
E�ective models of polymorphism, subtyping and recursion

(extended abstract)

John Mitchell
�

Ramesh Viswanathan
�

Department of Computer Science

Stanford University, Stanford, CA 94305

fmitchell, vrameshg@cs.stanford.edu

March 10, 1995

Abstract

We develop a class of models of polymorphism, subtyping and recursion based on a combi-

nation of traditional recursion theory and simple domain theory. A signi�cant property of our

primary model is that types are coded by natural numbers using any index of their supremum

operator. This leads to a distinctive view of polymorphic functions that has many of the usual

parametricity properties. It also gives a distinctive but entirely coherent interpretation of sub-

typing. An alternate construction points out some peculiarities of computability theory based

on natural number codings. Speci�cally, the polymorphic �xed point is computable by a single

algorithm at all types when we construct the model over untyped call-by-value lambda terms,

but not when we use G�odel numbers for computable functions. This is consistent with trends

away from natural numbers in the �eld of abstract recursion theory.

1 Introduction

The work described in this paper began with a very simple-minded objective. This was to develop

an elementary class of semantic models for polymorphism, subtyping and recursion based on ideas

from recursion theory instead of domain theory. Our driving intuition was that the compiler for a

language such as ML compiles each expression into a bit string that could be regarded as the G�odel

code for some function, pair, number, or other kind of datum, as appropriate. For each type, we

therefore have a set of G�odel numbers representing the elements of the type. Since semantic models

are intended to provide some basis for equational reasoning, we must also de�ne an equivalence

relation on the set of G�odel codes for each type. Our intention was therefore to de�ne a membership

predicate and equivalence relation, which together give us a so-called partial equivalence relation,

for each type and take the resulting quotients of subsets of the natural numbers as the \domains"

of our model.

A representative sample of recent studies using partial equivalence relations were presented at

the 1990 IEEE Logic in Computer Science Conference. The �rst of three papers describes a special

class of partial equivalence relations over the natural numbers called extensional pers [FRMS92], the

second uses partial equivalence relations over partially-ordered domains instead of natural numbers

�Supported in part by NSF Grant CCR-9303099 and a grant from the TRW Foundation.

1



[AP90], and the third works in the constructive setting of the e�ective topos, which boils down

to partial equivalence relations over the natural numbers [Pho90b]. Since our goal is to develop a

semantic model that can be viewed as a quotient of the result of compilation, the use of pers over

special partially-ordered domains does not meet our objectives. While extensional pers do give

us quotients of sets of bit-strings, the standard and expected representations of basic datatypes

such as natural numbers and booleans, as well as type constructors such as products, function

spaces and lifting, require modi�cation if they are to be \extensional" (in the technical sense of

extensional pers). Therefore, as elaborated later in the paper, this model too does not have the

basic properties we would like. Our work is close in spirit to [Pho90b], although our \bottom-up"

development yields a model that seems quite di�erent in technical detail.

We begin with the category Per whose objects (interpretation of types) are partial equivalence

relations over the natural numbers and whose maps (interpretation of terms) are computable func-

tions, in the usual sense of computability theory. While this category is a well-known model of

polymorphism and subtyping, it is not useful for interpreting recursion. This is shown by de�ning a

per A of partial functions and a total recursive f on A that has no �xed point. (In other words, the

recursion theorem does not hold for arbitrary quotients of subsets of N .) The counter example is

based on intuition from domain theory: if we order A in the natural way, it is not \complete". This

suggests that the appropriate way to extend the recursion theorem to subquotients is by borrowing

ideas from domain theory. In the resulting combination of recursion-theoretic and domain-theoretic

techniques, it turns out that we need far fewer ideas from domain theory than [AP90, BM92], for

example. (Section 10 contains a more detailed comparison with related work.)

Using essentially the same \intrinsic order" as [AP90, Pho90b], we identify a class of \cpo-like"

pers, each such per R having a computable function supR that gives the least upper bound of any

constructible chain in R. We call these e�ective cpo's; although the name is similar, these are

completely di�erent from the e�ectively presented cpo's described in [GS90], for example. By a

generalization of the Myhill-Shepherdson theorem from recursion theory, all computable functions

between e�ective cpo's are continuous. If an e�ective cpo has a least element, then the usual domain

theoretic arguments give us an e�ective least �xed point operator.

