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This paper reviews several methods to associate transition relations to transition system spec-

i�cations with negative premises in Plotkin's structural operational style. Besides a formal

comparison on generality and relative consistency, the methods are also evaluated on their taste

in determining which speci�cations are meaningful and which are not.

1 Transition system speci�cations

In this paper V and A are two sets of variables and actions. Many concepts that will appear are
parameterized by the choice of V and A, but as in this paper this choice is �xed, a corresponding

index is suppressed.

De�nition 1 (Signatures). A function declaration is a pair (f; n) of a function symbol f 62 V and
an arity n 2 IN. A function declaration (c; 0) is also called a constant declaration. A signature is a

set of function declarations. The set TT(�) of terms over a signature � is de�ned recursively by:

� V � TT(�),

� if (f; n) 2 � and t1; . . . ; tn 2 TT(�) then f(t1; . . . ; tn) 2 TT(�).

A term c() is often abbreviated as c. T (�) is the set of closed terms over �, not containing any

variables. A �-substitution � is a partial function from V to TT(�). If � is a substitution and S any
syntactic object, then S[�] denotes the object obtained from S by replacing, for x in the domain

of �, every occurrence of x in S by �(x). In that case S[�] is called a substitution instance of S.

De�nition 2 (Transition system speci�cations). Let � be a signature. A positive �-literal is an
expression t

a
�! t0 and a negative �-literal an expression t 6

a
�! or t 6

a
�! t0 with t; t0 2 TT(�) and

a 2 A. For t; t0 2 TT(�) the literals t
a
�! t0 and t 6

a
�!, as well as t

a
�! t0 and t 6

a
�! t0, are said to

deny each other. A transition rule over � is an expression of the form H
�
with H a set of �-literals

(the premises or antecedents of the the rule) and � a �-literal (the conclusion). A rule H
�

with
H = ; is also written �. A literal or transition rule is closed if it contains no variables. An action

rule is a transition rule with a positive conclusion. A transition system speci�cation (TSS) is a pair
(�; R) with � a signature and R a set of action rules over �. A TSS is standard if its rules have

no antecedents of the form t 6
a
�! t0, and positive if all antecedents of its rules are positive.

�This work was supported by ONR under grant number N00014-92-J-1974.
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The �rst systematic study of transition system speci�cations with negative premises appears in
Bloom, Istrail & Meyer [2]. The concept of a (positive) TSS presented above was introduced
in Groote & Vaandrager [9]; the negative premises t 6

a
�! were added in Groote [8]. The

notion generalises the GSOS rule systems of [2] and constitutes the �rst formalization of Plotkin's
Structural Operational Semantics (SOS) [10] that is su�ciently general to cover most, if not all, of

its applications. The premises t 6
a
�! t0 are added here, mainly for technical reasons.

The following de�nition tells when a transition is provable from a TSS. It generalises the stan-

dard de�nition (see e.g. [9]) by (also) allowing the derivation of transition rules. The derivation of
a transition t

a
�! t0 corresponds to the derivation of the transition rule H

t
a
�!t0

with H = ;. The

case H 6= ; corresponds to the derivation of t
a
�! t0 under the assumptions H .

De�nition 3 (Proof ). Let P = (�; R) be a TSS. A proof of a transition rule H
�

from P is a
well-founded, upwardly branching tree of which the nodes are labelled by �-literals, such that:

� the root is labelled by �, and

� if � is the label of a node q and K is the set of labels of the nodes directly above q, then

1. either K = ; and � 2 H ,

2. or K
�
is a substitution instance of a rule from R.

If a proof of H
�
from P exists, then H

�
is provable from P , notation P ` H

�
.

A closed negative literal � is refutable if P ` � for a literal � denying �.

De�nition 4 (Transition relation). Let � be a signature. A transition relation over � is a relation
T � T (�) � A � T (�). Elements (t; a; t0) of a transition relation are written as t

a
�! t0. Thus a

transition relation over � can be regarded as a set of closed positive �-literals (transitions).
A closed literal � holds in a transition relation T , notation T j= �, if � is positive and � 2 T or

� = (t 6
a
�! t0) and (t

a
�! t0) 62 T or � = (t 6

a
�!) and (t

a
�! t0) 2 T for no t0 2 T (�). Write T j= H ,

for H a set of closed literals, if T j= � for all � 2 H .

A positive TSS speci�es a transition relation in a straightforward way as the set of all provable

transitions. But as pointed out inGroote [8], it is much less trivial to associate a transition relation
to a TSS with negative premises. Several solutions are proposed in [8] and Bol & Groote [3].

Here I will present these solutions from a somewhat di�erent point of view, and also review a few
others.

P1

c 6
a
�!

c
b
�! c

c 6
b
�!

c
a
�! c

The TSS P1
1 can be regarded as an example of a TSS that does not specify a well-de�ned transition

system. So unless a systematic way can be found to associate a meaning to TSSs like P1, one has

to accept that some TSSs are meaningless. Hence there are two questions to answer:

Which TSSs are meaningful, and which transition relations do they specify? (1)

In this paper I present 11 possible answers to these questions, each consisting of a class of TSSs
and a mapping from this class to transition relations. Two such solutions are consistent if they

agree which transition relation to attach to a TSS in the intersection of their domains. Solution
S0 extends S if the class of meaningful TSSs according to S0 extends that of S and the two are

consistent, i.e. seen as partial functions S is included in S0.

1All my examples Pi consider TSSs (�;R) in which � consists of the single constant c only.
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2 Model theoretic solutions

Solution 1 (Positive). A �rst and rather conservative answer to (1) is to take the class of positive
TSSs as the meaningful ones, and associate with each positive TSS the transition relation consisting

of the provable transitions.

Before proposing more general solutions, I will �rst recall two criteria from Bloom, Istrail &

Meyer [2] and Bol & Groote [3] that can be imposed on solutions.

De�nition 5 (Supported model). A transition relation T agrees with a TSS P if:

T j= t
a
�! t0 , there is a closed substitution instance H

t
a
�!t0

of a rule of P with T j= H:

T is a model of P if \(" holds; T is supported by P if \)" holds.

The �rst and most indisputable criterion imposed on a transition system T speci�ed by a TSS P is
that it is a model of P . This is called being sound for P in [2]. This criterion says that the rules of

P , interpreted as implications in �rst-order or conditional logic, should evaluate to true statements
about T . The second criterion, of being supported, says that T does not contain any transitions for

which it has no plausible justi�cation to contain them. In [2] being supported is called witnessing.
Note that the universal transition relation on T (�) is a model of any TSS. It is however rarely the

intended one, and the criterion of being supported is a good tool to rule it out. Next I check that
Solution 1 satis�es both criteria.

Proposition 1 Let P be a positive TSS and T the set of transitions provable from P . Then T is

a supported model of P . Moreover T is the least model of P .

Proof: That T is a supported model of P is an immediate consequence of the de�nition of prov-

ability. Furthermore, let T 0 be any model of P , then by induction on the length of proofs it follows
that T � T 0. 2

Starting from Proposition 1 there are at least three ways to generalise Solution 1 to TSSs with

negative premises. One can generalise either the concept of a proof, or the least model property,
or the least supported model property of positive TSSs. Starting with the last two possibilities,

observe that in general no least model and no least supported model exists. A counterexample is

given by the TSS P1 (given earlier), which has two minimal models, fc
a
�! cg and fc

b
�! cg, both

of which are supported.

Solution 2 (Least). A TSS is meaningful i� it has a least model (this being its speci�ed transition relation).

Solution 3 (Least supported). A TSS is meaningful i� it has a least supported model.

These two solutions turn out to have incomparable domains. The TSS P2 below has fc
a
�! cg as its

least model, but has no supported models. On the other hand P3 has two minimal models, namely
fc

b
�! cg and fc

a
�! cg of which only the latter one is supported. This is its least supported model.

P2

c 6
a
�!

c
a
�! c

P3

c 6
b
�!

c
a
�! c
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Obviously Solution 1 is extended by both solutions above. However, Solutions 2 and 3 turn out to
be inconsistent with each other. P4 has both a least model and a least supported model, but they
are not the same.

P4

c 6
a
�!

c
a
�! c

c
b
�! c

c
a
�! c

c
b
�! c

c
b
�! c

P5

c
a
�! c

c
a
�! c

Solution 2 is not very productive, because if fails to assign a meaning to the perfectly reasonable
TSS P3. Moreover, it can be criticized for yielding unsupported transition systems, as in the case of

P2. However, in P4 the least model fc
a
�! cg appears to be a better choice than the least supported

model fc
a
�! c; c

b
�! cg, as the `support' for transition c

b
�! c is not overwhelming. Thus, to my

taste, Solution 3 is somewhat unnatural.
In Bloom, Istrail & Meyer [2] the following solution is applied.

Solution 4 (Unique supported). A TSS is meaningful i� it has a unique supported model.

The positive TSS P5 above has two supported models, ; and fc
a
�! cg, and hence shows that

Solution 4 does not extend Solution 1.

