
Ntyft/ntyxt Rules Reduce to Ntree Rules

Wan Fokkink�

Department of Computer Science

CWI

Amsterdam, The Netherlands

wan@cwi.nl

Rob van Glabbeeky

Computer Science Department

Stanford University

Stanford, CA 94305, USA

rvg@cs.stanford.edu

Groote and Vaandrager introduced the tyft/tyxt format for Transition System Speci�cations
(TSSs), and established that for each TSS in this format that is well-founded, the bisimulation
equivalence it induces is a congruence. In this paper, we construct for each TSS in tyft/tyxt
format an equivalent TSS that consists of tree rules only. As a corollary we can give an a�rmative
answer to an open question, namely whether the well-foundedness condition in the congruence
theorem for tyft/tyxt can be dropped. These results extend to tyft/tyxt with negative premises
and predicates.

1 Introduction

A current method to provide process algebras and speci�cation languages with an operational

semantics is based on the use of transition systems, advocated by Plotkin [15]. Given a set of

states, the transitions between these states are obtained inductively from a Transition System

Speci�cation (TSS), which consists of transition rules. Such a rule, together with a number of

transitions, may imply the validity of another transition.

We will consider a speci�c type of transition systems, in which states are the closed terms

generated by a single-sorted signature, and transitions are supplied with labels. A great deal of the

operational semantics of formal languages in Plotkin style that have been de�ned over the years,

are within the scope of this format.

To distinguish such labelled transition systems, many di�erent equivalences have been de�ned,

the �nest of which is the strong bisimulation equivalence of Park [14]. In general, this equivalence

is not a congruence, i.e. the equivalence class of a term f(p1; :::; pm) modulo strong bisimulation

is not always determined by the equivalence classes of the terms pi. However, congruence is an

essential property, for instance, to �t the equivalence into an axiomatic framework.

Several formats have been developed which ensure that the bisimulation equivalence induced

by a TSS in such a format is always a congruence. A �rst proposal was made by De Simone [16],

which was generalized by Bloom, Istrail and Meyer [3] to the GSOS format. Next, Groote and

Vaandrager [12] introduced the tyft/tyxt format, and proved a congruence theorem for TSSs in

this format that satisfy a well-foundedness criterion.

�Current a�liation: Department of Philosophy, Utrecht University, Utrecht, The Netherlands.
yThis work was supported by ONR under grant number N00014-92-J-1974.

1

Up to now, it has been an open question whether or not well-foundedness is an essential ingredi-

ent of this congruence theorem. The requirement popped up in the proof, but no counter-example

was found to show that the theorem breaks down if well-foundedness were omitted from it. In this

paper, we prove that the congruence theorem does hold for general TSSs in tyft/tyxt format, i.e.

that the requirement of well-foundedness can be omitted.

In fact, we will establish a stronger result, namely that for each TSS in tyft/tyxt format, there

is an equivalent TSS which consists of `tree rules' only. A tree rule is a well-founded rule of the

form

fzi
ai�! yi j i 2 Ig

f(x1; :::; xm)
a
�! t

where the yi and the xj are distinct variables and are the only variables that occur in the rule, the

zi are variables, f is a function symbol, and t is any term. Using terminology from [12], we can say

that a tree rule is a pure xyft rule. Since tree rules are well-founded, the reduction of tyft/tyxt rules

to tree rules immediately implies that the congruence theorem concerning the tyft/tyxt format can

do without well-foundedness.

A major advantage of the main theorem is that it facilitates reasoning about the tyft/tyxt

format. Because often it is much easier to prove a theorem for TSSs in tree format than for TSSs in

tyft/tyxt format. For example, this is the case with the congruence theorem itself. Another striking

example consists of Theorems 8.6.6 and 8.9.1 in [12]. With our result at hand, the complicated

proof of the second theorem can be skipped, because now the second theorem follows from the �rst

one.

Furthermore, the removal of well-foundedness from the congruence theorem for tyft/tyxt in-

creases the convenience of applying this theorem, since the user no longer has to recall and check

the complicated well-foundedness criterion.

The main result of this paper was obtained independently by the authors in [9] and [5]. Our

present proof improves the ones envisioned in [9] and given in [5]. It makes heavy use of a standard

result from uni�cation theory, which says that for each set of equations that is uni�able, there

exists an idempotent most general uni�er. In uni�cation theory, this result is proved for �nite sets

of equations, and for substitutions that have a �nite domain. However, we will need the result in a

setting which does not satisfy these �niteness constraints. A proof of the uni�cation result in the

in�nite case can be found in [6]. Here we prove the special case of this result that is needed for our

main theorem.

Groote [11] added negative premises to tyft/tyxt, resulting in the ntyft/ntyxt format (that also

generalizes the GSOS format of [3]), and proved that the congruence theorem extends to certain

well-founded TSSs in ntyft/ntyxt format. We will show that the reduction of tyft/tyxt rules to

tree rules can be lifted to the positive part of rules in ntyft/ntyxt format, but a simple example

learns that this reduction cannot be applied to the negative premises. Again, we will �nd that the

congruence theorem concerning the ntyft/ntyxt format can do without well-foundedness.

Verhoef [17] de�ned the panth format, which adds predicates to ntyft/ntyxt, and proved that

the congruence theorem holds for well-founded TSSs in panth format. We will show that our results

extend to the panth format too.

