributed scheduling.

To study the RTE problem, we assume that we have no apriori knowledge of real-time task

arrival patterns or execution requirements. Given the application areas outlined above, we

expect that little will be known about the real-time requests that will be made. Unlike hard

real-time systems used in control applications, where tasks are periodic and of known execution

time, our soft real-time system will probably be used in less structured situations, with tasks

being event driven and unpredictable. We assume a task receives its deadline just before it is

submitted for execution.

The rest of this paper is organized as follows. In Section 2, we mention some related work.

Next, in Section 3 we explore the possible approaches to the priority assignment problem and

focus on one. Section 4 describes the logical base model for our study. Di�erent priorty assign-

ment strategies are introduced in Section 5. A brief description of our simulation experiments

is contained in Section 6. In Section 7 we display and analyze the results of our experiments.

Finally, in Section 8 we present conclusions.

2 Related Work

A lot of research has been done on real-time scheduling in various environments, be it I/O

scheduling, processor scheduling, or transaction scheduling [AGM90, AGM88a, AGM88b, LL73,

HTT89, CW90]. Through this work, the behavior and properties of earliest arrival(EA) �rst,

earliest deadline(ED) �rst, and least slack(LS) �rst have been delineated. These studies all

assume an in�nite range of priorities and a custom scheduler. The problem of scheduling with
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a limited number of priority levels was studied in [SLR86], but centered on rate monotonic

scheduling for periodic tasks in hard real-time systems.

Some researchers have studied how to develop real-time systems on traditional operating

systems. [FPG+89], [Wel93], [Cra88], and [MT89] have all studied the suitability of Unix for

real-time applications. [FPG+89] identi�es two properties as essential for an operating system

which is to support real-time applications: Performance and Determinism. The paper then

shows that REAL/IX, a fully preemptive Unix, compares favorably to a real-time OS based

on the standards above. [MT89] studies a di�erent real-time Unix, RX-UX 832, and comes

to similar conclusions. Finally, [Wel93] examines two other GPOSs, SCO XENIX System

V and OS/2, and concludes that both may be viable for real-time applications, with OS/2

being particularly well suited due to its high predictability. While these studies demonstrate

that a GPOS can be used in many real-time applications, none address the problem of priority

assignment. It is implicitly assumed that process priorities can be determined during the design

of the application, probably by a variant of the general rate monotonic algorithm.

3 General Approaches

Our goal is to emulate a real-time scheduler on top of a GPOS scheduler. Solutions to this

problem vary depending on the accuracy of the emulator that is desired, the amount of total

coding complexity that is tolerable, and the distribution of new code between applications and

the system that is appropriate. The spectrum spans the following choices:

1. Set process priorities and then let the GPOS kernel schedule processes using its native

algorithm;

2. Use a special scheduling process (daemon) which blocks all processes except the one it

chooses to run, thereby forcing the operation of the GPOS scheduler;

3. Write a threads package to run on top of a GPOS with the desired scheduler in it.

To implement the �rst method, each process that starts a task must call a common routine

to determine a priority for the new task. The routine can be part of a shared library if the

GPOS supports them, and can use shared memory for any global data-structures related to

scheduling. The challenge with this approach is to determine which priority level to choose
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for each newly arrived process in order to emulate a particular real-time scheduling algorithm

(i.e. ED, LS). In general, the tighter a task's timing constraint is, the higher a priority it will

receive. Priority assignment is di�cult both because there are only a limited number of priority

levels and because the emulator does not know what future tasks will be arriving and what

their requirements will be. (This problem is discussed for ED emulation in Section 5.1.2.) The

obvious advantages to this scheme are that the amount of coding is minimal, and no coding

changes must be made to any existing tasks. A disadvantage is that a GPOS scheduler, which

often uses multi-level feedback (described in Section 5.2.3), might adjust the initial priority

assignments, thereby sabotaging the intent of the priority generating algorithm.

Toward the other end of the spectrum is a method to circumvent the scheduler altogether

(method 2 above). A scheduling daemon can be run as a separate process, e�ectively controlling

all CPU access. All processes must send a message identifying themselves to the scheduler

daemon when they start, and then block waiting on a reply. By only sending a reply to one

process at a time, the daemon can insure that only one process is eligible to run at once, thereby

forcing the GPOS scheduler to do its bidding. All synchronization must be done through the

scheduler daemon since otherwise no processes would be eligible to run if the running process

blocks. This scheme becomes even trickier when preemption is desired; regular preemption

points need to be programmed into the running tasks. Preemption points are void calls to the

scheduler daemon interspersed within the application code. Their single purpose is to allow the

daemon to regain control during long execution periods when the application does not release

the processor. Preemption points reduce the latency from when a high priority process arrives

to when the current process can be preempted. The need for preemption points illustrates one

of the chief drawbacks of the scheduler daemon approach: increased complexity. The scheduling

daemon solution requires signi�cant coding for both the daemon and the processes to be run. In

addition, any error in a process could cripple the system since it requires that all participants be

well behaved. There could also be a performance penalty for the frequent interaction between

running processes and the daemon, both in communications overhead and in context switch

overhead. The chief advantage of scheduling daemons is the excellent control that they provide

in scheduling jobs.

The last option is to write a threads package on top of a GPOS. An entire application

consisting of many threads of control will appear to the OS as one process. The author of the

threads package will need to write machine dependent code normally provided by an OS, such
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as context switch code. The bene�t is that the author gets to rewrite the scheduler as well,

using any algorithm s/he wishes. Conversely, this approach involves the most coding and is the

least portable. An advantage is that the threads (running tasks) do not have to be well behaved.

In e�ect, an operating system must be written on top of another one, which, in addition to

being a formidable task, nulli�es many of the advantages of a GPOS that motivated us.

We chose the �rst option for further study for its simplicity and ease of implementation.

Scheduling will be done by the native scheduler, with real-time algorithms emulated by setting

priorities appropriately. In this paper, we will not investigate changing the priorities of processes

after their arrival. This idea is discussed further in Section 5.1.2.