Although for the kind of TSSs considered in [2] (the GSOS rule systems) this solution coincides
with all acceptable solutions mentioned in this paper, in general it su�ers from the same drawback

as Solution 3. The least supported model of P4 is even the unique supported model of this TSS.
My conclusion is that the criterion of being supported is too weak to be of any use in this context.

This conclusion was also reached by Fages [5] in the setting of logic programming, who proposes
to strengthen this criterion. Being supported can be rephrased as saying that a transition may only
be present if there is a nonempty proof of its presence, starting from transitions that are also

present. However, these premises in the proof may include the transition under derivation, thereby
allowing for loops, as in the case of P4. Now the idea behind a well-supported model is that the

absence of a transition may be assumed a priory, as long as this assumption is consistent, but the
presence of a transition needs to be proven without assuming the presence of (other) transitions.

Thus a transition may only be present if it admits a valid proof, starting from negative literals only.

De�nition 6 (Stable transition relation). A transition relation T is stable for a TSS P if:

T j= t
a
�! t0 ,

there is a closed transition rule N

t
a
�!t0

without positive antecedents

with P ` N

t
a
�!t0

and T j= N .

T is well-supported by P if \)" holds.

Proposition 2 If T is stable for P , then it is a model of P . Moreover, any model of P satis�es
\(". Hence a stable transition relation is the same as a well-supported model.

Proof: Suppose there is a closed substitution instance H

t
a
�!t0

of a rule of P with T j= H . Assuming

that T is stable, for any ti
ai
�! t0i 2 H there must be a closed transition rule Ni

ti
ai
�!t0i

without positive

antecedents with P ` Ni

ti
ai
�!t0

i

and T j= Ni. Let N be the union of all those Ni's and the negative

literals in H . Then, by combination of proof-fragments, N

t
a
�!t0

is a closed transition rule without

positive antecedents with P ` N

t
a
�!t0

and T j= N . Hence T j= t
a
�! t0.

The second statement follows by a trivial induction on the lenght of proofs, and the third one
is an immediate corollary. 2
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Proposition 3 If a transition relation is well-supported by P , then it is supported by P .

Proof: Let T be well-supported by P , and let T j= t
a
�! t0. Then there is a closed transition rule

N

t
a
�!t0

without positive antecedents with P ` N

t
a
�!t0

and T j= N . As the transition t
a
�! t0 cannot

be in N , there must be a non-empty proof of N

t
a
�!t0

. Let K

t
a
�!t0

be the closed substitution instance

of a rule of P applied in the last step of this proof. After omitting this step from the proof, one is

left with proofs for the literals in K. It follows that T j= K, which had to be established. 2

My concept of well-supportedness can easily be seen to coincide with the one of Fages [5]. The

(earlier) concept of stability for TSSs stems from Gelfond & Lifschitz [7] in the context of logic
programming. It has been adapted for TSSs by Bol & Groote [3]. In [3] stability was de�ned in
terms of an operator Strip on TSSs without variables. If P is such a TSS and T a transition relation,

Strip(P; T ) is obtained from P by removing from P all rules with negative premises that do not
hold in T , and removing from the remaining rules the negative premises that do hold (De�nition

4.3 in [3]). This yields a positive TSS, whose associated transition relation is denoted �!Strip(P;T ).
Now T is said to be stable for P if T =�!Strip(P;T ). This de�nition is extended to TSSs P with

variables by identifying such a TSS with the TSS of all closed substitution instances of rules in P .

Proposition 4 The concept of stability of De�nition 6 coincides with that from [3].

Proof: Let P 0 be a TSS and P be the TSS consisting of all closed substitution instances of rules

in P . Note that T is stable for P in the sense of De�nition 6 i� it is for P 0.
The construction of Strip entails that Strip(P; T ) ` t

a
�! t0 i� P ` N

t
a
�!t0

for a set of closed

negative literals N with T j= N . It follows immediately that both de�nitions are equivalent. 2

The following two solutions are adaptations of Solutions 3 and 4, were the requirement of being
supported has been replaced by that of being well-supported. The second is taken from [3].

Solution 5 (Stable). A TSS is meaningful i� it has a least stable transition relation.

Solution 5 (Stable). A TSS is meaningful i� it has a unique stable transition relation.

The particular numbering of these two solutions is justi�ed by the following.

Proposition 5 Let T1 be a model of a TSS P and T2 be well-supported by P . If T1 � T2 then

T1 = T2. If follows (from the special case that T1 and T2 are both stable) that a TSS has a least
stable transition relation i� it has a unique stable transition relation.

Proof: As T1 � T2 one has

T1 j= t
a
�! t0 ) T2 j= t

a
�! t0

from which it follows that

T2 j= t 6
a
�! t0 ) T1 j= t 6

a
�! t0 and T2 j= t 6

a
�! ) T1 j= t 6

a
�! : (2)

Now suppose T2 j= t
a
�! t0. Then there is a closed transition rule N

t
a
�!t0

without positive antecedents

with P ` N

t
a
�!t0

and T2 j= N . By (2) we have T1 j= N and hence T1 j= t
a
�! t0. 2
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Solution 5 improves Solutions 3 and 4 by rejecting the TSS P4 as meaningless. It also improves
Solution 2 by rejecting the TSS P2 (whose least model was not supported). Surprisingly however,
Solution 5 not only di�ers from the earlier solutions by being more fastidious; it also provides

meaning to perfectly acceptable TSSs that were left meaningless by Solutions 2, 3 and 4.

P6

c 6
a
�!

c
b
�! c

c
a
�! c

c
a
�! c

An example is the TSS P6. There is clearly no satisfying way to obtain c
a
�! c. Hence c 6

a
�! and

consequently c
b
�! c. fc

b
�! cg is indeed the unique stable transition relation of this TSS. However,

P6 has two minimal models, both of which are supported, namely fc
b
�! cg and fc

a
�! cg.

Proposition 6 Solution 5 (stable) is consistent with Solution 2 (least) and 3 (least supported).

Proof: If a TSS has both a (least) well-supported model and a least [supported] model, the two
must be equal by Proposition 5. 2

As the set of transitions provable from a positive TSS is by de�nition well-supported, Solution 5
(stable) extends Solution 1 (positive). Hence the relations between the solutions seen so far are as

indicated in Figure 1 below. An arrow indicates an extension. The relation ^ indicates consistency
and incomparible domains (neither one extends the other). There are no more extension and con-
sistency relations than indicated in the �gure (taking into account that positive^unique supported

follows from the information displayed). All counterexamples appear earlier in this section.

positive (1)
�

�
�

�
�

�
��	

@
@
@
@
@
@
@@R

?
unique stable (5)

least stable (5)

unique supported (4)

?
least supported (3)least model (2)

^

^

^

Figure 1: Relations between Solutions 1{5

It is interesting to see how the various solutions deal with circular rules, such as
c

a
�!c

c
a
�!c

, and rules
like c 6

a
�!

c
a
�!c

. The support-based solutions (3 and 4) may use a circular rule to obtain a transition

that would be unsupported otherwise (Example P4). This is my main argument to reject these
solutions. In addition they may (or may not) reject TSSs as meaningless because of the presence of

such a rule (Example P6). On the other hand, Solutions 2 and 5 politely ignore these rules. To my
taste, there are two acceptable attitudes towards circular rules: to ignore them completely (as done
by Solutions 1, 2 and 5), or to reject any TSS with such a rule for being ambiguous, unless there

is independent evidence for a transition c
a
�! c. A strong argument in favor of the �rst approach

is the existence of useful rules of which only certain substitution instances are circular (cf. [3]). A

solution that caters to the second option will be proposed in the next section.
Solution 2 can treat a rule c 6

a
�!

c
a
�!c

as equivalent to c
a
�! c (namely if there are no other closed

terms than c, cf. P2), which gives rise to unsupported transition relations. Solutions 3, 4 and 5
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do not go so far, but use such a rule to choose between two otherwise equally attractive transition
relations. This is illustrated by the TSS P7, which determines the transition system fc

a
�! cg

according to each of the solutions 2, 3, 4 and 5.

P7

c 6
a
�!

c
b
�! c

c 6
b
�!

c
a
�! c

c 6
a
�!

c
a
�! c

Note that ignoring rules like
c 6
a
�!

c
a
�!c

is unacceptable, as this would yield unsound transition rela-
tions (non-models). But it could be argued that any TSS with such a rule should be rejected as

meaningless, unless there is independent evidence for a transition c
a
�! t. This would rule out P7.

Solutions that cater to this taste will be proposed in the next section.

3-Valued transition relations

3-valued interpretations of logical programs are considered, among others, in Van Gelder, Ross
& Schlipf [6] and Przymusinski [12]. The same can be done for TSSs. The meaning of a TSS is

then not given by a transition relation, i.e. a partition of T (�)�A� T (�) into the the transitions
that hold and those that don't, but a partition of T (�)�A� T (�) into three sets: true, false and

unknown. Such a 3-valued interpretation is in logic programming often given as a pair =
nT ;F

n
= of

disjoint transition relations, representing the transitions that certainly hold, and those that certainly

don't. Here I �nd it easier to represent the same information as a pair T = =
nCT; PT

n
=, called a 3-

valued transition relation, with CT the set of transitions that certainly hold, and PT � CT the ones
that possibly hold. Thus PT combines the values true and unknown, and is the complement of F .