Acknowledgments. Catuscia Palamidessi and Fer-Jan de Vries noted the link with uni�cation.

Frits Vaandrager and Chris Verhoef provided useful comments.

2

2 Preliminaries

This section contains the basic de�nitions.

2.1 The signature

In the sequel we assume the existence of an in�nite set of variables V .

De�nition 2.1 A (single-sorted) signature � consists of a set of function symbols, disjoint with

V , together with their arities.

The collection T(�) of (open) terms over � is de�ned as the least set satisfying:

{ each variable from V is in T(�),

{ if f 2 � has arity n, and t1; :::; tn 2 T(�), then f(t1; :::; tn) 2 T(�).

A term is called closed if it does not contain any variables.

In the sequel we assume a �xed signature �.

A substitution is a mapping � : V ! T(�). Each substitution is extended to a mapping from

terms to terms in the standard way. As usual, �� denotes the composition of the substitutions �

and �, in which � is applied �rst.

2.2 Transition system speci�cations

In the sequel we assume the existence of a set of labels A.

De�nition 2.2 For each label a, the expression
a
�! denotes a binary relation on terms. A pair

t
a
�! t0 is called a transition. A transition is closed if it involves closed terms only.

De�nition 2.3 A (transition) rule r is an expression of the form H=c, with H a collection of

transitions, called the premises (or the hypotheses), of r, and c a transition, called the conclusion

of r. In the sequel, concl(r) will denote the conclusion of the rule r.

A Transition System Speci�cation (TSS) is a collection of transition rules.

A TSS is small if for each of its rules, the cardinality of its collection of premises does not

exceed the cardinality of the set V of variables.

The notion of substitution extends to transitions and rules as expected.

De�nition 2.4 A proof structure is a tuple (B; r; �), where

{ B is a collection of transition rules which do not have any variables in common,

{ r 2 B,

{ � is an injective mapping from Bnfrg to the collection of premises of rules in B, such

that each chain b0; b1; b2; ::: in B with �(bi+1) a premise of bi is �nite.

In the sequel, top(B; r; �) will denote the collection of premises of rules in B that are outside the

image of �.

Write (B0; r0; �0) < (B; r; �) i� B0 � B, �0 = � n(B0nfr0g), top(B0; r0; �0) � top(B; r; �) and

there is a chain r = b0; b1; :::; bn = r0 with n > 0 and �(bi+1) a premise of bi.

Note that < is a partial well-order, i.e. any chain (B0; r0; �0) > (B1; r1; �1) > (B2; r2; �2) > � � � is
�nite. Hence we may apply induction w.r.t. <.

3

De�nition 2.5 A substitution � matches with a proof structure (B; r; �) if �(concl(b)) = �(�(b))

for each b 2 Bnfrg.
A rule H=c is provable from a small TSS R if c 2 H or there exists a proof structure (B; r; �)

where each rule in B is in R modulo �-conversion (bijective renaming of variables), and a substi-

tution � that matches with (B; r; �), such that �(top(B; r; �))� H and �(concl(r)) = c.

Example 2.6 (A fragment of CCS with replication operator). Let A be a set of names.

The set �A of co-names is given by �A = f�a j a 2 Ag, and L = A [�A is the set of visible actions.

The function �� is extended to L by declaring ��a = a. Furthermore A = L[f�g is the set of actions.

Note that �� is unde�ned. The language CCS has a constant 0, a unary operator a for a 2 A, binary

operators + and j, and a few constructs that are omitted here. In addition we consider the unary

replication operator !. The transition system speci�cation CCS! is given by the transition rules

below. These rules are actually schemata, where a ranges over A.

ax
a
�! x

x
a
�! x0

x+ y
a
�! x0

y
a
�! y0

x+ y
a
�! y0

x
a
�! x0

x j y
a
�! x0 j y

x
a
�! x0; y

�a
�! y0

x j y
�
�! x0 j y0

y
a
�! y0

x j y
a
�! x j y0

!x j x
a
�! x0

!x
a
�! x0

Here follows an example of a proof structure (B; r; �), together with a matching substitution �. The

rule on the bottom is r, and � is indicated by the arrows. Top(B; r; �) = fw
�a
�! w0g.

!z j z
�
�! z0

!z
�
�! z0

?

v
a
�! v0 w

�a
�! w0

v j w
�
�! v0 j w0

�
�	

x
�a
�! x0

y + x
�a
�! x0

@
@R

!u j u
a
�! u0

!u
a
�! u0

?

t
a
�! t0

s j t
a
�! s j t0

?

q
a
�! q0

q + r
a
�! q0

?

ap
a
�! p

�(p) = 0

�(q) = a0

�(q0) = 0

�(r) = x

�(s) = !(a0 + x)

�(t) = a0 + x

�(t0) = 0

�(u) = a0 + x

�(u0) = !(a0 + x) j 0
�(v) = !(a0 + x)

�(v0) = !(a0 + x) j 0
�(w) = a0 + x

�(w0) = x0

�(x) = x

�(x0) = x0

�(y) = a0

�(z) = a0 + x

�(z0) = !(a0 + x) j 0 j x0

This structure and � demonstrate that the rule
x

�a
�! x0

!(a0 + x)
�
�!!(a0 + x) j 0 j x0

is provable from CCS!.