4 Base Model

4.1 System Architecture

The system consists of a single processor which runs all of the real-time tasks. We assume

that the operating system being run is a general purpose OS, like Unix, and not a real-time

OS. Real-time algorithms will be emulated by setting process priorities and letting the GPOS

do the scheduling. We assume that the system is dedicated to the real-time application. This

is necessary because if batch processes are run on the same machine, they will compete for

processor time and interfere with the real-time processes. This model is more restictive than

the situation we described in the introduction in which both types of tasks coexisted on the

same machine. Some GPOSs, like Posix Unix (see Section 4.3), support a special class of

processes which have higher priority than all batch processes. On a Posix system, batch and

real-time processes can be run concurrently since the batch processes will run only if no real-time

processes are waiting. We assume a more restrictive policy to make our approach applicable to

more GPOSs.

4.2 Priority in Traditional OS's

Traditional operating systems work with a �xed number of discrete priority levels, not the

continuous range of priorities associated with ED and LS. Each priority level has a queue

associated with it. Figure 1 shows two common arrangements. The numbering scheme used

can be a source of confusion: the highest priority processes have the lowest priority level. To
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(b) Posix

System Priority

Kernel Priority 0

Kernel Priority 1

Kernel Priority (m-1)

Batch Priority 0

Batch Priority 1

Batch Priority (o-1)

Real-Time Priority 0
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Figure 1: Operating System Priority Level Assignments

keep these two concepts clear, preal(T ), where preal(T ) 2 <, will denote the real-time priority

of task T . If preal(T1) > preal(T2), T1 should have precedence over T2. Similarly, pos(T ), where

pos(T ) 2 I and 0 � pos(T ) < n, will refer to the OS notion of priority levels. If pos(T1) > pos(T2),

T2 will have precedence over T1. The relationship between pos and actual system priority levels

varies by operating system and is illustrated below. In this paper, whenever the priority of a

task T is referred to without a clear context, we will mean preal(T ). Similarly, the level of T

will refer to pos(T ).

4.3 Survey of Two Current Systems

Successfully emulating real-time scheduling will depend on the native scheduler in the tradi-

tional operating system. Even in the time share world, there is no single standard. This section

outlines some of the algorithms in use in current popular GPOSs. For the systems described, n

will always refer to the number of priority levels available from the perspective of the real-time
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emulator. The variable m is used to indicate the number of priority levels available for kernel

use. Other variables will be explained below.

Standard Unix: Uses round robin multilevel feedback scheduling. This is described in general

terms in Section 5.2.3. User processes will have priority levels between m and m+ n� 1

as shown in Figure 1a, which allows for n possible priority levels. Unfortunately, the user

has very little control over the level of a process when it is submitted. The kernel assigns

each process a base level, which is then adjusted over time as a function of recent CPU

usage. The only control a�orded to the user is through the nice command, which typically

allows the base level to be adjusted by �20 levels. Since the nice command is the only

method of altering a process's level, in standard Unix systems pos will refer to the nice

value range of 0 : : :40 (normalized from �20 to be non-negative).

Posix Unix: Provides for a new process class with priority levels between kernel tasks and

batch tasks called rtprio tasks, as shown in Figure 1b. Processes can be given priority

levels typically between 0 and 127. Round robin is used within the same level, but with

no multilevel feedback. Tasks from the lowest queue will be run to completion before

tasks in higher queues or batch tasks are run at all. New tasks can preempt currently

running tasks if they are placed in a lower queue. For Posix Unix, pos will refer to the

real-time priority value, usually in the range 0 : : :127.

4.4 Task Model

In our model, when a task T arrives at the system, the following four values will be known:

a(T ) arrival time of T ;

x(T ) execution time of T ;

s(T ) slack of T ;

d(T ) deadline of T .

Only three of these attributes must be provided to the system since they are related by the

equation d(T ) = a(T )+x(T )+s(T ). Other attributes of tasks that are generated and maintained

by the emulator will be discussed later. I/O requests, resource contention, and other application

speci�c e�ects are not studied. a(T ) and d(T ) are always known to the system on task T 's

arrival, but x(T ) is required only by the least slack �rst algorithm and its variants. Although a
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real system would only have an estimate of x(T ), for our study we believe it is reasonable to use

actual value of x(T ) because our goal is to compare our algorithms to least slack, not to study

the impact of erroneous estimates for x(T ). (Incidentally, the impact of errors in the estimate

of x(T ) has been studied (e.g., [AGM90]); the scheduling algorithms are not very sensitive to

errors.)

The goal of the scheduler is to minimize the number of tasks that miss their deadlines.

For the tasks that do miss their deadlines, however, we need an overload management policy.

Suppose that task X has already missed its deadline but has not completed execution. One

option is to abort X as soon as it misses its deadline, under the assumption that whatever it

was doing is now useless. (Example: after analyzing the current state of the stock market, a

decision is made to sell certain stock. A task X is issued to sell by a given time. If the time is

exceeded, it is best to abortX , as the market conditions may have changed.) A second option is

to continue to process X , under the assumption \better late than never." (Example: at a bank,

customers are \guaranteed" a two second response time. However, if the guarantee is not met,

it is still desirable to complete the task.) In this paper, we focus on the no abortion case (no

speci�c action is taken when a deadline expires). This will �t in best with our goal of setting

process priorities and then letting the operating system handle everything. The performance

of standard scheduling algorithms under di�erent overload management policies is studied in

[AGM92].

5 Scheduling Algorithms

In this paper we discuss two classes of scheduling algorithms: real-time and emulated. The

real-time algorithms are included for comparison purposes only and must be implemented on a

real-time kernel. The three real-time algorithms used in this study are:

Earliest Arrival (EA) - The highest priority is assigned to the task with the earliest arrival

time. This is the same as �rst come �rst serve. This algorithm uses no real-time information

and is present only as a point of comparison.