On 3-valued transition relations the information ordering � is de�ned by =
nCT; PT

n
= �

=
nCT

0; PT 0n
= i�

CT � CT 0 and PT � PT 0, i.e. in =
nCT

0; PT 0n
= the thruth or falsety of more transitions is known. In

the =
nT ;F

n
=-representation PT � PT 0 translates to F � F 0. A 3-valued transition relation =

nCT; PT
n
=

is said to be 2-valued if CT = PT . Note that for a negative literal �, CT j= � means that �

possibly holds (no denying literal certainly holds), whereas PT j= � means that � certainly holds
(no denying literal possibly holds). This explains the following generalisation, based on the work

of Przymusinski [12], of the concept of a stable transition relation (or well-supported model) to
3-valued interpretations.

De�nition 7 (3-Valued stabilily). A 3-valued transition relation =
nCT; PT

n
= is stable for a TSS P if:

CT j= t
a
�! t0 ,

there is a closed transition rule N

t
a
�!t0

without positive antecedents

with P ` N

t
a
�!t0

and PT j= N ,

and PT j= t
a
�! t0 ,

there is a closed transition rule N

t
a
�!t0

without positive antecedents

with P ` N

t
a
�!t0

and CT j= N .

The de�nition in [12] is a bit more complicated, but can be shown to amount to the same concept.
Note that a stable transition relation as in De�nition 6 can be regarded as a stable 3-valued

transition relation T = =
nCT; PT

n
= with CT = PT . Przymusinski [12] showed that every logic

program admits a 3-valued stable transition relation, and the same can be said for TSSs. There is

even a least one w.r.t. the information ordering. He also showed that the least 3-valued stable model
coincides with the well-founded semantics of an arbitrary TSS (logical program) proposed earlier by

Van Gelder, Ross & Schlipf [6]. See Section 4 for a variant of the approach of [6]. The TSS P1
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has three 3-valued stable transition relations, namely =
nfc

a
�! cg; fc

a
�! cgn=,

=
nfc

b
�! cg; fc

b
�! cgn=

and =
n;; fc

a
�! c; c

b
�! cgn=. The �rst two are 2-valued. For reasons of symmetry the latter, which

is also the least, is most suited as the intended meaning of this TSS. This is its well-founded

semantics. Hence the following solution.

3-Valued Solution I (Well-founded) Any TSS is meaningful. Its meaning is its information-least

3-valued stable transition relation.

The existence of this relation will be demonstrated in the next section. The example P1 shows that
there need not be a least 3-valued stable transition relation w.r.t. the truth ordering, de�ned by

requiring CT � CT 0 and PT � PT 0. 3-Valued Solution I is not numbered with the others, as it
does not provides (2-valued) transition relations. However, a 2-valued relation can be obtained by

restricting attention to those TSSs for which the least 3-valued stable transition relation =
nCT; PT

n
=

satis�es T = PT . Alternatively, just the component CT (or just PT ) of the least 3-valued stable

transition relation =
nCT; PT

n
= could be taken to be the meaning of a TSS. These possibilities will

be explored in the next section. Finally I mention another 3-valued answer to (1), based on a
generalisation of the notion of a supported model which is left as an exercise to the reader.

3-Valued Solution II Any TSS is meaningful. Its meaning is its information-least 3-valued
supported model.

3 Proof theoretic solutions

In this section I will propose solutions based on a generalization of the concept of a proof. Note
that in a proof two kinds of steps are allowed, numbered 1 and 2 in De�nition 3. Step 1 just allows

hypotheses to enter, in case one wants to prove a transition rule. This step can not be used when
merely proving transitions. The essence of the notion is step 2. This step reects the postulate that

the desired transition relation must be a model of the given TSS. As a consequence those and only
those transitions are provable that appear in any model. When generalising the notion of a proof

to derive negative literals it makes sense to import more postulates about the desired transition
relation. Note that a transition relation T is supported i�

T 6j= t
a
�! t0 ( for each closed substitution instance H

t
a
�!t0

of a rule of P one has T 6j= H:

and well-supported i�

T 6j= t
a
�! t0 ( for each set of negative closed literals N with P ` N

t
a
�!t0

, one has T 6j= N .

Therefore I propose the following two concepts of provability.

De�nition 8 (Supported proof ). A supported proof of a closed literal � from a TSS P is like a
closed (positive) proof (see De�nition 3), but admitting steps of the form

3. � is negative and for each closed substitution instance of a rule of P whose conclusion denies

�, a literal in K denies one of its antecedents.

� is s-provable, notation P `s �, if a supported proof of � from P exists.

A literal is s-refutable if a denying literal is s-provable.

De�nition 9 (Well-supported proof ). A well-supported proof of a closed literal � from a TSS P is
like a closed (positive) proof (see De�nition 3), but admitting steps of the form

8



3. � is negative and for every set N of negative closed literals such that P ` N

for  a closed

literal denying �, a literal in K denies one in N .

� is ws-provable, notation P `ws �, if a well-supported proof of � from P exists.

A literal is ws-refutable if a denying literal is ws-provable.

Note that these proof-steps establish the validity of � when K is the set of literals established
earlier. In case K and N are sets of closed literals and a literal in K denies one in N , one has

T 6j= N for any transition relation T with T j= K. Thus step 3 from De�nition 9 allows to infer
t 6

a
�! t0 whenever it is manifestly impossible to infer t

a
�! t0, or t 6

a
�! whenever it is manifestly

impossible to infer t
a
�! t0 for some term t0. This practice is sometimes referred to as negation as

failure [4]. De�nition 8 allows such an inference only if the impossibility to derive t
a
�! t0 can be

detected by examining all possible proofs that consist of one step only. This corresponds with the
notion of negation as �nite failure of Clark [4]. The extension of these notions (especially `ws)

from closed to open literals �, or to transition rules H
�
, is somewhat problematic, and not needed

in this paper. The following may shed more light on `s and `ws.

Proposition 7 Let P be a TSS. Then P `s t 6
a
�! [t0] i� every closed substitution instance H

t
a
�!t0

of
a rule of P has an s-refutable antecedent. Moreover P `ws t 6

a
�! [t0] i� every setN of closed negative

literals with P ` N

t
a
�!t0

contains an ws-refutable literal.

Proof: Fairly trivial. 2

Proposition 8 For P a TSS and � a closed literal one has P ` � ) P `s � ) P `ws �.

Proof: The �rst statement is trivial. The second will be established with induction on the structure

of a `s-proof of �. Let
K
�
be the last step in such a proof. As P `s K by means of strict subproofs,

it follows by induction that P `ws K. Here I write P `x K for K a set of literals if P `x � for

all � 2 K. If � is positive, P `ws � follows immediately from the de�nition of provability. Thus
suppose � is negative. Let f�igi2I be the set of negative literals in K, and let Ki

�i
for i 2 I be the

collection of last proof-steps in `ws-proofs of the �i. Let L =
S
i2I Ki[ (K�f�igi2I). Then clearly

P `ws L, so it su�ces to show that for every set N of negative closed literals such that P ` N

for

 a literal denying �, a literal in L denies one in N .

Consider a `-proof p of N

with N a set of negative literals and  denies �. By the de�nition of

`s, p contains a literal � that denies a literal � in K. This literal is the label of a node right above

the root. In case � occurs in N , � is positive and therefore occurs in L. In case � 62 N , � must be
negative and hence be �i for certain i 2 I . Because Ki

�i
is a valid step in a `ws-proof and P ` N

�

with � denying �i, a literal in N must deny one in Ki � L. 2

Proposition 9 Let a quasi-proof be de�ned as in De�nition 3, but without the requirement of
well-foundedness. If in a TSS P any quasi-proof is well-founded, then P `s �, P `ws �.

Proof: Suppose P `ws �. Let
K
�
be the last step in a `ws-proof of �. Applying induction on such

proofs, I may assume P `s K. In case � is positive the desired result P `s � follows immediately,
so suppose it is not. Let � be a literal that denies � and let H

�
be a closed substitution instance

of a rule of P . This instance constitutes a (positive) one-step proof p of H
�

from P . I have to
show that H contains an s-refutable literal. Suppose by contradiction that is does not. Then, by

Proposition 7, for every positive literal  2 H there must a closed substitution instance
H


of a

rule of P , without s-refutable antecedents. Adding these rules to p yields a larger proof p0 of a rule

9



H 0

�
with H 0 =

S
f2Hj positivegH [ f 2 H j  negativeg. Iterating this procedure by applying

the same reasoning to H 0 etc. yields a quasi-proof of a statement N
�
with N a set of s-irrefutable

closed negative literals. By assumption this quasi-proof must be a proof. By the ws-provability of

� it follows that N must contain a literal that is denied by a literal from K, and hence s-refutable.
This yields a contradiction. 2

De�nition 10 For a 3-valued T = =
nCT; PT

n
= de�ne T j= � as

(
CT j= � if � is positive
PT j= � if � is negative

.