4

We say that a transition t
a
�! t0 is provable from R, if the rule with no premises and conclusion

t
a
�! t0 is provable from R. The transition relation �!R determined by a TSS R is the set of all

closed transitions provable from R.

De�nition 2.7 Two TSSs are transition equivalent if they determine the same transition relation.

Our notion of provability is chosen in such a way that we can easily obtain our main result. In

order to show that it coincides with the notions of provability found elsewhere in the literature, we

need the following de�nition.

De�nition 2.8 The provable closure of a TSS R is the smallest set R` of rules such that

� if c 2 H then H=c 2 R`, and

� if K=c 2 R and H=�(d) 2 R` for d 2 K and some substitution �, then H=�(c) 2 R`.

For notions of provability found elsewhere in the literature (e.g. [2, 4, 5, 9, 10, 11, 12, 17]) the

following proposition is easily obtained. By establishing the same for our notion, it follows that

it coincides with the others. The proposition only holds for small TSSs, but this restriction will

turn out to be inessential for our main result. Moreover, every TSS can be made `small' by adding

su�ciently many variables.

Proposition 2.9 A rule H=c is provable from a small TSS R i� it belongs to R`.

Proof. \Only if": The case c 2 H is trivial. The other case is established by induction on the

partial well-order < between proof-structures. Let H=�(c) be provable from R by means of a proof

structure (B;K=c; �) and a matching substitution �. Assume that any formula provable by means

of a smaller proof structure belongs to R`. Then H=�(d) 2 R` for any d 2 K. It follows that

H=�(c) 2 R`.

\If": By induction on the construction of R`. The induction base, c 2 H , is again trivial. Now

suppose K=c 2 R andH=�(d) is provable from R for d 2 K and some substitution �. Let (Bd; rd; �d)

be proof structures with matching substitutions �d that establish H=�(d) for d 2 K. Since there

exist at least as many variables as there are premises in K, the variables in these proof structures

can be renamed to become all di�erent, and di�erent from the ones in K=c, and a substitution �

can be constructed that matches with each of these proof structures so as to yield the corresponding

rule, and equals � on the variables in K=c. Now (
S
d2K Bd [fK=cg; K=c;

S
d2K �d [�0), where �0

is the function that sends rd to d for d 2 K, is a proof structure that matches with �, yielding

H=�(c). 2

The proof of the following lemma is straightforward and left to the reader.

Lemma 2.10 If all the rules in a TSS S are provable from a TSS R, then all the rules that are

provable from S are also provable from R.

2.3 Strong bisimulation

De�nition 2.11 Assume a TSS R. Two closed terms p0; q0 are R-bisimilar, notation p0 $R q0,

if there exists a symmetric binary relation B on closed terms such that

{ p0Bq0,

{ if pBq and p
a
�!R p0, then there is a closed term q0 such that q

a
�!R q0 and p0Bq0.

5

2.4 The tyft/tyxt format

In general, bisimulation equivalence it is not a congruence, i.e. it may be the case that pi $R qi for

i = 1; :::; n, but f(p1; :::; pn) and f(q1; :::; qn) are not R-bisimilar. Therefore, Groote and Vaandrager

[12] have introduced the tyft/tyxt format. If a TSS is in this format, and if it satis�es a well-

foundedness criterion, then the bisimulation it induces is a congruence.

De�nition 2.12 A transition rule is a tyft rule if it is of the form

fti
ai�! yi j i 2 Ig

f(x1; :::; xm)
a
�! t

where the xk and the yi are distinct variables (and I is some, not necessarily �nite, index set).

Similarly, a tyxt rule is of the form

fti
ai�! yi j i 2 Ig

x
a
�! t

where x and the yi are distinct variables. A TSS is said to be in tyft/tyxt format if it consists of

tyft and tyxt rules only.

The TSS CCS! from Example 2.6 is in tyft/tyxt format. All its rules are tyft rules. Note that any

TSS in tyft/tyxt format is `small' in the sense of De�nition 2.2.

De�nition 2.13 Assume a set fti
ai�! t0i j i 2 Ig of transitions. Its `dependency graph' is a

directed graph, with the collection of variables V as vertices, and with as edges the collection

fhx; yi j x and y occur in ti and t0i respectively, for some i 2 Ig:

A set of transitions is called well-founded if any backward chain of edges in its dependency graph is

�nite. A transition rule is well-founded if its collection of premises is so, and a TSS is well-founded

if all its rules are so.

Example 2.14 Examples of sets of transitions that are not well-founded are:

{ fy
a
�! yg,

{ fy1
a
�! y2; y2

b
�! y1g,

{ fyi+1
a
�! yi j i = 0; 1; 2; :::g.

The following congruence theorem originates from [12].

Theorem 2.15 If a TSS R is well-founded and in tyft/tyxt format, then $R is a congruence.

In Section 4 we will see that the requirement of well-foundedness in this theorem can be dropped.

6

3 Uni�cation

A standard result from logic programming says that if a �nite collection E of equations between

terms is uni�able, then there exists a uni�er �0 for E such that each uni�er for E is also a uni�er

for �0. This result follows from the well-known Martelli-Montanari algorithm [13]. See [1] for the

basic de�nitions and for an introduction to the �eld of logic programming and uni�cation.

In Fokkink [6], this theorem is generalized to the case where E may be in�nite. The �rst

property in Lemma 3.2, which will be vital in the proof of the main theorem, is a corollary of this

uni�cation result. However, we present a full proof of the lemma, because we will need two extra

properties of the uni�er �0, which follow most easily from its construction. Also, the proof of this

lemma is much simpler than the proof of the stronger uni�cation result in [6].