Earliest deadline (ED) - The highest priority is assigned to the task with the earliest deadline.

This has been shown to be optimal [Der74] in systems with no overload. In other words, if a

group of tasks can be scheduled by any algorithm (without preemption) so that all of their

deadlines are met, they will be schedulable with earliest deadline as well. ED with preemption
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is optimal within the class of all preemptive algorithms.

Least Slack (LS) - The highest priority is assigned to the task with the least slack. Slack is

determined statically at task arrival, and is not adjusted thereafter. Least slack was shown to

be optimal in [MD78].

In the remainder of this section we describe real-time scheduling in a GPOS. There are

two components for this: the priority assignment algorithms (to assign a priority level based

on deadline or slack) and the OS policy for scheduling jobs within a priority queue. These

two components are orthogonal, and subsequent sections will examine how the underlying OS

scheduling policy a�ects the choice of priority assignment algorithms.

5.1 Assigning Priorities

The algorithms for assigning priorities are described below. Section 5.1.6 will provide an ex-

ample of �ve tasks scheduled with each of the three emulation algorithms as well as with ED

and LS.

5.1.1 Converting Reals to Priorities

All of the priority assignment algorithms below convert a real number, which we call R, into

an integral priority level to be assigned to a task. (What R means depends on the algorithm.

See below.) The mapping function, called maplin(R), is de�ned below, and referenced in all of

the emulation algorithms to follow.

maplin(R)
p = bR

ts
c;

IF p � n THEN

p = n� 1;
ENDIF

return(p);

This algorithm employs a linear mapping, which is denoted by the subscript lin, dividing the

range of R from 0 to nts evenly across the n priority levels. This is shown in Figure 2. The value

ts, which is the scaling factor for the linear mapping, should be picked so that max(R) = nts .

Since the maximum value of R will be vary by priority assignment algorithm and possibly by
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Figure 2: Conversion of a Real to a priority level

the task parameter distributions, ts must be tuned for each situation. Tuning is discussed for

each algorithm in Section 7.

5.1.2 Emulating Earliest Deadline

The next two algorithms attempt to emulate earliest deadline scheduling with a GPOS sched-

uler. The goal is to assign tasks with earlier deadlines to the lower levels and tasks with later

deadlines to higher levels. In practice, this is a di�cult problem. What should the level of the

�rst task to arrive to an empty queue be set at? If it is set too low, and many tasks arrive with

earlier deadlines, we will run out of levels to use. Setting it too high results in an analogous

problem. One approach would be to assign the middle level (n
2
) to the �rst task. The next task

could be assigned to either level n
4
or 3n

4
, depending on its deadlines relative to the �rst task.

As each new task arrives, it could be placed in the middle of the two other tasks which bracket

it. The problem with this approach is that the number of priority levels required to guarantee

placement for all tasks grows exponentially: 64 levels only allows for 6 tasks. In addition, tasks

with later arrivals will also tend to have later deadlines, leading to an imbalanced tree weighted

toward the higher priorities levels.

One solution to these problems would be to change the priority of tasks after their arrival.

If a new task arrives and no priority level is available for it, it may be possible to shift existing

tasks up or down to create an open level. While such an approach o�ers promise in solving

the problems we encountered in our �rst solution, it may present new problems of its own. On

many systems, changing the priority of a running task is di�cult for two reasons:

� The priority of a running task can only be changed by the process that created it. In such

a system, an outside process, like a scheduling daemon, would be unable to change task

priorities.

� The system call to change priorities can only change one task at a time. If many tasks
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have to be shifted down in order to create an empty level, many calls will have to be made

to the system; This could seriously degrade the performance of the scheduler.

Thus it is not always practical or possible to change priorities once a task is running. For this

study, we chose to focus only on setting the priority of tasks when they are created, and do not

attempt to change their priority at any future point. The next two algorithms are attempts to

intelligently assign priorities given this constraint.

5.1.3 Earliest Deadline Relative (EDREL)

Instead of assigning priorities based on the priorities that have already been assigned, this

algorithm treats each task independently from the others in the system. It calculates a priority

level based on a task's deadline relative to its arrival time.

New Task Arrival:

level = maplin(d(T )� a(T ));

The independence of tasks frees the scheduler from creating an absolute scale for priorities

which allows decentralized scheduling. The algorithm only uses ts (the normalization constant

in maplin) and does not use information on other active tasks. A disadvantage is that it

will probably discriminate against jobs with more distant deadlines, since such jobs will be

given high levels and will never move; Even as their deadlines approach, new jobs with tighter

deadlines will receive higher priority.

5.1.4 Earliest Deadline Absolute (EDABS)

This algorithm uses the arrival time of the �rst task to set all future priority levels within the

current busy period. A busy period is a contiguous segment of time in which a system is busy

performing work. The time between busy periods is de�ned as an idle period. Clearly, a lightly

loaded system will experience a series of long idle periods punctuated by an occasional short

busy period, whereas a highly loaded system will experience the opposite work pattern.
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In EDABS, at the start of a busy period tpinned will be set to t, the current time. For the

remainder of the busy period, priorities will be assigned based on a task's deadline with relation

to tpinned. If the busy period is long enough, later tasks will tend to be placed in higher and

higher levels until all new tasks are being placed in the highest level. When reshift count (Nr)

tasks in a row get placed in the highest level, tpinned is reset to the current t so that tasks

will start being added from the lowest levels again. We only consider consecutive assignments

so that a task with an unusually distant deadline does not force a reshift when many priority

levels are still available. An example of this algorithm in use is given in Section 5.1.6.