For P a TSS and � a closed literal, write P j=s � [resp. P j=3s �] if T j= � for any [3-valued]
supported model T of P and P j=ws � [resp. P j=3ws �] if T j= � for any [3-valued] well-supported

model T of P . A notion `x is called

� consistent if there is no TSS deriving two literals that deny each other.

� sound w.r.t. j=x if for any TSS P and closed literal �, P `x �) P j=x �.

� complete w.r.t. j=x if for any TSS P and closed literal �, P `x �( P j=x �.

Proposition 10 `ws is consistent.

Proof: Let's say that two proofs p and q deny each other if their roots are labelled with literals
that deny each other. By induction on their structure I establish that no two proofs from the same

TSS P deny each other. So let p and q be two `ws-proofs from P and assume that no two proper
subproofs deny each other. By contradiction suppose the roots of p and q are labelled with t

a
�! t0

and t 6
a
�! (or t 6

a
�! t0) respectively. Note that the bottom part of p is a positive proof of a rule

N

t
a
�!t0

, where N contains only negative literals. Let K be the set of literals labelling nodes directly

above the root of q. Then from the last step of q it follows that N (and thus p) contains a negative

literal that denies one in K, thus yielding proper subproofs of p and q that deny each other. 2

As P ` � ) P `s � ) P `ws �, if follows that also `s and ` are consistent.

Proposition 11 `ws is sound w.r.t. j=ws and j=3ws. Likewise `s is sound w.r.t. j=s and j=3s.

Proof: Let P be a TSS and T a [3-valued] well-supported model of P . With a straightforward

induction on the structure of proofs if follows that P `ws �) T j= �. The other part goes likewise.

Lemma 1 If P is a TSS and t 6
a
�! a closed literal, then P `x t 6

a
�! i� P `x t 6

a
�! t0 for any term

t0 2 T (�).

Proof: This follows immediately from the observation that a closed literal  denies t 6
a
�! i� it

denies t 6
a
�! t0 for some t0 2 T (�). 2

The following theorem implies that any TSS has a least 3-valued [well-]supported model w.r.t. the
information ordering. This justi�es 3-valued Solutions I and II mentioned earlier.

Theorem 1 Let P be TSS with CT the set of [w]s-provable transitions and PT the set of [w]s-

irrefutable transitions (the ones for which no denying literal is [w]s-provable). Then =
nCT; PT

n
= is a

3-valued [well-]supported model of P . It is even the least one w.r.t. the information ordering.

10



Proof: Note that for � positive P `[w]s � , CT j= �, and for � negative, using Lemma 1,
P `[w]s � , PT j= �. Using this, it is straightforward to check that CT and PT satisfy the
required equations. It follows from the soundness of `[w]s w.r.t. j=3[w]s (Proposition 11) that
=
nCT; PT

n
= is included in any other 3-valued [well-]supported model of P . 2

Corollary 1 `ws is complete w.r.t. j=3ws. Likewise `s is complete w.r.t. j=3s.

Proof: If P j=3[w]s � then by de�nition � certainly holds in all [well]-supported models =
nCT; PT

n
=

(if � is positive then � 2 CT and if � is t 6
a
�! t0 then t

a
�! t0 62 PT ). Thus � certainly holds in

the least such model w.r.t. the information ordering, which is the one of Theorem 1. This implies
P `[w]s �. 2

However, `s and `ws are not complete w.r.t. j=[w]s. A trivial counterexample concerns TSSs like

P2 that have no [well-]supported models. P2 j=[w]s � for any �, which by Proposition 10 is not
the case for `[w]s. A more interesting counterexample concerns the TSS P7, which has only one
[well-]supported model, namely fc

a
�! cg. In spite of this, P7 6`[w]s c

a
�! c and P7 6`[w]s c 6

b
�!.

As argued in the previous section, there is a point in excluding P7 from the meaningful TSSs,
since there is insu�cient evidence for the transition c

a
�! c. Here the incompleteness of `[w]s w.r.t.

j=[w]s comes as a blessing rather than a shortcoming.

3.1 Solutions based on completeness

I will now introduce the concept of a complete TSS: one in which any transition is either provable

or refutable. Just as in the theory of logic there is a distinction between the completeness of a logic
(e.g. �rst-order) and the completeness of a particular theory (e.g. arithmetic), here the completeness

of a TSS is something di�erent from the completeness of a proof-method `x. Let x be s or ws.

De�nition 11 (Completeness of a TSS). A TSS P is x-complete if for any transition t
a
�! t0

either P `x t
a
�! t0 or P `x t 6

a
�! t0. By `complete' I will mean `ws-complete'.

Note that a TSS is [w]s-complete i� its least (and only) 3-valued [well-]supported model is 2-valued.

Solution 6 (Complete with support). A TSS is meaningful i� it is s-complete. The associated

transition relation consists of the s-provable transitions.

Solution 7 (Complete). A TSS is meaningful i� it is (ws-)complete. The associated transition
relation consists of the ws-provable transitions.

In Bol & Groote [3] a method called reduction for associating a transition relation with a TSS

was proposed, inspired by the well-founded models of Van Gelder, Ross & Schlipf [6] in logic
programming. In Section 4 I show that this solution coincides with Solution 7. Solution 7 can

therefore be regarded as a proof theoretical characterization of the ideas from [6, 3]. Solution 6
may be new.

The TSS P6 is complete, but not complete with support. P3 is even complete with support.
The following proposition says that a standard TSS (i.e. without premises t 6

a
�! t0) is complete if

every closed negative standard literal can be proved or refuted.

Proposition 12 A standard TSS P is complete i� for any closed literal t 6
a
�! either P `ws t

a
�! t0

for some closed term t0 or P `ws t 6
a
�!.

11



Proof: \only if": Immediately by Lemma 1.
\if": Suppose P 6`ws t

a
�! t0. In that case any set N = fti 6

ai
�!j i 2 Ig such that P ` N

t
a
�!t0

must

contain a literal tN 6
aN
�! with P 6`ws tN 6

aN
�!. By assumption, for such a literal there is a t0N with

P `ws tN
aN
�! t0N . It follows from De�nition 9, taking K to be the set of all transitions tN

aN
�! t0N

(one for each possible choice of N), that P `ws t 6
a
�! t0. 2

As literals t 6
a
�! t0 do not appear in the antecedents of rules in a standard TSS, their occurrence in

a well-supported proof-tree can be limited to the root. Thus Proposition 12 says that the concept
of a complete TSS can be introduced without considering such literals at all. The reason that these

were introduced nevertheless, is that Proposition 12 does not apply to completeness with support.
A counterexample is given by the TSS Q.

Q t
a
�! t1

t
a
�! t2

t
a
�! t2

R t
a
�! t1

t
a
�! t2

t
b
�! t2

Q 6`s t
a
�! t2 and Q 6`s t 6

a
�! t2, thus this TSS is incomplete with support. However, for any

closed literal u 6
a
�!, either Q `s u

a
�! u0 for some term u0 or Q `s u 6

a
�!. Moreover, even for

the derivation of standard literals, nonstandard literals may be essential in supported proofs. The
validity of R `s t 6

b
�! for instance, can only be established by a proof tree containing t 6

a
�! t2.

Proposition 13 The set of [w]s-provable transitions of a [w]s-complete TSS P is a model of P .

Proof: Let P be an x-complete TSS and T the set of x-provable transitions. Suppose H

t
a
�!t0

is a

closed substitution instance of a rule in P , and T j= H . By De�nition 4 (of T j= H) P `x � for
each positive antecedent � in H , and P `x  for no transition  denying a negative antecedent in

H . Thus, by completeness and Lemma 1, P `x � for any � in H . Hence P `x t
a
�! t0. 2

Proposition 14 The set of [w]s-provable transitions of any TSS is well-supported.

Proof: Let P be a TSS and T the set of x-provable transitions. Suppose T j= t
a
�! t0, i.e.

P `x t
a
�! t0 with t and t0 closed terms. Take a [well-]supported proof of this transition from P ,

and delete all branches above a node labelled with a negative literal. This yields a positive proof
of a rule N

t
a
�!t0

with N a set of closed negative literals. For any literal � in N one has P `x �. By

the consistency of `x P `x � for no closed literal � deying �. This implies T j= �. 2

Proposition 15 Solution 6 [7] is strictly extended by Solution 4 [5].

Proof: Suppose P is [w]s-complete. By Propositions 13 and 14 the [w]s-provable transitions con-
stitute a [well-]supported model of P , and by Proposition 11 this is the only such model. Strictness

follows from the TSS P7, which has an unique [well-]supported model, but is left meaningless by
Solutions 6 and 7. 2

3.2 Advantages of the proof theoretic solutions

Now I will turn to the advantages of the proof theoretic solutions over the model theoretic ones.