De�nition 3.1 A substitution � is a uni�er for a substitution � if �� = �. In this case, � is called

uni�able.

Lemma 3.2 If a substitution � is uni�able, then there exists a uni�er �0 for � with the following

properties:

1. Each uni�er for � is also a uni�er for �0.

2. If �(x) = x, then �0(x) = x.

3. If �n(x) is a variable for all n � 0, then �0(x) is a variable.

Proof. Let W denote the collection of variables x for which �n(x) is a variable for all n � 0. First,

we de�ne the restriction �00 of �
0 to W .

De�ne a binary relation � on W by x � x0 if �m(x) = �n(x0) for certain m and n. Note that �
is an equivalence relation. Under �00, we contract the elements of each equivalence class C � W to

one variable from this class as follows.

{ If �(x0) = x0 for some x0 2 C, then for all x 2 C �n(x) = x0 for some n. This implies

�(x) 6= x for x 2 Cnfx0g, so x0 is determined uniquely. Put �00(x) = x0 for x 2 C.

{ If �(x) 6= x for all x 2 C, then just pick some x0 2 C and put �00(x) = x0 for x 2 C.

Put �00(y) = y for y 62 W .

We construct �0(y) as follows. By assumption, � allows a uni�er �. Since �� = �, it follows

that ��n = � for n � 0. Clearly, the size of each �n(y) (that is, the number of function symbols it

contains) is smaller or equal than the size of ��n(y) = �(y). Moreover, each term �n+1(y) has at

least the size of �n(y). Since the sizes of the �n(y) cannot grow beyond the size of �(y), it follows

that from a certain natural number N(y) onwards, the terms �n(y) all have the same size. Hence,

for n � N(y), �n+1(y) is obtained from �n(y) by replacing variables by variables. This means that

all variables in �N(y)(y) are in W . Put

�0(y) = �00�
N(y)(y):

Note that N(x) = 0 if x 2 W , so �0 equals �00 on W . We check the required properties for �0.

7

� �0 is a uni�er for �.

First, consider a variable x 2 W . Since �(x) � x, and �00 contracts variables in the same

equivalence class, we have �00�(x) = �00(x). Since �
0 equals �00 onW , this implies �0�(x) = �0(x).

Next, consider a variable y 62W . Then clearly N(y) = N(�(y)) + 1, so

�0�(y) = �00�
N(�(y))�(y) = �00�

N(y)(y) = �0(y):

� Each uni�er � for � is a uni�er for �0.

First, consider a variable x 2 W . Since �00(x) � x, there are m and n such that �m�00(x) =

�n(x). After applying � to both sides we get ��00(x) = �(x). Since �00(y) = y for variables

y 62 W , it follows that ��00 = �.

So for each variable y we have

��0(y) = ��00�
N(y)(y) = ��N(y)(y) = �(y):

� If �(x) = x, then �0(x) = x.

Clearly x 2 W , so �0(x) = �00(x). Since �(x) = x, the construction of �00 ensures that

�00(x) = x.

� If �n(x) is a variable for all n � 0, then �0(x) is a variable.

By de�nition x 2 W , so �0(x) = �00(x). From the construction of �00 it follows that its image

contains variables only. 2

4 Tyft/Tyxt Reduces to Tree

This section contains the proof of the main theorem, which says that for each TSS in tyft/tyxt

format there exists a transition equivalent TSS in the more restrictive tree format.

4.1 Tyft/tyxt reduces to tyft

The following lemma from [12] indicates that we can refrain from tyxt rules.

Lemma 4.1 Each TSS R in tyft/tyxt format is transition equivalent to a TSS in tyft format.

Proof. Replace each tyxt rule r in R by a collection of tyft rules frf jf 2 �g, where each rf is

obtained by substituting f(x1; :::; xn) for x in r, with x1; :::; xn variables that do not yet occur in

r. Let R0 denote the collection of tyft rules that is thus obtained. Clearly, for each proof from R of

a certain closed transition, there is a proof from R0 of the same transition, and vice versa. Hence,

R and R0 are transition equivalent. 2

8

4.2 Tyft reduces to xyft

De�nition 4.2 A transition rule is said to be a xytt rule if the terms at both sides of its premises

are all single variables.

De�nition 4.3 A transition rule is called xyft if it is both tyft and xytt.

In this section, we show that each TSS in tyft format is xytt equivalent to a TSS in xyft format,

where xytt equivalence is a stronger equivalence notion than transition equivalence.

De�nition 4.4 Two TSSs are xytt equivalent if exactly the same xytt rules are provable from both.

Theorem 4.5 Each TSS R in tyft format is xytt equivalent to a TSS in xyft format.

Proof. We shall prove R xytt equivalent to the TSS S of xyft rules that are provable from R.

Since all rules in S are provable from R, Lemma 2.10 yields that the xytt rules provable from S are

provable from R. We show that the converse is also true, i.e. that each xytt rule H=c provable from

R is provable from S. We apply induction on the partial well-order < between proof structures,

so suppose that (B; r; �) derives H=c from R, and the case has been proved for xytt rules that are

derivable from R by means of a proof structure smaller than (B; r; �).