Initialization

pinned = false;

New Task Arrival

IF (not pinned) THEN
pinned = true;
tpinned = t;
max assigns = 0;

ENDIF

level = maplin(d(T )� tpinned);
IF level = n� 1 THEN

max assigns = max assigns + 1;
ELSE

max assigns = 0;
ENDIF

IF max assigns = Nr THEN

tpinned = t;
level = maplin(d(T )� tpinned);
max assigns = 0;

ENDIF

Task Completion

IF (Queue Is Empty) THEN
pinned = false;

ENDIF

When we perform a reshift, old tasks will have incorrect priorities relative to the tasks

arriving after the reshift. New tasks will have their priorities calculated with a more recent

tpinned so that even if their deadlines are later than those of the remaining old tasks, they will
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probably be assigned to lower levels. An example of this is given in Section 5.1.6. Old tasks are

not aborted (they will be executed as the queues empty) but are likely to miss their deadlines.

Intuitively, when a reshift occurs, we have detected a system overload; the idea is to start from

scratch, giving up hope for old transactions. Hopefully, reshifts will be rare. The rate of reshifts

is very dependent on two values: the average system load, �, and the reshift count, Nr. The

system load is not under direct control so reshift rates must be controlled by selecting a proper

value of Nr. Tuning Nr is discussed in Section 7.2.1 and a more general discussion of reshift

rates is contained in Appendix A.

5.1.5 Least Slack Relative (LSREL)

This algorithm attempts to emulate least slack scheduling with the Unix scheduler. Priority

levels are determined based on a task's slack at arrival.

New Task Arrival

level = maplin(d(T )� a(T )� x(T ));

5.1.6 Scheduling Example

Table 1 lists �ve tasks and associated parameters. Variables a, x, l, and d are the arrival time,

execution requirement, laxity, and deadline, respectively. The behavior of the di�erent priority

assignment algorithms is illustrated in Figure 3, which shows the queue(s) for each algorithm

at time intervals of 1 unit. The example assumes that the underlying GPOS is using a FIFO

scheduling policy for each priority level. (See Section 5.2.) The state of the queues shown at

each time point are the states after scheduling has been completed. The number of priority

levels available in the system is 4. The reshift count, Nr, is 2. The tuning factor ts is also

2. For comparison, Figure 3 also shows two real-time schedulers, ED and LS, and how they

perform. The completion times of the tasks under all �ve schemes are summarized in Table 2.

An example should aid in interpreting Figure 3. Picking LSREL as the algorithm to follow,

look at time 0. Task A has been assigned pos = b
l(A)

ts
c = b1

2
c = 0. The asterisk after A signi�es

that it is the running task. At time 1, task B has entered the system. Based on its slack of 4,
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a x l d

A 0 2 1 3

B 1 2 4 7

C 2 1 1 4

D 3 4 2 9

E 5 1 4 10

Table 1: Example Scheduler Tasks

completion time
ED EDABS EDREL LS LSREL Deadline

A 2 2 2 2 2 3

B 5 5 5 9 9 7

C 3 3 3 3 3 4

D 9 10 10 7 7 9

E 10 6 6 10 10 10

Table 2: Example Scheduler Results

it has been assigned pos of 2 (b4
2
c). A is still the running task; the A(1) indicates that it has

been running for 1 time unit already. At time 2, task A is �nally complete (indicated by '-'),

having run for 2 units. Task C has entered the system, and has been assigned pos = 0. Because

pos(C) < pos(B), the scheduler has chosen C for execution. The remainder of the �gure can be

interpreted the same way.

One noteworthy incident occurs at time 5 for the EDABS algorithm. When task E arrives,

it should be assigned to the last queue. This would mean that two tasks in a row had been

assigned to the last queue. Since for this example Nr = 2, task E causes a reshift to occur.

Before time 5, tpinned = 0, which was the beginning of the busy period. At time 5, after the

reshift, tpinned = 5. This causes pos(E) = b10�5
2
c = 2. The level of D, which was computed at

time 3, is not recomputed. Now we have pos(E) < pos(D) but d(E) > d(D), so the priorities of

D and E have become inverted.

The only algorithm which successfully scheduled all of the tasks was earliest deadline. Under

both EDABS and EDREL, task D missed its deadline; and under LS and LSREL, task B missed

its deadline. Although some of the algorithms in this example have identical behavior, this is

an artifact of the particular numbers chosen, and is not generally true.
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5.2 OS Scheduling Policy

The previous section discussed how to assign a numerical priority to a real-time task. In this

section, we examine di�erent options for task scheduling based on priority. The decision of how

to use priority levels to assign CPU time will determine how e�ectively the proposed algorithms

are able to emulate their real-time counterparts. There are two orthogonal issues involved in

OS scheduling: preemption and intralevel scheduling. Preemption can best be described using

the following scenario. Suppose that task A is currently running on the system when task B

arrives, and that pos(B) < pos(A). On a non-preemptive system, task B will have to wait for

task A to �nish before it can start running. If the system is preemptive, however, task A will

be suspended and task B will be run immediately. By using preemption, a higher priority task

is not held up waiting for a lower priority task. Depending on the OS and on what the running

code is doing, sometimes there is a small time lag from the arrival of a higher priority job until

preemption. A system that has no time lag is said to be fully preemptive. For this study, OSs

will either be non-preemptive or fully preemptive.

We have previously stated that when the scheduler determines the next process to run,

it will always choose a process from the lowest occupied level. We will refer to the question

of which process to select from the chosen queue as Intralevel scheduling. Three policies are

described below. The �rst is used as a baseline, and the last two are both used in some version

of Unix.

5.2.1 First In First Out (FIFO)

In FIFO, separate queues are maintained for each priority level. Tasks in the lower level queues

will be run before tasks in higher level queues. Within a single queue, execution will not be

shared. The �rst task to have arrived with a particular level will be run to completion before

any other tasks of the same level are run at all. 1

5.2.2 Round Robin (RR)

In RR, separate queues are maintained for each priority level. Only tasks from the lowest

occupied level queue will be run, but they will be run round robin within the queue, each

1Although if the scheduler uses preemption, it may be temporarily preempted by a lower level task.
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getting schslice seconds at a time. This is the policy used in the Posix standard for real-time

jobs.