Serendipitously, almost all of our basic desiderata are satis�ed by this construction. The natural

numbers (discretely ordered) and other basic data types are easily seen to be e�ective cpo's. The

usual product, function space and other constructions preserve the property of being an e�ective

cpo. Moreover, the intrinsic orderings turn out to be the usual \pointwise orderings" of domain

theory. Since it is easy to use the supremum operator to compute a least �xed point, the full

subcategory ECpo of e�ective cpo's and computable functions gives us an elementary semantics

of �rst-order type operators and recursion.

In the model using G�odel numbers of partial recursive functions, the interpretation of higher-

order types requires that we code types as natural numbers. The traditional approach, when we are

not concerned with recursion, is to make the coding relation trivial, leading to an interpretation

of polymorphic types as intersection of in�nite indexed families. However, the intersection of a

constructive family of e�ective cpo's is not necessarily an e�ective cpo. We therefore represent a

type by any G�odel code of its supremum operator, producing an interpretation of a polymorphic

type 8t:A(t) as the collection of recursive functions mapping any supremum operator supR to

an element of the per A(R). Fortunately, this interpretation of polymorphism still satis�es the

expected parametricity principles. For example, we can show that the per 8t:t is empty and that

the only element of the per 8t:t! t is the identity function. We can also de�ne a 8p quanti�er

where we interpret the domain of quanti�cation to be pointed e�ective cpos. The di�erence from

the 8 quanti�er arises because the code for a pointed e�ective cpo naturally gives both its least

2



element and its supremum operator. Continuing our examination of parametricity properties, we

show that the least �xed point operator is the only �xed point operator of type 8pt:(t! t)! t. Due

to least elements, the type 8pt:t becomes nonempty and 8pt:(t! t) contains more than the identity

function. In short, the 8 quanti�er supports the parametricity principles of the system F while the

8p quanti�er supports the parametricity principles of system F extended with �xed points.

A standard method for obtaining recursive types, described in [SP82], involves showing that

suitable functors on Cpo-enriched categories have initial F -algebras. To obtain analogous results,

we work with ECpo-enriched categories whose homsets each form an e�ective cpo. In addition,

and in a departure from applications of the Smyth-Plotkin method we have seen before, we ask

for functors that are e�ective on objects in addition to morphisms. This means that a functor F

on ECpo is e�ective if the supremum function on F (R) is uniformly computable from the supre-

mum function on R. If each homset is also pointed, we have a PECpo-enriched category. As for

morphisms in Per, we can show that any e�ective functor is automatically locally continuous (in

the sense of [SP82]) and thus any e�ective functor between e�ectively complete PECpo-enriched

categories has an initial F -algebra. Our categories ECpo and PECpo can be shown to be e�ec-

tively complete, as well as ECpo-enriched and PECpo-enriched, respectively. This gives us initial

F -algebras for all e�ective functors. All of this feels relatively routine, once we have the idea of

realizers for e�ective cpos; we are simply working out e�ective versions of the usual arguments.

In other per models, the interpretation of subtyping has always been the subset relation on pers,

namely, R is a subtype of S i� the membership predicate and equality relations of R are subsets of

those for S. Intuitively, this means that a supertype may have more elements than a subtype, but

also distinct elements of a subtype may become identi�ed at a supertype. (It is argued elsewhere

that this is very intuitive and natural.) In our model, we cannot simply follow this approach since

we need coherence between the supremum operators at subtype and supertype, and between least

elements if both are pointed. More speci�cally, we say an e�ective cpo R is a subtype of e�ective

cpo S if in addition to being a subset, the least upper bound of any increasing chain in R is also

a least upper bound in S. Moreover, if R is pointed then any index of the least element of R

must also be one for S. All the usual examples of subtyping hold with our modi�ed de�nition of

subtyping. We also prove a strong form of coherence, namely, if two terms of the same type yield

the same untyped term when types are erased, then their meanings are equal.

The interpretation is extended to higher-order polymorphism and recursion in Section 7, where

we use the category of doubles of ECpo-enriched categories and symmetric functors.