Since (B; r; �) is a proof structure for H=c, there exists a substitution � that matches with

(B; r; �) such that �(top(B; r; �))� H and �(concl(r)) = c. From (B; r; �) we construct recursively

a sub-structure (B0; r; �0) which is a proof structure for a rule s 2 S. In parallel, we construct a

partial substitution � which is uni�ed by � in the sense that �(�(x)) = �(x) for those variables x

for which � has been de�ned.

� r 2 B0,

� if b 2 Bnfrg, and if �(b) is a premise t
a
�! y of a rule in B0 such that for some k � 0:

1. �i(t) is de�ned for i = 0; :::; k,

2. �i(t) is a variable for i = 0; :::; k� 1,

3. �k(t) is of the form f(t1; :::; tn),

then b 2 B0.

Since � matches with (B; r; �), we have �(concl(b)) = �(t
a
�! y). By assumption, � is a

uni�er for the partially de�ned �, so �(t) = ��k(t) = �(f(t1; :::; tn)). Hence, concl(b) is of

the form f(x1; :::; xn)
a
�! u, with �(xj) = �(tj) for j = 1; :::; n and �(u) = �(y). De�ne

�(xj) = tj for j = 1; :::; n and �(y) = u. Note that � is a uni�er for the extended �.

In order to extend � to a full substitution, we de�ne �(x) = x for all variables x for which � has

not yet been de�ned. Finally, �0 is the restriction of � to B0nfrg.
Since � is a uni�er for �, Lemma 3.2 indicates the existence of a uni�er �0 for � with the following

properties.

1. ��0 = �.

2. If �(x) = x, then �0(x) = x.

9

3. If �k(x) is a variable for all k � 0, then �0(x) is a variable.

Consider the rule b in the construction of B0 and �. Recall that its conclusion is of the form

f(x1; :::; xn)
a
�! u and �0(b) = t

a
�! y, where �k(t) = f(t1; :::; tn) = �(f(x1; :::; xn)) and �(y) = u.

Since �0 is a uni�er for �, it follows that

�0(�0(b)) = �0(t
a
�! y) = �0(�k(t)

a
�! �(y)) = �0(�(f(x1; :::; xn))

a
�! u) = �0(concl(b)):

So �0 matches with (B0; r; �0). Hence the rule s = �0(top(B0; r; �0)=concl(r)) is provable from R.

We show that s is xyft. From the construction of � it follows that its domain (i.e. the variables

x for which �(x) 6= x) consists of two kinds of variables:

1. variables that occur at the left-hand side of the conclusion of rules in B0nfrg,

2. variables that occur at the right-hand side of premises in the range of �0.

Hence, if g(x1; :::; xm)
b
�! t is the conclusion of r, then �(xj) = xj for j = 1; :::; m. Now property 2

of �0 yields �0(xj) = xj for j = 1; :::; m, so the conclusion �0(g(x1; :::; xm)
b
�! t) of s is of the form

g(x1; :::; xm)
b
�! �0(t).

The premises of s are in �0(top(B0; r; �0)), so they are of the form �0(t
a
�! y) where t

a
�! y is

a premise of a rule in B0 outside the range of �0. Hence y is not in the domain of �, i.e. �(y) = y,

so property 2 of �0 yields �0(y) = y. Moreover, as in a proof structure no two rules have variables

in common, all variables y at the right-hand side of these premises and x1; :::; xm are distinct. In

order to show that �0(t) is a variable, we distinguish two cases.

1. t
a
�! y 2 top(B; r; �).

Then �(t
a
�! y) 2 H , so �(t) is a variable. As ��0(t) = �(t), also �0(t) is a variable.

2. t
a
�! y 62 top(B; r; �).

Then �(b) = t
a
�! y for some b 2 B. Since t

a
�! y is outside the range of �0, it follows

that b 62 B0. Hence the inductive construction of B0 and � implies that �k(t) is a variable for

k � 0. So property 3 of �0 yields that �0(t) is a variable.

Hence, s is xyft.

Since s is provable from R and xyft, by de�nition s 2 S. For c0 2 �(top(B0; r; �0)), the xytt rule

H=c0 is provable from R by means of a strictly smaller sub-structure of (B; r; �), so by induction

such rules H=c0 are provable from S. Since �(s) = ��0(top(B0; r; �0)=concl(r)) = �(top(B0; r; �0))=c

it follows from Proposition 2.9 that H=c is provable from S. 2

Example 4.6 Applying this construction to the proof structure (B; r; �) of Example 2.6 gives rise

to the sub-structure (B0; r; �0) displayed below, together with the (partial) substitution �. Applying

the construction in the proof of the uni�cation lemma to � gives the substitution �0 (with �0(x) = x

10

for variables x not explicitly mentioned).

!z j z
�
�! z0

!z
�
�! z0

?

v
a
�! v0 w

�a
�! w0

v j w
�
�! v0 j w0

@
@R

!u j u
a
�! u0

!u
a
�! u0

?

t
a
�! t0

s j t
a
�! s j t0

�(v) = !z

�(w) = z

�(z0) = v0 j w0

�(u) = z

�(v0) = u0

�(s) = !u

�(t) = u

�(u0) = s j t0

The resulting xyft rule s is
z

a
�! t0 z

�a
�! w0

!z
�
�!!z j t0 j w0

.