5.2.3 Round Robin with Multi-level Feedback (RRMLF)

RRMLF is like RR, but processes which have used a lot of CPU time recently are pushed into

higher level queues to give other jobs a chance to run. This is a useful property in a conventional

system, where it is better to let I/O bound jobs run at a higher priority than CPU bound jobs,

but this behavior can frustrate our attempts at real-time scheduling.

The formula typically used is level = base level+recent cpu usage. The variable base level

is the level chosen by the priority assignment algorithm. The variable recent cpu usage is a per

process �eld that is incremented once for every tick that the process executes. In this study,

the tick frequency parameter is ftick . After every time slice, the value of recent cpu usage for

every process is halved. This decay allows tasks to move back into the high priority queues

after being idle for a few slices.

6 Simulation Model

In order to study and contrast system behavior for the three priority assignment algorithms, we

developed a simulation model and performed extensive experiments. In this section we describe

the model; our results are presented in Section 7.

The behavior of a traditional operating system can be very complex. Even if no other user

tasks are being run besides those used in the real-time application, kernel tasks can have unpre-

dictable interaction with the system. If we model all this diversity and complexity, fundamental

insights on RTE would be obscured by many secondary e�ects. Instead, we chose a very simple

model that captures the essential features that impact RTE. To pick a particular example, in

some experiments we assume that the priority determination algorithm requires no time to

run. Clearly this is not realistic. If we wanted to predict the exact absolute performance of

a particular algorithm, this assumption would not be acceptable. But if we are trying to un-

derstand how the algorithm perform relative to each other, this assumption is reasonable. Our

goal is to select a small number of simple, key parameters which are rich enough to illuminate

the fundamental di�erences of the algorithms without clouding the results with uninteresting

20



Parameter Value

� 0.5

� 0.1

[Smin; Smax] [0.1,1.0]

Table 3: Task baseline settings

detail.

Our simulator is written in the simulation language DeNet[Liv90]. Each simulation exper-

iment (generating one data point) consists of a simulation run lasting either 100,000 time units

or until the 95% con�dence interval for MD is within 1% of its value. For all of the MD values

stated in later sections, the largest absolute error is 0.35%.

The structure of our simulation model follows the conceptual model described in Section 3

with the following characteristics. Task arrival is modeled as a Poisson process with arrival rate

�. The execution requirements for tasks are normally distributed, with mean � and standard

deviation �. Although exponentially distributed execution times would make analytical work

more tractable, we feel that the normal distribution more accurately re
ects the job mix in many

soft real-time system: An exponential distribution would occasionally produce long tasks, which

are shunned by real-time application programmers because of the increased resource con
icts

they create. The �nal G refers to the slack distribution, which is uniformly distributed in

[Smin; Smax]. In the graphs that follow, changes in performance versus � are never shown.

Instead, we use �, the average system utilization, which is de�ned as � = �� (0 � � � 1).

Tables 3, 4 and 5 show the parameter setting of our baseline experiment. To study the

e�ect of these parameters on system performance, we will vary the parameters from their base

settings. This is discussed in the following section. The values for parameter ts are given

in Table 5 since they depend on the priority assignment algorithms and on the value of n,

the number of priority levels. These values were tuned for ts in each situation from many

simulation runs. We delay discussing tuning in detail until Sections 7.2.2 and 7.3.1, but still

use the tuned values now to allow the performance of the emulation algorithms to be compared

more accurately to the performance of the real-time algorithms. For some later experiments

it will be interesting to study the performance of the algorithms under conditions similar to

those under an actual GPOS. Table 6 shows the parameter values which best approximate the

conventional operating systems which were discussed in 4.3.
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Description Parameter Value

Intralevel scheduling policy OSscheduler FIFO

# of priority levels n 8

turns preemption on preemption true

reshift count Nr 1

time (s) between calls to scheduler schslice 1.0

rate (s�1) to increment cpu usage ftick 60.0

time slice (s) used by maplin ts -

Table 4: Scheduler baseline settings

Algorithm n

8 16 32 128

EDABS 0.3 0.3 0.3 0.3

EDREL 0.2 0.1 0.05 0.0125

LSREL 0.15 0.075 0.0375 0.0094

Table 5: ts baseline values

Parameter Unix Posix

OSscheduler RRMLF RR

n 40 128

preemption false true

schslice 1.0 1.0

ftick 60.0 60.0

Table 6: OS parameter settings
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7 Results

In this section, we summarize the results of our simulation experiments. As performance mea-

sure we use the percentage of missed deadlines (or miss ratio).2 For the real-time algorithms, we

represent the percentage of missed deadlines by MDA, A 2 fEA, ED, LSg. For the real-time

emulation algorithms, we use MDB
A where A 2 fEDABS, EDREL, LSRELg is the prior-

ity assignment scheme and B 2 fFIFO, RR, RRMLFg is the OS scheduling policy in use.

For example, MDRR
EDREL denotes the probability that a task misses its deadline with priority

assigned under the EDREL strategy on an operating system using round robin scheduling.

7.1 Baseline Experiment

7.1.1 Base Comparisons Without Preemption

As a starting point, let us look at how the various strategies do relative to each other in

our baseline experiment but with no preemption. The parameters for this experiment can be

found in Table 4. Figure 4 shows MD for the priority assignment schemes and the real-time

algorithms as load varies from 0.15 to 0.55. By load we are referring to the average system

utilization, de�ned as � = ��. For loads less than 0.32, the performances of the algorithms are

virtually indistinguishable. For higher loads, ED performs worse than the other four algorithms.

Two interesting conclusions can be drawn from these observations. First, LSREL tracks LS

so closely under the conditions of this experiment that the two curves are indistinguishable.

Second, EDABS and EDREL both either equal or outperform ED across the entire load range.

It is encouraging to see that the emulation algorithms are performing as well as or better than

the real-time algorithms themselves.