At the end of Section 2 I discussed the rôle of rules like c 6
a
�!

c
a

�!c
and c

a
�!c

c
a
�!c

. My suggestion was that

any TSS containing the former rule should be rejected as meaningless, unless there is independent
evidence for a transition c

a
�! t. As shown by counterexample P7 all model theoretic solutions fail

this test. The following proposition shows that the proof theoretic solutions behave better in this
respect.

12



Proposition 16 Let P; P 0 be TSSs that only di�er in a rule c 6
a
�!

c
a
�!c

that is in P but not in P 0. Then
P is [w]s-complete only if P 0 is [w]s-complete and proves the same literals as P , including c

a
�! t

for some term t.

Proof: Suppose P is complete. It cannot be that P `[w]s c 6
a
�!, since in that case one could derive

P `[w]s c
a
�! c, contradicting Proposition 10 (consistency). Thus the label c 6

a
�! does not appear

in any proof of a literal from P . It follows that any literal provable from P is already provable from
P 0. By Lemma 1, since P 6`[w]s c 6

a
�!, P `[w]s c

a
�! t for some term t. 2

I also recommended two acceptable attitudes towards rule like c
a
�!c

c
a
�!c

. Below I show that Solution 7

ignores such rules completely (which is one option), whereas Solution 6 rejects a TSS with such a

rule, unless there is independent evidence for a transition c
a
�! c (the other option).

Proposition 17 Let P; P 0 be TSSs that only di�er in a rule c
a
�!c

c
a
�!c

that is in P but not in P 0. Then

P is ws-complete i� P 0 is ws-complete. If P is ws-complete it proves the same literals as P 0.

Proof: Any application of c
a
�!c

c
a
�!c

can be eliminated from a positive or well-supported proof. 2

Proposition 18 Let P; P 0 be TSSs that only di�er in a rule c
a
�!c

c
a
�!c

that is in P but not in P 0. Then

P is s-complete only if P 0 is s-complete and proves the same literals as P , including c
a
�! c.

Proof: Suppose P is complete. It is easy to eliminate applications of the rule c
a
�!c

c
a
�!c

from any

supported proof, so any literal provable from P is also provable from P 0. Hence P 0 is complete.

Due to the rule c
a
�!c

c
a
�!c

it is impossible to prove c 6
a
�! c from P . Thus P `s c

a
�! c. 2

3.3 Solutions based on soundness

The remainder of this section is devoted to generalizations of the proof theoretic solutions. The �rst
idea is to de�ne the transition system associated to a TSS P just as in Solutions 6 and 7, that is as

the set of [w]s-provable transitions, but without requiring that P is [w]s-complete. This amounts
to taking as the meaning of P the component CT of its least [well-]supported model =nCT; PTn

=. In

general this may yield unsound transition relations (non-models), which is not acceptable. This
happens in the case of P1, P2, P4 and P7. Thus the following restriction is needed.

Solution 8 (Sound with support). A TSS is meaningful if the set of s-provable transitions (this
being the associated transition relation) constitutes a model.

Solution 8b A TSS is meaningful if the set of ws-provable transitions constitutes a model.

Note that by Proposition 14 the transition relation determined by such a TSS is even stable.

Proposition 19 Solution 8b coincides with Solution 7.

Proof: It follows immediatelty from Proposition 13 that a complete TSS is also meaningful in the
sense of Solution 8b. Now let P be a TSS that is meaningful in the sense of Solution 8b and T the

set of ws-provable transitions. Suppose P 6`ws t
a
�! t0 for certain t; t0 2 T (�). Then T 6j= t

a
�! t0:

By the soundness of T every set N of closed negative literals such that P ` N

t
a
�!t0

must contain a

literal � with T 6j= �. The latter means P `ws � for a transition � denying �. Collecting all such �'s
(one for every choice of N) in a set K yields a well-supported proof of t 6

a
�! t0. 2
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Proposition 20 Solution 8 is extended by Solutions 3 (least supported) and 8b (= 7, complete),
and extends Solutions 1 (positive) and 6 (complete with support).

Proof: By Proposition 14 a TSS that is sound with support determines a transition relation that

is a supported model. By Proposition 11 (the soundness of `s w.r.t. j=s), this transition relation is
included in any supported model. Therefore it constitutes the least.

By de�nition, the transition relation T1 determined by a TSS P that is sound with support
is a model of P . The set T2 of transitions that are ws-provable from P is well-supported, by

Proposition 14. By Proposition 8 T1 � T2 and Proposition 5 yields T1 = T2. If follows that T2 is
model too.

If a TSS P is positive, then P `s t
a
�! t0 i� P ` t

a
�! t0. By Proposition 1 the (s-)provable

transitions form a model.
The last statement follows immediately from Proposition 13. 2

3.4 Solutions based on irrefutability

A second (and last) idea is to de�ne the transition system T associated to a TSS P as the set of
x-irrefutable transitions, i.e. T = ft

a
�! t0 j P 6`x t 6

a
�! t0g, in which x is s or ws. This amounts to

taking as the meaning of P the component PT of its least [well-]supported model =
nCT; PT

n
=. This

is consistent with Solutions 6 and 7, as for x-complete TSSs one has P `x t
a
�! t0 , P 6`x t 6

a
�! t0.

Proposition 21 The set of x-irrefutable transitions of any TSS consititutes a model.

Proof: Let P be a TSS and H

t
a
�!t0

be a closed substitution instance of a rule of P . Let T be the
set of x-irrefutable transitions and suppose T 6j= t

a
�! t0, i.e. P `x t 6

a
�! t0. I have to prove that

T 6j= H . In case x = s it follows from Proposition 7 that H contains an x-refutable literal. I
establish the same in case x = ws.

Suppose that P 6`ws u 6
b
�! u0 for each positive antecedent � = (u

b
�! u0) in H . Then for each

such � there is a set N� of ws-irrefutable negative closed literals with P ` N�

�
. Let N be obtained

from H by replacing � by N� for each positive � in H . Then N contains negative literals only.

Since P `ws t 6
a
�! t0 and P ` N

t
a
�!t0

, N must contain a ws-refutable literal. This literal must be in

H , which had to be established.
In case the x-refutable literal in H is positive, say u

b
�! u0, we have P `x u 6

a
�! u0, which

implies T 6j= u
b
�! u0. In case it is negative, say v 6

c
�!, we have 9v0 2 T (�) : P `x v

c
�! v0, which

by the consistency of `x implies 9v0 : P 6`x v 6
c
�! v0, which implies 9v0 : T j= v

c
�! v0 and thus

T 6j= v 6
c
�!. In case of a literal v 6

c
�! v0 just leave out the existential quanti�cations. 2

For the moment I restrict attention to solutions yielding well-supported transition relations.

Solution 9a A TSS is meaningful if the set of s-irrefutable transitions (this being the associated
transition relation) is well-supported.

Solution 9b A TSS is meaningful if the set of ws-irrefutable transitions is well-supported.

Note that by Proposition 21 the transition relation determined by such a TSS is even stable.

Proposition 22 Solution 9a coincides with Solution 6 and 9b with 7.
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Proof: It follows immediatelty from Proposition 14 that the set of x-irrefutable transitions of a
x-complete TSS is well-supported. Now let P be a TSS whose set T of x-irrefutable transitions is
well-supported. Suppose P 6`x t 6

a
�! t0 for certain t; t0 2 T (�). Then T j= t

a
�! t0: By the stability

of T there is a set N of closed negative literals such that P ` N

t
a
�!t0

and T j= N . The latter means
T 6j= v

c
�! v0 for any literal v 6

c
�! v0 in N , which means P `x v 6

c
�! v0. By De�nition 4 and

Lemma 1 the same holds for literals v 6
c
�! in N . Therefore P `x t

a
�! t0. 2

3.5 Attaching meaning to all transition system speci�cations

In this section I will associate a transition relation to arbitrary TSSs. As illustruted by P1 and

P2, such a transition relation can not always be a supported model. I will insist on soundness
(being a model), and thus have to give up support. Hence among the model theoretic solutions

only Solution 2 (least model) can provide inspiration.
Let me �rst decide what to do with P1. Since the associated transition relation should be a

model, it must contain either c
a
�! c or c

b
�! c. For reasons of symmetry I cannot choose between

these transitions, so the only way out is to include both. There is no reason to include even more
transitions. Hence the transition system associated to P1 should be fc

a
�! c; c

b
�! cg.

The simplest model theoretic solution I thought of that gives this result is to de�ne T1 as the
union of all minimal models of a TSS. In many cases this will be the desired transition relation,

but in can happen that T1 is not a model. In that case T2 is de�ned as the union of all minimal
models containing T1, and iterating this procedure until it stabilizes gives the associated transition

relation.
However, in general this solution yields more transition then I would like to see. The transition

system associated to P3 for instance would be fc
a
�! c; c

b
�! cg, whereas fc

a
�! cg appears to be

su�cient. The same would hold after addition of a second premise c 6
a
�! to the only rule in P3.

In case there are other closed terms besides c the associated transition relation will be even larger.