�0(v) = !z

�0(w) = z

�0(z0) = !z j t0 j w0

�0(u) = z

�0(v0) = !z j t0

�0(s) = !z

�0(t) = z

�0(u0) = !z j t0

Although according to Theorem 4.5 the tyft/tyxt format reduces to the more restrictive xyft format,

this is by no means an argument to abandon the tyft/tyxt format. Because a simple TSS in

tyft/tyxt format may take a much more complicated form if it is described in xyft format. This is

demonstrated by the following example.

Example 4.7 Assume two functions a; b of arity zero, a function f of arity one, and a label l.

Consider the following TSS in tyft format.

a
l

�! a
a

l
�! y

a
l

�! f(y)

In order to describe this TSS in xyft format, we need an in�nite number of rules: a
l

�! fn(a) for

n = 0; 1; 2; ::: (The auxiliary function symbol b is present to avoid that the TSS can be described by

the single rule a
l

�! x.)

4.3 Xyft reduces to tree

The following terminology originates from [12].

De�nition 4.8 A variable is called free in a rule if it does not occur at the right-hand side of

the premises, nor at the left-hand side of the conclusion of the rule. A rule is called pure if it is

well-founded and does not contain any free variables. A tree rule is a pure xyft rule.

Theorem 4.9 Each TSS R in xyft format is transition equivalent to a TSS in tree format.

Proof. We prove R transition equivalent with the TSS S of tree rules that can be proved from

R. Since all rules in S can be proved from R, Lemma 2.10 implies that each transition provable

from S is also provable from R. We check the converse, namely that a closed transition p
a
�! p0

provable from R is provable from S.

11

Since p
a
�! p0 is provable from R, there exist a rule r 2 R and a substitution � such that the

premises of r under � are provable from R and the conclusion of r under � yields p
a
�! p0. Let r

be of the form
fzi

ai�! yi j i 2 Ig

f(x1; :::; xm)
a
�! t

Using induction, we may assume that �(zi
ai�! yi) is provable from S for i 2 I .

We construct from r a rule r0 in S as follows. If there is no backward path in the dependency

graph of r from a vertex yi to a vertex xj , then replace the variables zi and yi in r by �(zi) and

�(yi) respectively. Moreover, replace free variables z in t by �(z). As p
a
�! p` is a closed transition,

�(z) does not contain any variables. The resulting rule r00 is a substitution instance of r, so r00 is

provable from R. Remove each premise �(zi
ai�! yi) from r00. Since those transitions are provable

from R, the resulting rule r0 is provable from R as well.

Clearly, r0 is xyft and without free variables. Moreover, r0 is well-founded, because for each

premise zi
ai�! yi in r0, the (only) backward path from the vertex yi in the dependency graph of

r0 terminates at a vertex xj . Hence, r0 is a tree rule, so r0 2 S. Since the premises of r0 under �

are provable from S, and since the conclusion of r0 under � yields p
a
�! p0, Proposition 2.9 implies

that p
a
�! p0 is provable from S. 2

So, we have found that for each TSS in tyft/tyxt format there exists a transition equivalent TSS

in tree format. Since tree rules are well-founded tyft rules, this result implies that the congruence

theorem for tyft/tyxt can do without well-foundedness.

Corollary 4.10 If a TSS R is in tyft/tyxt format, then $R is a congruence.

5 Extensions to Other Formats

5.1 The ntyft/ntyxt format

Groote [11] extended the tyft/tyxt format to the ntyft/ntyxt format, which as extra feature allows

transition rules to contain negative premises, i.e. expressions of the form t
a
�!= . In a setting with

negative premises, the de�nition of the transition relation determined by a TSS has to be adapted.

Certain TSSs may fail to determine a transition relation at all, for instance due to rules such as

t
a
�!=

t
a
�! t0

One of the most general ways to associate transitions to TSSs with negative premises is through the

notion of a stability, which was introduced by Gelfond and Lifschitz [8] in logic programming. The

transition relation determined by a TSS is then its unique stable transition relation if such exists.

Bol and Groote [4], who adapted this notion for TSSs, showed that there exist TSSs in ntyft/ntyxt

format with a unique stable transition relation for which bisimulation is not a congruence. However,

they found a subclass of such TSSs for which it is. They de�ned a (somewhat complicated) notion

of reduction of TSSs, inspired by the work of Van Gelder, Ross and Schlipf [7] in logic programming,

and proved a congruence theorem for well-founded TSSs in the ntyft/ntyxt format that are positive

(that is without negative premises) after applying reduction. The transition relation associated to

12

a TSS that is positive after reduction consist of the closed transitions that are provable from the

reduced TSS. This is then the unique stable transition relation of the TSS.

Earlier, Groote [11] had adapted the concept of strati�cation|also found in logic programming,

see Apt [1]|to transition system speci�cations, and showed how a strati�ed TSS determines a

transition relation. He also proved that bisimulation equivalence is a congruence for well-founded

strati�ed TSSs in the ntyft/ntyxt format. A TSS that is strati�ed is surely positive after reduction,

and the transition relation determined by the method of strati�cation is the same as the one

determined by the method of reduction. Thus we have a hierarchy of properties

positive) strati�ed) positive after reduction) has unique transition relation.

The reverse of these inclusions does not hold.