We should point out that traditionally soft real-time systems are studied under high load

situations. Hopefully, the system will mostly operate under low load in practice; no deadlines

will be missed regardless of what scheduling policy is used. Unfortunately, occasionally the

system will be overloaded, and it is precisely at those times when we need a scheduling policy

that can miss the fewest deadlines. For this reason, the big di�erences in missed deadlines

under high load in Figure 4 are important.

2A secondary measure could be tardiness, i.e., by how much time do tasks miss their deadlines. However, due

to space limitations, we do not consider this measure.
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Figure 4: Performance of priority assignment strategies in the baseline experiment.

7.1.2 Preemption

Figure 5 shows MD for the priority assignment schemes as load varies from 0.15 to 0.55, with

preemption on. The performance of all of the algorithms improve compared to the baseline

experiment. When we compare MD rates between di�erent algorithms or between di�erent

parameter sets, we will always refer to absolute di�erences in missed deadline rate. A di�erence

of 3% between two MD values means that jMD1 � MD2j = 3%. For this experiment, at

the highest loading the performance of LS and of the three emulation algorithms show the

most improvement, about 5%. In the lower loading range, ED and EDABS show the most

improvement, outperforming the other algorithms by 2%. The best algorithm across the entire

range is EDABS, which is a close second to ED under low load and the best performer under

high load.

As in the case with no preemption, this result is encouraging because although we knew

that the emulation of the real-time algorithms would not be perfect, we did not expect the

emulation algorithms to outperform the real-time algorithms. In the case of EDABS, under

high load the algorithm must occasionally reshift. When a reshift occurs, the tasks currently in

the higher levels will be delayed by new tasks which arrive and are placed in the lower queues.

Although the older tasks will probably miss their deadlines due to the delay, sacri�cing them

allows the system to start afresh with the newly arriving tasks so that the system as a whole
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misses fewer deadlines.

As shown by Figure 5a, however, the low load situation is di�erent. Here ED slightly

outperforms EDABS. Under low load, very few reshifts occur, so EDABS loses the advantage

described above. If there were no other di�erences between ED and EDABS, we would expect

the two curves to be identical in the low load range. The reason ED outperforms EDABS is that

ED is able to distinguish between tasks with similar deadlines whereas EDABS sometimes has

to group tasks with similar deadlines into the same level. Consider two tasks, task A and task

B, where task A arrives before task B. If jd(B)� d(A)j < ts, tasks A and B could be assigned

to the same level. If d(B) < d(A), however, this will result in priority inversion under FIFO

scheduling since task A will be executed �rst but task B has an earlier deadline. This e�ect

can be minimized by increasing n or by decreasing ts (although this has negative repercussions

under high load).

LSREL also demonstrates surprising behavior, outperforming LS across the entire load

range in Figure 5, though only slightly. We hypothesize that this e�ect is the result of a limited

number of priority levels which draws the performance of LSREL away from LS and towards ED.

The limited number of levels (n) forces LSREL to group tasks with similar slack into the same

queue. For the simulation whose results are shown, FIFO was used as the intralevel scheduling

policy. This led to approximately ED scheduling within a level, since tasks with earlier arrivals

tend to have earlier deadlines. The e�ect of combining both scheduling algorithms gives LSREL

an MD curve between those of ED and LS.

7.1.3 E�ect of OS Scheduling

Figure 6 shows MD for the priority assignment schemes for round-robin scheduling as the

scheduling slice, schslice, is varied (and n = 16). The performance of the algorithms under

FIFO scheduling is also plotted as a basis for comparison. The curves for all three emulation

algorithms have nearly the same shape. When schslice � �, the MD rate under RR is much

higher than the rate under FIFO scheduling. This is because even average length tasks are being

preempted at least once before they can complete, increasing their service time. To understand

this e�ect, consider three tasks A,B, and C which arrive in the system at time t = 0. Further

assume that each task requires 3 seconds to execute, and each has a deadline of t = 8. Under

FIFO, or RR with schslice � 3, one task will be run to completion. At t = 3, another task
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Figure 5: Performance of priority assignment strategies with preemption.

will be started and run to completion. Finally, at t = 6, the last task will be started and run

to completion. In this schedule, the �rst two tasks both meet their deadlines, but the last task

�nishes at t = 9, missing its deadline. Under RR with schslice� 1, the system will constantly

rotate between running jobs so that at t = 8, each will have run for 22
3
seconds, and all will

miss their deadlines.

As the ratio schslice
�

increases above 1, MD falls towards the FIFO value since fewer tasks are

being preempted. For the simulation runs that generated these graphs, no jobs had execution

times of over 2�. From this we might have assumed that for schslice
�

> 2, no jobs would be

interrupted by the scheduler and soMDRR should equal MDFIFO. In some systems this might

be the case. If the scheduling timer is started when a new task is started, MD rates would be

equal for schslice
�

> 2. In our simulation, however, we modeled what many operating systems

do for simplicity: they program the timer to interrupt every schslice seconds, completely

discoupled from the start times of any jobs. In a design like this, if one job �nishes half-way

through a time slice, the next job will be interrupted if it requires more than the 1
2
of the slice

which remains. Because of this e�ect, round robin will never quite approach the performance

of single queue. In conclusion, round robin scheduling is detrimental to real-time emulation. If

it cannot be disabled, the schslice should be set as large as possible.

The e�ects of round-robin scheduling with multi-level feedback are shown in Figure 7 (n =
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Figure 6: E�ects of Round-Robin OS Scheduling on performance.

16). The performance of the algorithms under FIFO OS scheduling is also plotted as a basis for

comparison. The shapes of the curves for all three algorithms are very similar. They perform

well with a small ratio, degrade until schslice
�

= 1, and then improve again as the ratio increases.