We started o� with the intent of forming an extensional model by taking quotients of sets

of bit strings (or G�odel numbers of functions). One reason for doing this was to obtain a close

correspondence with compilation, since the denotation of an expression could be viewed as the

equivalence class of the bit string produced by compiling this expression. However, a compiler for

the kind of language we are interested in may generate code without using type information. A

reasonable compiler could parse expressions, annotate the parse trees during type checking, but

then discard or ignore the type annotations during code generation. A consequence is that we

expected to �nd a uniform, type-independent algorithm computing the �xed point operator at each

type. It is one of the most surprising aspects of our e�ort that we were unable to accomplish

this. Speci�cally, in Section 8, we use computability arguments to show that there is no uniform

supremum operator and that no untyped �xed-point operator can be the index of the typed �xed-

point operator at each type. The proof uses algorithms that apply natural number operations such

as equality test to the G�odel codes of function arguments. This is allowed in per structures as long

as the resulting functional has the right extensional behavior.

In response to our di�culties with natural number codes, Gordon Plotkin suggested using

3



untyped call-by-value lambda terms instead. The result, described in Section 9, is a very similar

category of e�ective cpo's, but with a single untyped term computing all �xed-points. This suggests

that compilation is more pro�tably viewed as a translation to untyped lambda terms. While we

initially regarded bit strings as the result of compilation, we realize upon re
ection that the result

of compiling a typed program is always a \typed algorithm." In other words, although machine

language allows us to do bit string operations on function code, for example, no such manipulation

need occur in the object code produced by compiling a typed program. Since natural numbers are

distinct from function expressions in the untyped call-by-value calculus, there is just enough of an

inherent type distinction to provide a uniform �xed-point algorithm. While this may be a slight

surprise to computer scientists, our eventual preference for call-by-value terms appears consistent

with the move away from natural number coding in the �eld of recursion theory (e.g., [Bar75]).

2 Preliminaries

Let '0; '1; : : : be any enumeration of the partial recursive functions. We use n � m to denote

'n(m). We use pr for a computable pairing function on the natural numbers and (n)1 and

(n)2 to denote the �rst and second projections of n. Let N denote the set of natural numbers.

A partial equivalence relation (per) R � N �N is a symmetric transitive relation. For any per

R, n:R denotes that n R n; for any n:R, [n]R denotes the equivalence class fm j n Rmg and

the set represented by R is de�ned to be [R] = f[n]R j nRng. We say that a natural number n

realizes an element a 2 [R], n `R a, if n 2 a. A function f (set-theoretic) from [R] to [S] is

realized by a natural number n, denoted by n `R;S f if for all a 2 [R], m `R a we have that

n �m `S f(a) and we call a function f : [R]![S] e�ective or computable if it has a realizer. We

often omit the subscripts R; S from n `R;S f when they are clear from the context. We use

[n]R;S to denote the unique map from [R] to [S] that n realizes, if it realizes one. The category

Per has as objects pers, and as morphisms from R to S the e�ective maps from [R] to [S]. For

any set B � N , we de�ne the per DB = fhn; ni j n 2 Bg, the identity relation on B. We use

N to denote the per DN and 11 to denote the per Df0g. If R; S are pers, we de�ne the pers

R�S;R!S;R*S by nR�Sm i� (n)1R(m)1 and (n)2S (m)2; nR!Sm i� 8x; y 2 N : xRy )

(n � x) S (m � y); n R*S m i� 8x; y 2 N : x R y ) (n � x) # ) (n � x) S (m � y) where we use

(n � x) S (m � y) to mean that (n � x) # and (m � y) # and they are related in S. We can de�ne the

lifting of a per R as R? = 11*R.

Let A be any set and `A� N �A be a binary relation which we often call a realization relation.

Recall that `A is onto if for all a 2 A, there is an n with n `A a and a function if whenever

n `A a; n `A b we have that a = b. Every onto function `A on a set A gives rise to a per, namely,

fhn;mi j n;m `A a; a 2 Ag. Suppose `A is some �xed onto realization relation on a set A and `B
is another �xed onto realization relation on a set B. We call a function (set-theoretic) f :A!B

e�ective if there is an n such that for all a 2 A;m `A a we have that n �m `B f(a); we take n to

be the realizer of f . We also say that f(a) is e�ectively realizable from a to mean that the function

f is e�ective.

3 Fixed Points and E�ective Cpos

We begin by showing that the full category Per is not suitable for interpreting �xed points.