Therefore I will not pursue this idea further, and turn to the proof theoretic solutions instead. The
reason for prefering transition c

a
�! c over c

b
�! c in P3 is not that c

a
�! c is provable|after

addition of the premise c 6
a
�! it is not|but that c

b
�! c is refutable. Therefore I consider:

Solution 9 (Irrefutable). Any TSS is meaningful. The associated transition relation consists of

the ws-irrefutable transitions.

In the case of P1 this yields the desired result fc
a
�! c; c

b
�! cg and likewise P2, P3 and P4 yield

fc
a
�! cg. The transition relation of P7 is the same as the one of P1. This indicates that Solution 9

is inconsistent with Solutions 2{5. I don't consider this to be a problem, as the model theoretic

allocation of a transition relation to P7 was not very convincing.
A variant of Solution 9 is to associate to a TSS the set of its s-irrefutable transitions. This

solution is inconsistent with Solution 1 (positive) as the transition relation of P5 would consist of
c

a
�! c. Note that this transition relation is supported. In order to rule out this anomaly one

would have to restrict the meaningful TSSs to the ones for which the associated transition relation
is well-supported, which yields Solution 9a, that has been shown to coincide with Solution 6.

Another variant is to stick to the ws-irrefutable transitions, but require those to form a sup-

ported model. Note that adding rules x
a
�!y

x
a
�!y

for a 2 A to an arbitrary TSS does not change the

associated transition relation according to Solution 9, but makes this relation supported. Thus
requiring the associated transion relation to be supported is not much of a restriction. Moreover,

as rules like the one above should not make the di�erence between meaningful and meaningless
TSSs, this requirement is not recommended.
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4 Reduction

In this section I show that the method of reduction of Bol & Groote [3] coincides with Solution 7.
In [3] the operations True, Pos and Red� for � an ordinal are de�ned on TSSs without variables.

The operator True deletes all rules with negative premises and thus yields a positive TSS. The
operator Pos deletes all negative premises from rules, and hence also yields a positive TSS. Finally

the operator Red� deletes all rules that

� contain a positive premise that for some � < � is not provable from Pos(Red�(P )) or

� contain a negative premise that for some � < � is refutable from True(Red�(P ))

and in the remaining rules deletes all premises that are

� positive and for some � < � provable from True(Red�(P )) or

� negative and for some � < � not refutable from Pos(Red�(P )).

The idea is that the positive TSSs True(Red�(P )) only prove transitions that surely hold, whereas

the positive TSSs Pos(Red�(P )) prove all transitions that possibly hold. Thus \not provable (or
refutable, see De�nition 3) from Pos(Red�(P ))" means \not provable (resp. refutable) at all". Now

a TSS without variables is said to be positive after reduction if for certain ordinal �, Red�(P ) is
a positive TSS. In that case True(Red�(P )) = Red�(P ) = Pos(Red�(P )) and Red�+1 is a TSS

in which no rule has premises. The transition relation associated to such a TSS consists of the
transitions provable from Red�(P ), which are the rules of Red�+1(P ). The case of TSSs with
variables reduces to the case without variables by taking the set of all closed substitution instances

of the rules in such a TSS.

Lemma 2 Let P be a TSS without variables.

1. For any closed positive literal �: P `ws � ) 9� : True(Red�(P )) ` �, and
2. for any closed negative literal �: P `ws � ) 9� : Pos(Red�(P )) does not refute �.

Proof: With induction on the structure of proofs. Suppose P `ws � by means of a proof p and

the statements are established of �'s obtainable by subproofs. Let H be the set of labels directly
above the root of p. For any literal � 2 H , one has P `ws � by means of a subproof of p. Thus, for

� positive 9� : True(Red�(P )) ` � and for � negative 9� : Pos(Red�(P )) does not refute �. Let
� be a strict upperbound of all those �'s.

Now there are two cases. If � is positive, there is a rule H
�
in P . By construction, all premises of

this rule are deleted in the reduction process, and ;
�
is a rule in Red�(P ). Hence True(Red�(P )) ` �.

Now suppose � is negative and Pos(Red�(P )) refutes �. This means that Pos(Red�(P )) ` 

for  a literal denying �, which implies that Red�(P ) ` N

for N a set of negative closed literals.

Since p is a well-supported proof, a literal � 2 H denies a literal � in N . � must be positive, so
9� < � : True(Red�(P )) ` �, and � is refutable from True(Red�(P )). It follows that at least one

of the rules needed in the proof of N

has been deleted in Red�(P ), contradicting Red�(P ) ` N


.

Hence Pos(Red�(P )) does not refute �. 2

Proposition 23 Let P be a TSS without variables and � a closed literal. Then

Red�(P ) `ws � ) P `ws �:
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Proof: By trans�nite induction on �. Suppose the statement has been established for all ordinals
� < �. By de�nition True(P ) ` t

a
�! t0 ) P `ws t

a
�! t0 and if � is negative and for all  denying

� we have Pos(P ) 6`  then P `ws �. Substituting Red�(P ) for P yields

(i) If � is positive and for some � < � provable from True(Red�(P )) then P `ws �, and

(ii) if � is negative and for some � < � not refutable from Pos(Red�(P )) then P `ws �.

Apply a (nested) induction on the structure of a well-supported proof p of � from Red�(P ). Let

K be the set of labels directly above the root of p. By induction P `ws � for any � 2 K. In case
� is positive, K

�
must be a rule in Red�(P ). Hence for a certain set H of premises K[H

�
must be a

rule in P . The premises in H are deleted in the de�nition of Red�, and thus, by (i) and (ii), are

ws-provable from P . It follows that P `ws �.
Now let � be negative. Suppose P ` N


with  a literal denying � and N a set of closed negative

literals. I have to show that P `ws � for a literal � denying a literal � in N . There are two cases.

� Suppose N contains a literal � that for some � < � is refutable from True(Red�(P )).
This means that True(Red�(P )) ` � with � denying �. Obviously Red�(P ) ` �, hence

Red�(P ) `ws � and by induction P `ws �.

� Suppose N contains no such literal. By induction on the structure of proofs I establish that

P ` N
�
) Red�(P ) ` N

�
for any transition � and � � �. Namely, suppose q is a proof of

N
�
from P . Then for any � 6= � appearing in q we have P ` N

�
by means of a smaller proof,

and hence Red�(P ) ` N
�
for any � � �, which implies Pos(Red�(P )) ` �. It follows that q

employs no rule that is deleted in the construction of Red�(P ) for � � �. Thus, by cutting
the branches in q that sprout from deleted premises in Red�(P ), a proof q0 from Red�(P )

is obtained of a rule N 0

�
with N 0 � N . Therefore Red�(P ) ` N

�
, as claimed. In particular

Red�(P ) ` N

. By the de�nition of a well-supported proof (p), a literal � in K denies one in

N . As remarked already, P `ws �. 2

Theorem 2 A TSS is positive after reduction i� it is complete. In that case the associated tran-

sition relation is the set of ws-provable transitions.

Proof: Without limitation of generality I can restrict attention to TSSs P without variables.
Suppose P is positive after reduction. In that case there is an ordinal � such that the rules

of Red�(P ) have no premises. Thus for any transition t 6
a
�! t0 either Red�(P ) `ws t

a
�! t0 or

Red�(P ) `ws t 6
a
�! t0. By Proposition 23 the same holds for P , which therefore must be complete.

As `ws is sound we have Red�(P ) ` t
a
�! t0 , P `ws t

a
�! t0.

Now suppose P is complete. For each closed literal � with P `ws �, there is an ordinal � given

by Lemma 2. Let � be a strict upperbound of those �'s. I will show that Red�(P ) is positive. Let H
�

be a rule in P and � 2 H a negative premises. In case P 6`ws �, by completeness or Proposition 12

I have P `ws  for a (positive) literal  denying �, i.e. � is ws-refutable from P . By Lemma 2.1
� is refutable from True(Red�(P )) for some � < �. Hence H

�
does not occur in Red�(P ). In case

P `ws �, Lemma 2.2 implies that � will be deleted from H in Red�(P ). 2

It is possible to simplify the de�nition of Red� by deleting only (rules with) negative premises.
I.e. Red� deletes all rules that contain a negative premise that for some � < � is refutable from

True(Red�(P )), and in the remaining rules deletes all negative premises that for some � < � are
not refutable from Pos(Red�(P )). For this version of Red Lemma 2, Proposition 23 and Theorem 2

remain true, with only slightly adapted proofs. Thus this simpli�ed method of reduction gives the
same meaning to TSSs as the original one.
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5 Solutions based on strati�cation

Here I review two methods to assign meaning to transition system speci�cations based on the
technique of (local) strati�cation, as proposed in the setting of logic programming by Przymusinski

[11]. This technique was tailored for TSSs by Groote [8].

De�nition 12 (strati�cation). A function S : (T (�) � A � T (�)) ! �, where � is an ordinal,
is called a strati�cation of a TSS P = (�; R) if for every rule H

�
2 R and every substitution

� : V ! T (�) it holds that

for all positive literals � 2 H : S(�(�)) � S(�(�)) and
for all transitions � denying a negative literal in H : S(�(�))< S(�(�)).