A low schslice
�

ratio means that high priority jobs will probably be preempted frequently, but

since schslice is small they will resume execution quickly. 3 Conversely, when the ratio is large,

the cost of preemption will be high, since schslice is large, but preemption will be infrequent,

so the unwanted preemption e�ect on MD will still be small. At schslice
�

= 1, however, both

e�ects combine to severely degrade the performance of all three algorithms. Having explained

the shape of the curves, we can now evaluate the suitability of RRMLF for our real-time

emulation algorithms. The problem of unwanted preemption makes round-robin with multi-

level feedback perform worse than round robin scheduling over the entire range of schslice for

all three algorithms. Even as the ratio schslice
�

approaches 4, the algorithms are still performing

3-4% worse than under FIFO scheduling. This experiment suggests that RRMLF may not be

a suitable scheduler for soft real-time emulation, at least not with the relatively small number

of priority levels (n = 16) we have assumed so far.

3The performance of the algorithms when schslice

�
< 1 shown in Figure 7 is nearly best case. Performance in

this region is very sensitive to experimental parameters, and will often appear more like the curves in Figure 6

for round-robin scheduling.
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Figure 7: E�ects of Round-Robin Multi-Level Feedback OS Scheduling on performance.

7.1.4 E�ect of Number of Priority Levels (n)

Figure 8 showsMD for the priority assignment schemes as n is varied from 8 to 32. 4 In Figure

8a, we can see that as n is increased, EDABS emulates ED more closely, whereas EDREL

does not change signi�cantly. It should be pointed out, however, that a close emulation of

a real-time algorithm is not always desirable. As an example, consider EDABS. Under low

system load, as in this example, ED outperforms EDABS, so increasing n results in improved

EDABS performance. Conversely, under high load (not shown here), EDABS outperforms

ED, so increasing n degrades the performance of EDABS as it nudges it closer to that of ED.

The choice of n should depend on the relative performance of the emulation algorithm to the

real-time algorithm in the load range of interest.

The performance of LSREL is shown in Figure 8b. Even by 16 priority levels, LSREL is

already emulating LS to within 0.2%. From these simulation runs and others, it is clear that 32

priority levels will provide adequate emulation in many cases, and that by 128 priority levels,

the emulation is extremely good (see Sections 7.2 and 7.3). Thus the number of priority levels

provided by current operating systems is su�cient to allow excellent emulation.

4Some parameters vary from the baselines setting: � = 0:12,� = 0:01.
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Figure 8: E�ect of number of priority levels on performance.

7.1.5 E�ect of Slack

Figure 9 shows MD for the priority assignment schemes as Smax varies from 0.1 to 1.3 with

a load of � = 0:4. From Figure 9a we see that under small slack MDEDREL < MDEDABS <

MDED, but that under large slack MDED < MDEDABS < MDEDREL. Similarly, under

small slack MDLS < MDLSREL, but that under large slack MDLSREL < MDLS . Thus the

algorithms behave analogously when the slack is reduced or the load is increased.

7.2 Emulating ED

Having studied the e�ects of the system parameters on the performance of our emulation

algorithms, we will now investigate how to tune EDABS and EDREL for a particular system.

As a sample system, we chose Posix Unix, whose parameters are listed in Table 6. Our goals

for this section are to show how to tune ts and Nr to maximize performance and to examine

how closely EDABS and EDREL can approximate ED in a representative GPOS.

Figure 10 shows the `error' in MD introduced by emulating ED. By `error' we mean the

di�erence in measured MD values between an emulation algorithm and the real-time algorithm

it is trying to emulate. We will also refer to error as eMD, where eMD = MDA�MDED and A

is in fEDABD;EDRELg. Note that although we call this di�erence an error, if eMD < 0 the
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Figure 9: E�ects of changing slack on performance.

emulation algorithm is outperforming the real-time algorithm, thus the error is in our favor.

Finally, when we refer to algorithms di�ering by 2%, we mean that jMDA �MDBj = 2%.

In Figure 10, EDABS shows the closest tracking to ED: MDED and MDEDABS never

di�er by more than 0.5%. EDREL does not emulate ED as well, the two are o� by as much as

2.5% in MD, but under higher load EDREL slightly outperforms ED. To get good emulation

it is necessary to tune the algorithms for the particulars of the system. Below we discuss how

to adjust both the reshift count, Nr, and ts.

7.2.1 Tuning Nr

EDABS uses Nr to determine when to reset tpinned , which we call a reshift. Figure 11 shows

the e�ect of changing Nr under two di�erent system loads. (Note that the scales are di�erent

for graphs a and b.) 5 Figure 11a shows that at low loads, using a higher value for Nr lowers

MD. This is because the busy periods are typically short for a lightly loaded system: In this

case the average number of tasks served in a busy period, Nbp, is 2.2. Short duration busy

periods have the following two properties:

5Some parameters vary from the baselines setting: n = 16,schslice = 0:3.
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� A job placed in the last level is more likely to result from an unusually distant deadline

than from all of the lower levels being full;

� Even if the busy period has been long enough to �ll the priority levels, it will probably

not last much longer, which will give the system a chance to catch up with the jobs that

queued in the last slot. 6

As Figure 11b shows, however, the situation is reversed under high load. For � = 0:9, we

calculate that Nbp � 10 (see Appendix A). In high load cases, it is better to reshift after the

�rst task is assigned to the last level. These two examples show that it is impossible to pick

a single value for Nr which will optimize EDABS's performance across all load ranges. As

a compromise in the general case, we suggest Nr = 1 or 2, since any higher value will only

negligibly improve low load performance but will greatly damage high load performance.