In Van Glabbeek [10] the notion of a complete TSS is proposed, which is equivalent to positive

after reduction. For this purpose, the notion of provability is extended in order to allow the

derivation of negative transitions. Then, a TSS is said to be complete if for each closed transition

p
a
�! p0, the TSS can prove either p

a
�! p0 or its negation p

a
�!= p0. In the same paper it is also

argued that the unique stable transition relation of an incomplete TSS is not always convincing as

the determined transition relation. If for any reason a transition relation needs to be associated

to arbitrary TSSs, it is suggested to take the set of closed transitions p
a
�! p0 that are irrefutable,

in the sense that p
a
�!= p0 is not provable using the extended concept of provability. Although this

method yields the `right' transition relation for complete TSSs, in the case of incomplete TSSs with

a unique stable transition relation it may yield a di�erent|and equally unconvincing|result as

the method of stability. The transition relation associated to incomplete TSSs usually has very

unpleasant properties. In particular, the congruence result for TSSs in ntyft/ntyxt format does not

extend to such TSSs [10]. The following proposition, taken from [10], gives a su�cient condition

for two TSSs to be transition equivalent according to each of the methods stability, completeness

(=reduction) and irrefutability.

Proposition 5.1 Let R and R0 be TSSs such that R ` N=c, R0 ` N=c for any closed transition

rule N=c with only negative premises. Here ` denotes provability in the sense of Section 2. Then

� R has a unique stable transition relation i� R0 has, and in that case these relations coincide;

� R is complete i� R0 is, and in that case they determine the same transition relation;

� and the transitions irrefutable from R are the same as the ones irrefutable from R0.

Thus without committing ourselves on their precise meaning, we can extend our results to TSSs

with negative premises by strengthening the requirement of transition equivalence to provability of

the same closed transition rules without positive premises. All de�nitions, lemmas and propositions

of Section 2 generalize straightforwardly to TSSs with negative premises, except that a rule is now

called well-founded if its collection of positive premises is so.

De�nition 5.2 A xyntt rule is an xytt rule enriched with arbitrary negative premises t
a
�!= . A

transition rule is called xynft if it is both ntyft and xyntt. It is an ntree rule if it moreover is pure.

Without any further complications, we can repeat the construction from the previous section to

show that each complete TSS in ntyft/ntyxt format is transition equivalent|it proves the same

closed rules without positive premises|to a complete TSS in the ntree format.

Again, TSSs in the latter format are well-founded, so as a corollary we see that the well-

foundedness condition in the congruence theorem for the ntyft/ntyxt format can be dropped.

13

Corollary 5.3 If a complete TSS R is in ntyft/ntyxt format, then $R is a congruence.

We show that in general, terms in negative premises cannot be reduced to variables. The simple

negative tree format allows complete TSSs which consist of pure and well-founded ntyft/ntyxt rules,

where the variables of all the premises (so also of the negative premises) are variables. We present

a complete TSS in ntyft/ntyxt format for which there does not exist a transition equivalent TSS in

simple negative tree format.

Our counter-example is presented in the setting of the process algebra basic CCS. This formalism

assumes a constant 0, a binary function alternative composition x+ y, and unary functions pre�x

sequential composition ax, where a ranges over an alphabet A. Basic CCS assumes relations
a
�!

for a 2 A, and its operational semantics is de�ned in Example 2.6.

Add two functions f and g with arity one to the signature of basic CCS, and extend the

operational semantics by the following transition rules, to obtain the TSS R.

x
a
�! y1 y1

a
�! y2

g(x)
a
�! 0

g(x)
a
�!=

f(x)
a
�! 0

The TSS R is complete and in ntyft/ntyxt format. The premise g(x)
a
�!= cannot be reduced. An

obvious attempt to delete this negative premise would be to replace the second rule by the following

two rules.
x

a
�!=

f(x)
a
�! 0

x
a
�! y y

a
�!=

f(x)
a
�! 0

However, this adapted TSS is not transition equivalent to R. For example, f(aa0+a0)
a
�! 0 holds

in the new TSS, but not in R.

In order to provide a rigorous argument that R does not reduce to a TSS in simple negative

tree format, we need the following lemma. First note that a TSS T in simple negative tree format

is always strati�ed and hence complete [10], so that there is no ambiguity about the associated

transition relation. The latter can thus be taken to be the set of closed transitions that are provable

from T in the extended sense of [10]. This is the concept of provability used below.

Lemma 5.4 Let T be a TSS in simple negative tree format and p0 and p1 closed terms, such that:

1. if T proves p0
a
�! q, then T proves p1

a
�! q,

2. if T proves p0
a
�!= , then T proves p1

a
�!= .

If T proves f(p0)
b
�! q, then T proves f(p1)

b
�! q0 for some q0.

Proof. Let f(p0)
b
�! q be provable from T . Then, by Proposition 14 in [10], there exists a rule

r 2 T and a substitution �, such that the premises of r under � are provable from T and the

conclusion of r under � yields f(p0)
b
�! q. Since r is in ntyft format, it has a conclusion of the

form f(x)
b
�! t, where �(x) = p0 and �(t) = q.

De�ne a substitution �0 by �0(x) = p1, and �
0(x) = �(y) for y 6= x. Since r is in simple negative

tree format, and since the premises of r under � are provable from T , properties 1,2 of the transition

systems of p0 and p1 ensure that the premises of r under �0 are provable from T . So according to

Proposition 13 in [10], the conclusion of r under �0, f(p1)
b
�! �0(t), is provable from T as well. 2

14

Suppose that the TSS R that was de�ned before is transition equivalent to a TSS T in simple

negative tree format. If p0 = a0 and p1 = aa0+a0, then it is easy to see that the two properties that

were formulated in Lemma 5.4 are satis�ed. On the other hand, R (and so T) proves f(a0)
a
�! 0

and f(aa0+a0)
a
�!= . According to Lemma 5.4 this cannot be, so apparently R cannot be transition

equivalent to a TSS in simple negative tree format.