A strati�cation is strict if also for all positive literals � 2 H : S(�(�)) < S(�(�)).

A TSS with a (strict) strati�cation is said to be (strictly) strati�ed.

In a strati�ed TSS no transition depends negatively on itself. A transition relation is associated
to such a TSS one stratum S� = f� j S(�) = �g at a time. A transition in S0 is present i� it is

provable in the sense of De�nition 3, and as soon as one knows the about validity of all transitions
� with S(�) < � for an ordinal �, one knows the validity of all negative premises that could occur

in a proof of a transition in stratum �, which determines the validity of those transitions.

De�nition 13 Let P be a TSS with a strati�cation S with range �. The transition relations T�
with � < � are de�ned by trans�nite recursion through

T� = f� j S(�) = � ^ P ` H
�
for a set of closed literals H with

[
�<�

T� j= Hg:

The transition relation TP;S associated with P (and based on S) is
S
�<� T�.

Note that each transition in such a set H or denying a literal in H is in a lower stratum than �.

Hence
S
�<� T� j= H i� TP;S j= H . In Bol & Groote [3] T� is de�ned by T� = f� j P� ` �g

where P� is the set of all rules H�

�
obtained from closed substitution instances H

�
of rules from P

with S(�) = � and
S
�<� T� j= H �H�. Here H� = f� 2 H j � positive ^ S(�) = �g.

Proposition 24 De�nition 13 agrees with the de�nition in [3].

Proof: Suppose � 2 T� according to De�nition 13. Let p be a closed proof of H
�
where H is a set of

literals with
S
�<� T� j= H . Let p0 be obtained from p by deleting all branches above nodes labelled

with a transition � with S(�) < �. Then p0 is a proof from P of a rule H 0

�
with

S
�<� T� j= H 0. All

rules used in p0 are also rules in P�, except that there the premises from H 0 are deleted. It follows

that P� ` �. The other direction is straightforward. 2

The de�nition in [3] can in turn be seen to coincide with the original one in Groote [8].

Proposition 25 If P is a TSS with strati�cation S and � a closed literal, then P `ws� i� TP;S j= �.

Proof: De�ne S(�) for � negative to be the least strict upperbound of fS(�) j � denies �g. Under

this de�nition the two conditions in De�nition 12 can be combined into

for all literals � 2 H : S(�(�)) � S(�(�)):
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For �; � closed write � < � if either S(�) < S(�) or S(�) = S(�) with � negative and � positive.
\if": With induction on <. Suppose TP;S j= � and the statement has been obtained for literals

� with � < �. If � is positive then � 2 TS(�) and there is a set H of closed literals with P ` H
�
andS

�<S(�) T� j= H , which implies TP;S j= H . As � < � for each � 2 H , P `ws H and thus P `ws �.
In case � is negative, then for each transition  that denies � one has TP;S 6j= , i.e.  62 TS().

Hence, each set H of closed literals with P ` H

contains a literal � with

S
�<S() T� 6j= �. This

implies the existence of a literal � denying � such that
S
�<S() T� j= �. This holds in particular

for sets H only containing negative literals, and in such a case � < � <  < � and TP;S j= �, so
P `ws �. This for every choice of  and a negative H . De�nition 9 yields P `ws �.

\only if": Suppose P `ws � with � negative. Then for any transition � denying � Proposition 10
gives P 6`ws �, and by \if" TP;S 6j= �. By De�nition 4 this implies TP;S j= �. Similarly suppose

P `ws t
a
�! t0. Then P 6`ws t 6

a
�! t0, so by \if" TP;S 6j= t 6

a
�! t0. By de�nition this implies

TP;S j= t
a
�! t0. This proof bene�ts highly from the consideration of literals of the form t 6

a
�! t0. 2

Proposition 26 Let P be a TSS with two strati�cations S and S0. Then TP;S = TP;S0 .

Proof: This is Lemma 2.5.4 in [8]. Here it is an immediate corollary of Proposition 25. 2

The last proposition says that for a strati�ed TSS the choice of the strati�cation in the construction
of the transition relation is immaterial. This enables the following solution to (1).

Solution 10 (Strati�ed) [11, 8]. A TSS is meaningful i� it is strati�ed. The associated transition
relation is given in De�nition 13.

Proposition 27 Solution 10 strictly extends Solution 1 and is strictly extended by Solution 7.

Proof: If P is positive take S(�) = 0 for all �. This is a strati�cation and TP;S = T0 = f� j P ` �g.
The second statement is an immediate consequence of Proposition 25, using that for any transition

t
a
�! t0 either T j= t

a
�! t0 or T j= t 6

a
�! t0.

Strictness follows from P3 and P6, which are strati�ed but not positive, and P8 below, which is

complete but not strati�ed. 2

P8 c
a
�! c

c 6
a
�!

c
a
�! c

Solution 11 (Strictly strati�ed) [8]. A TSS is meaningful i� it is strictly strati�ed. The associated
transition relation is as in De�nition 13, but with `P ` H

�
' replaced by `H

�
is a closed substitution

instance of a rule of P '.

Proposition 28 Solution 11 is strictly extended by Solutions 10 and 6 (complete with support).

Proof: Note that TP;S in De�nition 13 would not change if P ` H
�
were replaced by `H

�
is provable

by means of a proof in which for all transitions � labelling a non-leaf we have S(�) = S(�) = �'.
This follows from the �rst four sentences in the proof of Proposition 24. In the special case that S

is strati�ed, this modi�ed de�nition agrees with the one proposed in Solution 11, which establishes
the consistency of Solutions 10 and 11.

Just like in Proposition 25 one can prove that if P is a TSS with a strict strati�cation S and �

is a closed literal, then P `s �, TP;S j= �. This implies that Solution 6 extends Solution 11.

Strictness follows from P5 and P6, which are strati�ed but not strictly so, and P8, which is
complete with support but not strictly strati�ed. 2
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6 Compositionality

In concurrency theory it is common practice to group together representations of concurrent systems
in equivalence classes. This is done when these representations are thought to represent the same

system, or at least systems whose essential properties are the same. As system representations
often closed terms over some signature are concidered. The equivalence relation employed is then

formulated in terms of the transition relation between closed terms obtained from a given TSS over
that signature. In order to allow modular reasoning it is important to use an equivalence relation

that is a congruence. This means that the meaning (the associated equivalence class) of a closed
term f(t1; :::; tn) is completely determined by the meaning of the subterms t1; :::; tn. The most

popular equivalence relation is bisimulation equivalence. In Bol & Groote [3] it was established
that for complete TSSs whose rules satisfy a syntactic criterion (the well-founded ntyft/ntyxt format,

developed earlier in [9, 8]), bisimulation equivalence is guaranteed to be a congruence, and so are
many other equivalence relations. Moreover, a counterexample was given againts the extension of
this result to TSSs that are meaningful according to Solution 5 (stable). Of course the example

concerned an incomplete TSS in well-founded ntyft/ntyxt format with a unique stable transition
relation for which bisimulation is not a congruence. This TSS also has a unique supported model,

and thus shows that the congruence theorem does not generalise to Solution 4 either. Here I show
that also Solution 9|or any other proof theoretic solution for that matter|does not lend itself to

such a generalisation, indicating that Solution 7 (complete) is the most general one for which this
nice result holds. My counterexample concerns the following TSS S over a signature with constants

c, d and e and a unary function f .

S c
a
�! f(c)

x
a
�! y 6

a
�!

f(x)
a
�! c

d
a
�! e

This TSS is surely in the well-founded ntyft/ntyxt format. It has a unique 3-valued stable transition
relation, namely

=
nfc

a
�! f(c); d

a
�! e; f(d)

a
�! cg; fc

a
�! f(c); d

a
�! e; f(d)

a
�! c; f(c)

a
�! cgn=:

Thus the transitions c
a
�! f(c), d

a
�! e and f(d)

a
�! c are ws-provable, and with the exception

of f(c)
a
�! c, all other transitions are ws-refutable. Note, by the way, that for this TSS there

is no di�erence between s-provability and ws-provability, or between s- and ws-refutability. This
can be veri�ed directly, or through Proposition 9. As the 3-valued relation above is not 2-valued,

the TSS is incomplete (has no meaning according to Solution 7). It also has no meaning under
Solution 5 (stable). The 3-valued transition relation constitutes the most acceptable interpretation
of S. If we insist on 2-valued relations, the proof theorectic approach o�ers only one choice, namely

whether or not to include the transition f(c)
a
�! c. Each of these possibilities yields a transition

relation for which bisimulation is not a congruence, and if fact no equivalence relation used in

concurrency theory is a congruence. The only properties of such equivalence relations needed here,
is that systems for which the reachable parts of the transition relation are isomorphic are equivalent,

and a system without outgoing transitions (a deadlock) cannot be equivalent to a system with an
outgoing a-transition. Solution 9 (irrefutable) includes the transition f(c)

a
�! c. Now c and f(c)

are equivalent (the reachable part of the transition relation from each of them is an a-loop), but
f(c) and f(f(c)) are inequivalent (f(f(c)) deadlocks). Taking only the provable transitions (instead

of the irrefutable ones) would exclude the transition f(c)
a
�! c. In that case c and d are equivalent,

but f(c) and f(d) are not.
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7 Conclusion