6This is due to the memoryless property of the exponential distribution which we have assumed for arrival

times.
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Figure 11: Tuning Nr for EDABS

7.2.2 Tuning ts

Figure 12 plots MD as ts is varied for two di�erent load points. 7 As above, there is no single

value of ts which optimizes MD in both instances. For EDREL, the value passed to maplin is

d(T )� a(T ). We might assume that we want to pick ts so that it divides max(d(T )� t) evenly

into n regions. If we use the approximation

max(d(T )� a(T )) � �+ k� + Smax

then we have

nts = max(d(T )� a(T )) � � + k� + Smax

or

ts �
�+ k� + Smax

n

where k is a constant signifying how many standard deviations of � we want to include in

max(d(T )� a(T )). For the parameters used in this simulation run, and k = 3, ts � 2:3. This

shows excellent agreement with the high load graph, but poor agreement with the low load

graph. A good compromise is 0:3 � ts � 0:4. For EDABS, the graphs suggest that ts = 0:3 is

a good choice, but there's no good intuition. Given that the range of MD under low load is

7The jitteriness of Figure 12a, and of some of the graphs that follow, occurs because the vertical scale of the

graph is so greatly magni�ed that it shows 
uctuations within the measured con�dence intervals.
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Figure 12: Tuning ts for EDABS and EDREL

much smaller than the range under high load, if nothing is known about average system load

it is safer to pick ts for the high load case using the rule of thumb.

Clearly, the fact that one has to select a good ts for all of the priority assignment algorithms

is a drawback. If one has no idea what the range of expected slacks of task execution times

will be, then it is hard to pick a value for ts. However, Figure 12 shows that there is a wide

range of ts values that give similar results. Thus, one only needs to have rough estimates of the

task characteristics to select a reasonable ts value. A possible further improvement would be

to design an adaptive algorithm that adjusts ts as the systems workload changes. We do not

investigated such an approach in this study, but we do believe that it is an interesting area of

future study.

7.3 Emulating LS

As in the previous section on emulating ED, we now turn our attention to studying LSREL under

more representative system parameters and learn how to tune ts to improve its performance.

Again we use the Posix system parameters from Table 6.

Figure 13 shows the error in MD introduced by emulating LS. The quantity graphed is

eMD = MDLSREL � MDLS . LSREL tracks LS to within the con�dence interval of the
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Figure 13: MD Error for Emulated LS

simulations: MDLS and MDLSREL never vary by more than 0.25%. From this we can see that

even under a commercial GPOS, LSREL emulates LS very closely.

7.3.1 Tuning ts

LSREL has only one parameter that can be adjusted, ts. Figure 14 shows MD as ts is varied for

two di�erent load points. In these two graphs we see problems similar to when we tuned ts for

EDREL. Figure 14b indicates that optimally, ts � 0:15. This �ts well with our intuition that

nts � Smax. The low load case, however, is optimized with a much larger ts. Note, however,

that the di�erences in MD under low load are very small (< 1%). So, without prior knowledge

of the system load, it is safer to select ts for the high load case using ts =
Smax

n
.

8 Conclusions

This paper considered the problem of emulating soft real-time scheduling with a general purpose

operating system. Through simulation, we examined the performance of algorithms to emulate

both earliest deadline �rst scheduling and least slack �rst scheduling. Surprisingly, not only

did the emulation algorithms we presented here track the real-time algorithms very well, they

outperformed them in many cases.
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EDABS had the best overall performance. It was close to ED for low load conditions, and

was usually the best algorithm for high load conditions as well. Both EDABS and LSREL

emulated their respective real-time counterparts well, and improved as the number of priorities

was increased.

Finally, we would like to remark that the RTE problem is an important one in the design

of the real-time applications of the future. These applications will increasingly be developed

on standard hardware running GPOSs and connected by networks that have no notions of

real-time. The ability to convert parameters like deadlines and slack into priority levels will be

essential if soft real-time is to develop into a more general model for application design.
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A Reshift Rates

When we perform a reshift, old tasks will have incorrect priorities relative to the tasks arriving

after the reshift. These old tasks are not aborted (they will be executed as the queues empty)

but are likely to miss their deadlines. When a reshift occurs, then, EDABS will perform very

di�erently than ED for the remainder of the busy period; Therefore, Reshifts interfere with
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our goal of emulating ED as closely as possible. It then seems reasonable to ask the following

question: Given a set of system parameters, how often will reshifting be necessary?

We de�ne a new metric call reshift rate, Rreshift, which is the average number of reshifts per

job. For any system, Rreshift will always be in the range [0 : : :1]. The reshift rate will clearly

be dependent on the average system load, �. As � is increased, the average length of the busy

periods, and the average number of jobs served in a busy period (Nbp), will increase as well.

From [Kle75] we have that Nbp is

Nbp =
1

1� �
:

We can use this result to rephrase our original question to be: On average, how many jobs can

be serviced in a busy period before a reshift is necessary?

We will call this number N0. The variable N0 can be decomposed into the sum

N0 = k +Nr

where k is the number of jobs that can arrive before one is assigned to the last priority level

and Nr is the reshift count. Since Nr is a parameter to the scheduler, to �nd N0 we need only

determine the value of k. With no loss of generality, assume that the �rst task, T1, arrives

at time t = 0. If the average execution time is x and the average slack is s, then if T1 is an

`average' task

d(T1) = x+ s:

Of course, the real deadline of task T1 can only be described by a probability density function

since x and s are random variables, but since we are only looking for rough numbers, we will

accept this approximation. In a busy period, the average interarrival period is x ([Kle75]). So,

again assuming that all tasks are average, we have that

d(Tk) = x+ s+ (k � 1)x = kx+ s:

Since we want to know how many tasks can arrive and not be assigned into the last priority

queue, we are interested in the greatest k such that

d(Tk) � (n� 1)ts:

Combining equations we have

k �
(n� 1)ts � s

x
:
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Now we can solve for N0,

N0 = k +Nr

N0 �
(n� 1)ts � s

x
+Nr:

So, when Nbp � N0, busy periods will not last long enough to cause reshifts, but when Nbp

approaches N0, EDABS will be forced to reshift. Figure 15 shows the e�ect of Nbp on the

reshift rate in an actual experiment 8. For Nbp � 2, less than 1 in 20 jobs cause a reshift,

but as Nbp approaches N0, more than 1 job in 10 produce a reshift. By the time Nbp = N0,

more than 1 in 7 jobs causes a reshift, and this ratio only gets worse as Nbp is increased further.

These experimental results show excellent agreement with the approximate guideline we derived

above.

8This experiment was run with the baseline parameters given in Section 6
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