Example: [Failure of Fixed Points] Take R to be the per 11 and S to be the per of partial functions

that are de�ned exactly on some �nite pre�x of the natural numbers. More formally, S is de�ned by

4



mS n i� 9u 2 N 8x < u (m � x = n � x) and 8x � u (m � x" and n � x"). Let F be an index of the

function, which on input f : (R*S), returns an index of the function, which on input 0: 11 returns

an index of the function which on input n computes g = f � 0 and returns 0 if n = 0 and returns

g � (n � 1) otherwise. It can be veri�ed that F : (R*S)!(R*S) and that [F ](R*S);(R*S) has

no �xed point.

An important idea in the above example is that if we order the partial functions that are the

elements of the per S by the pointwise ordering, as we would in domain theory, then S is not a

cpo. Therefore, it seems natural to circumvent the problem illustrated by the per S by selecting a

class of cpo-like pers. The �rst step is to associate an order with each per. To de�ne an ordering

on the elements of a per R, we focus attention on e�ective partial functions from R to 11. Since, 11 is

a one-element per, the only signi�cant behaviour of any f :R* 11 on an x:R is its convergence. We

can thus think of f :R* 11 as a partial decision algorithm computing with R-inputs or a computable

test on R, with convergence announcing success. We then consider an x:R to be distinguishable

from y:R if there is a computable test converging on x and diverging on y. Thus, an x:R has

computationally no more information than y:R if x is not computationally distinguishable from y.

Thus, for any per R and x; y:R, we de�ne

x �R y i� 8f :R* 11: f � x# implies f � y #

For [x]R; [y]R 2 [R], we de�ne [x]R �[R] [y]R i� x �R y; �[R] is easily seen to be a preorder.

Taking this to be our intrinsic ordering , we consider the class of pers whose intrinsic orderings

are complete partial orders in the internal language of the topos Per. For any per R, de�ne the per

Seq(R) of e�ective increasing sequences as the largest subset of the per N!R such that s: Seq(R)

i� for all n 2 N , s � n �R s � (n+ 1). We call a function (possibly partial) from [Seq(R)] to [R] a

supremum function if it maps an element [s] of [Seq(R)] to a least upper bound of f[s � n]R j n 2 Ng

with respect to the preorder �[R] if it exists and unde�ned otherwise. If the preorder �[R] on [R] is

antisymmetric, then there is a unique supremum function; in this case, we denote it by supR. We

de�ne a per R to be an e�ective cpo if

Antisymmetry For a; b 2 [R], if a �[R] b and b �[R] a then a = b.

Computable Completeness The supremum function supR: [Seq(R)]![R] is a morphism in Per,

i.e., it is total and e�ective.

Lemma 3.1 (Continuity) Suppose that R; S are e�ective cpos. Then any e�ective f : [R]![S] is

continuous, i.e., if s: Seq(R) then f(supR([s]Seq(R))) = supS(f � [s]
N;R).

By analogy with ordinary cpos, we say that an e�ective cpo R is pointed if [R] contains a least

element with respect to the intrinsic order �[R]; we denote its least equivalence class by ?R.

Lemma 3.2 (Fixed Points) Suppose that R is a pointed e�ective cpo. Every e�ective f : [R]![R]

has a least �xed point with respect to the ordering �[R]. The function �xR: [R!R]![R] mapping

realizers for morphisms to their least �xed point is e�ective and is e�ectively realizable from supR
and ?R.

While our assumptions on the properties of an e�ective cpos were important to our proof of

the existence of a computable �xed point operator, we can also show that they are the weakest

conditions possible. We can construct a per R whose intrinsic order is not antisymmetric, and a

per S whose intrinsic order is antisymmetric and for which supS is total but not e�ective; both R

5



and S can be shown not to admit any e�ective �xed point operator. It can also be seen that a per

that is not pointed cannot admit a �xed point operator.

The basic constructions on pers all yield e�ective cpos. For any B � N , the intrinsic order on

the per DB is easily seen to be discrete and hence an e�ective cpo trivially and it is pointed i�

jBj = 1; we now state the closure under the other constructions.

Proposition 3.3 (Product Spaces) If R; S are pers then x �R� S y i� (x)1 �R (y)1 and

(x)2 �S (y)2. Thus, if R and S are e�ective cpos then R�S is an e�ective cpo, with supR� S
e�ectively realizable from supR and supS. If R; S are pointed then R�S is pointed with ?R� S
e�ectively realizable from ?R;?S.