I presented 11 answers to the question which transition system speci�cations are meaningful and
which transition relations they specify. The relations between these 11 solutions are indicated

in Figure 2. There S1
- S2 indicates that solution S2 extends S1, as de�ned in Section 1, and

positive (1)
�
�
�
�
�
�
���

A
A
A
A
A
A
AAU

A
A
A
A
A
A
AAU

strati�ed (10)

?
complete (7)

?
stable (5)

strictly strati�ed (11)
����������������

@
@
@@R

complete with support (6)
��������

?
unique supported (4)

?
least supported (3)

sound with support (8)
��������

least model (2)

B
B
B
B
B
B
B
B
B
B
B
BN

#

#
��

��
#

#

HHHHHHHj
irrefutable (9)

Figure 2: Relations between Solutions 1{11

S1#S2 indicates that S1 and S2 are inconsistent. By the de�nition of extension and consistency,

S1
- S2

- S3 implies S1
- S3 (transitivity) and S1 # S2

- S3 implies S1#S3 (conict heredity).
All extensions are strict and there are no more extensions or inconsistencies than indicated in
the �gure (or derivable by transitivity and conict heredity). The arrows in Figure 2 have been

established in Propositions 1, 27, 28, 15 and 20 and in the third sentence of Section 3.4, whereas
the remaining consistency results follow from Proposition 6. Strictness, the absence of further

extensions and the inconsistencies follow from the information collected in Table 1, which indicates
which of the TSSs P1{P8 given in this paper are meaningful according to each of the solutions. A

`�' indicates that the TSS is meaningless, a `+' that it has the same meaning as given by Solution 9,
and a `�' that is has a meaning di�erent from the one given by Solution 9.

Solution P1 P2 P3 P4 P5 P6 P7 P8

1 positive � � � � + � � �

2 least � + � + + � � +

3 least supported � � + � + � � +
4 unique supported � � + � � � � +

5 stable � � + � + + � +
6 complete with support � � + � � � � +

7 complete � � + � + + � +
8 sound with support � � + � + � � +
9 irrefutable + + + + + + + +

10 strati�ed � � + � + + � �

11 strictly strati�ed � � + � � � � �

Table 1: Counterexamples
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Logic programming

Everything said in this paper about transition system speci�cations applies equally well to propo-

sition system speci�cations (PSSs). These are obtained by replacing the set A of actions by a set

of predicate declarations (p; n) with p 62 V a predicate symbol (di�erent from any function symbol)
and n 2 IN. A literal is then an expression p(t1; . . . ; tn) or :p(t1; . . . ; tn) with ti 2 TT(�). From here

on all concepts are de�ned as before. Note that a logic program is a PSS obeying some �niteness
conditions. Hence everything said applies to logic programming too.

Note that a PSS can be seen as a special kind of TSS. First of all an n-ary predicate p can
be expressed in terms of an n-ary function fp and the unary predicate holds, namely by de�ning

holds(fp(t1; :::; tn)) as p(t1; :::; tn). Next, if p is a unary predicate then p(t) can be encoded as the
transition t

p
�! 0, with 0 a constant introduced specially for this purpose (cf. Verhoef [13]).

Likewise a TSS can be encoded as a PSS by considering
a
�! to be a binary predicate for any

a 2 A, or, as in Bol & Groote [3], �! as a single ternary predicate with a 2 A interpreted as
a term. A negative literal t 6

a
�! t0 denotes :(t

a
�! t0) and t 6

a
�! can be seen as an abbreviation

of the (in�nite) conjunction of t 6
a
�! t0 for t0 2 TT(�). These translations preserve all concepts of

this paper. In order to avoid the in�nite conjunction, Bol & Groote introduce the unary version of
a
�! (or actually the binary version of �!) as a separate predicate, linked to the binary (ternary)

version by the rule
x

a
�! y

x
a
�!

, implicitly present in every TSS. As shown in anomaly A.3 in [3] this

translation does not preserve Solution 2 (least model). However, it does preserve the other concepts.
In this paper I do not touch issues that are relevant in logic programming, but not manifestly

so for transition system speci�cations. For these, and many more references, see Apt & Bol [1].

Evaluation of the solutions

Solution 1 is the classical interpretation of TSSs without negative premises, and Solutions 2 (least

model) and 3 (least supported model) are two straightforward generalisations. Solution 4 (unique
supported model) stems from Bloom, Istrail & Meyer [2], where it was used to ascertain that

TSSs in their so-called GSOS format are meaningful (such TSSs have unique supported models).
My counterexample P4 shows that Solution 4 yields contraintuitive results and is therefore not

suited to base such a conclusion on. Fortunately, TSSs in the GSOS format are even strictly
strati�ed, which is one of the most restrictive criteria for meaningful TSSs considered. Solution 3

can be rejected on the same grounds as Solution 4 and Solution 2 is not very useful because it
leaves most TSSs with negative premises meaningless (cf. P3).

Solution 10 (strati�ed) stems from Przymusinski [11] and is the perhaps the best known

solution in logic programming. A variant that also satis�es the criterion of Solution 4 is Solution 11
(strictly strati�ed), proposed by Groote [8].

Solution 5 (unique stable transition relation) stems from Gelfond & Lifschitz [7] and is
generally considered to be the most general acceptable solution available. Counterexample P7

however suggests that this solution may yield debatable results, although to a lesser extent than
Solutions 3 and 4.

Solution 7 (well-founded, positive after reduction, complete) is essentially due to Van Gelder,
Ross & Schlipf [6]. It is the most general solution without undesirable properties. In Bol &

Groote [3], where this solution has been adapted to TSSs, an example in the area of concurrency
is given (the modelling of a priority operator in basic process algebra with abstraction) that can
be handled with Solution 7, but not with Solution 10. This example can neither be handled by

Solution 8, showing that the full generality of Solution 7 can be useful in applications.
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My presentation of Solution 7 di�ers so much from the original one [6, 3] that I gave it a new
name. It is based on a concept of provability incorporating the notion of negation as failure of
Clark [4]. Theorem 2 establishes the correspondence between my version and the one from [6, 3],

whereas Theorem 1 establishes the correspondence with the work of Przymusinski [12]. I think
that my proof-theoretic characterization of Solution 7, and to some extent also the one of Solution 5,

can be useful in applications, among others because it allows induction on proofs. The following
proposition on transition equivalence of TSSs for instance follows immediately from the de�nitions

given here, whereas it would be nontrivial when starting from the original de�nitions. As a matter
of fact, I need this proposition in another paper, and the search for it inspired me to write this one.

Proposition 29 Let P and P 0 be TSSs over the same signature, such that P ` N
�
, P 0 ` N

�
for

any closed action rule N
�
with only negative antecedents. Then

� A transition relation T is stable for P i� it is stable for P 0. Hence P is meaningful according

to Solution 5 i� P 0 is, and in that case they determine the same transition relation.

� P `ws � , P 0 `ws � for any closed literal �. Hence P is meaningful according to Solution 7
i� P 0 is, and in that case they determine the same transition relation.

� According to Solution 9 P and P 0 are meaningful and determine the same transition relation.

Solutions 6 (complete with support), 8 (sound with support), and 9 (irrefutable) may be new.

The �rst two are based on a notion of provability that is somewhat simpler to apply, and only
incorporates the notion of negation as �nite failure [4]. Moreover, Solution 6 only yields unique

supported models, like Solution 11 (and 4). Solution 9 appears to be the best way to associate a
transition relation to arbitrary TSSs. However, it has the disadvantage that it sometimes yields

unstable transition relations, and even unsupported models. A good example from concurrency
theory of an incomplete TSS is Basic Process Algebra with a priority operator, unguarded recursion
and renaming, as de�ned in Groote [8]. This TSS has no supported models. Solution 9 does give a

meaning to this TSS, but it appears rather arbitrary and not very useful. In particularly, recursively
de�ned processes do no longer satisfy their de�ning equation, which makes algebraic reasoning

virtually impossible. Also the absence of a congruence theorem as demonstrated in Section 6 is a
bad property of this Solution. Hence Solution 7 (complete) remains the most general completely

acceptable answer to (1). In case 3-valued solutions are allowed, this solution generalises to all
transition system speci�cations in the shape of the well-founded semantics.

Specifying transition relations

This paper dealt with the problem of associating a transition relation to a given TSS. A related

problem is to �nd a good TSS to specify a given transition relation. Here \good" could be something
like \�nite" or \in ntyft/ntyxt format". Without such a restriction the transition relation itself can

be used as TSS, regarding every transition as a rule without premises. The problem can be further
parametrised by specifying the desired transition relation up to a given notion of equivalence only.

In this light the solutions of Figure 2 can be compared also on their expressiveness, i.e. are there

transition relations that can be speci�ed by a good TSS that is meaningful according to solution S,

but not by one that �ts in solution S0? This issue is left for future research.
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