5.2 The panth format

Baeten and Verhoef [2] extended the tyft/tyxt format with predicates, i.e. not only relations t
a
�! t0,

but also predicates such as t
a
�!

p
are allowed to occur in transition rules. The de�nition of strong

bisimulation, De�nition 2.11, is adapted accordingly by adding a third condition:

{ if pBq and p
a
�!R

p
, then q

a
�!R

p
.

Next, Verhoef [17] extended the resulting format with negative premises. A congruence theorem

holds for well-founded complete TSSs that are in the so-called panth format, which is essentially

the natural extension of ntyft/ntyxt with predicates.

Without any further complications, we can repeat the construction from the previous section

to show that each complete TSS in panth format is transition equivalent to a complete TSS in an

extension of the tree format, which allows rules to have premises of the form z
a
�!

p
and t

a
�!=

and t
a
�!=

p
, and a conclusion of the form f(x1; :::; xm)

a
�!

p
. As a corollary, we see that the

well-foundedness condition in the congruence theorem for the panth format can be dropped.

Corollary 5.5 If a complete TSS R is in panth format, then $R is a congruence.

References

[1] K.R. Apt (1990): Logic programming. In J. van Leeuwen, editor: Handbook of Theoretical

Computer Science, Volume B, Formal Methods and Semantics, Elsevier, pp. 493{574.

[2] J.C.M. Baeten & C. Verhoef (1993): A congruence theorem for structured operational

semantics with predicates. In E. Best, editor: Proceedings 4th Conference on Concurrency

Theory (CONCUR'93), Hildesheim, LNCS 715, Springer-Verlag, pp. 477{492.

[3] B. Bloom, S. Istrail & A.R. Meyer (1988): Bisimulation can't be traced: preliminary

report. In Proceedings 15th ACM Symposium on Principles of Programming Languages, San

Diego, California, pp. 229{239. To appear in Journal of the ACM.

[4] R.N. Bol & J.F. Groote (1991): The meaning of negative premises in transition system

speci�cations. In J. Leach Albert, B. Monien & M. Rodr��guez Artalejo, editors: Proceed-

ings 18th International Colloquium on Automata, Languages and Programming (ICALP'91),

Madrid, LNCS 510, Springer-Verlag, pp. 481{494.

[5] W.J. Fokkink (1994): The tyft/tyxt format reduces to tree rules. In M. Hagiya & J.C.

Mitchell, editors: Proceedings 2nd Symposium on Theoretical Aspects of Computer Software

(TACS'94), Sendai, Japan, LNCS 789, Springer-Verlag, pp. 440{453.

[6] W.J. Fokkink (1994): Idempotent most general uni�ers for in�nite sets. Report CS-R9442,

CWI, Amsterdam.

15

[7] A. van Gelder, K. Ross & J.S. Schlipf (1991): The well-founded semantics for general

logic programs, JACM 38(3), pp. 620{650.

[8] M. Gelfond & V. Lifschitz (1988): The stable model semantics for logic programming. In

R. Kowalski & K. Bowen, editors: Proceedings 5th Conference on Logic Programming, MIT

press, pp. 1070{1080.

[9] R.J. van Glabbeek (1993): Full abstraction in structural operational semantics (extended

abstract). In M. Nivat, C. Rattray, T. Rus & G. Scollo, editors: Proceedings 3rd Conference

on Algebraic Methodology and Software Technology (AMAST'93), Twente, The Netherlands,

Workshops in Computing, Springer-Verlag, pp. 77{84.

[10] R.J. van Glabbeek (1995): The meaning of negative premises in transition system speci�-

cations II. Available at ftp://boole.stanford.edu/pub/DVI/negative.dvi.Z.

[11] J.F. Groote (1993): Transition system speci�cations with negative premises. Theoretical

Computer Science 118(2), pp. 263{299.

[12] J.F. Groote & F.W. Vaandrager (1992): Structured operational semantics and bisimu-

lation as a congruence. Information and Computation 100(2), pp. 202{260.

[13] A. Martelli & U. Montanari (1982): An e�cient uni�cation algorithm. ACM Transac-

tions on Programming Languages and Systems 4(2), pp. 258{282.

[14] D.M.R. Park (1981): Concurrency and automata on in�nite sequences. In P. Deussen, editor:

5th GI Conference, LNCS 104, Springer-Verlag, pp. 167{183.

[15] G.D. Plotkin (1981): A structural approach to operational semantics. Report DAIMI FN-19,

Aarhus University.

[16] R. de Simone (1985): Higher-level synchronising devices in Meije-SCCS. Theoretical Com-

puter Science 37, pp. 245{267.

[17] C. Verhoef (1994): A congruence theorem for structured operational semantics with predi-

cates and negative premises. In B. Jonsson & J. Parrow, editors: Proceedings 5th Conference

on Concurrency Theory (CONCUR'94), Uppsala, LNCS 836, Springer-Verlag, pp. 433{448.

16