Proposition 3.4 (Total Function Spaces) If R; S are pers and S is an e�ective cpo, then

f �R!S g i� 8x:A:f � x �S g � x. Thus, if R and S are e�ective cpos then R!S is an ef-

fective cpo, with supR!S e�ectively realizable from supS . If S is pointed then R!S is pointed

with ?R!S e�ectively realizable from ?S .

Proposition 3.5 (Partial Function Spaces) If R; S are pers and S is an e�ective cpo, then

f �R*S g i� 8x:A:f � x #) f � x �S g � x Thus, if R and S are e�ective cpos then R*S is an

e�ective cpo, with supR*S computable from supS. The per R*S is always pointed with ?R*S

realized by the index of the function \�x 2 N :diverge" independent of R; S.

While the proof of the \pointwise" intrinsic ordering for products is standard (c.f. [AP90]) and

is true for arbitrary pers, the intrinsic ordering for the pers R!S;R*S is pointwise only when

the per S is an e�ective cpo. An important point to note about the closure of e�ective cpos under

these operations, as given by the above propositions, is that it is constructive, i.e., the supremum

operator for the product or function space pers of R; S can be computed from the supremum

operator for R and S. Since lifting is de�ned using partial functions, it follows that e�ective cpos

are closed under lifting as well.

4 Polymorphism

Let ECpo and PECpo be the set of all e�ective cpos and pointed e�ective cpos respectively. De�ne

an e�ective set to be a set K equipped with an onto binary relation `K� N �K. For any function

C:K!ECpo, we can de�ne the per 8K(C) as follows:

f 8K(C) g i� 8a 2 K; x; y 2 N x; y `K a) (f � x) C(a) (g � y)

It is easy to see that 8K(C) is symmetric and transitive, i.e., that it is a per. We take ECpo to be

an e�ective set with n `ECpo R i� n `Seq(R);R supR. And, we consider PECpo an e�ective set with

n `PECpo R i� (n)1 `ECpo R and (n)2 `R ?R. Essentially the realizers for ECpo and PECpo are

proofs, in the internal language of the e�ective topos, of the membership of a per in the particular

subset. The following lemma shows that if C is an e�ective map (as de�ned in Section 2) from K

to ECpo then 8K(C) is an e�ective cpo. As usual, we also give the conditions under which it is

pointed.

Lemma 4.1 (Higher-Order Polymorphism) Let C:K!ECpo be an e�ective map. Then

f �8K(C) g i� 8a 2 K; x 2 N x `K a) (f � x) �C(a) (g � x). Thus, 8K(C) is an e�ective cpo with

sup8K(C) e�ectively realizable from C. If C induces an e�ective map from K to PECpo then 8K(C)

is pointed with ?8K(C) e�ectively realizable from the e�ective map C:K!PECpo.

6



As particular instances of Lemma 4.1, we can de�ne constructors 8ECpo which we denote 8, and

8PECpo which we denote 8p, yielding e�ective cpos. The following proposition shows that in this

semantics of polymorphism as well, the type 8t:t is empty and 8t:(t! t) only contains the identity

function. It thus suggests that all the usual parametricity principles are validated even by this

interpretation of polymorphism that is less \uniform" than intersection. Essentially, parametricity

in our context arises from the fact that the realization relations `ECpo;`PECpo are not functions |

thus, any element of the polymorphic per must behave uniformly on all pers that admit common

realizers for their supremum functions.

Proposition 4.2 (Parametricity) For I:ECpo!ECpo de�ned by I(R) = R, there is no n with

n: 8(I). For F :ECpo!ECpo de�ned by F(R) = R!R, if n: 8(F) then for any e�ective cpo R,

natural number x, if x ` supR then n � x `R idR.

Turning next to the 8p quanti�er, consider the map C: PECpo!ECpo given by C(R) =

(R!R)!R which is e�ective by Proposition 3.4. By Lemma 3.2 we have a realizer �x : 8p(C),

which computes the least �xed point at every pointed type. The following proposition shows that

this is the only �xed point operator of this polymorphic type:

Proposition 4.3 (Polymorphic Fixed Point) Consider the e�ective map C: PECpo!ECpo given

by C(R) = (R!R)!R. Then we have a realizer �x : 8p(C) computing the least �xed point at every

pointed type. Further, suppose that we have an f : 8p(C) such that for any pointed e�ective cpo R,

and x ` supR; b ` ?R we have that (f � pr(x ; b)) = n such that for any g:R!R, n � g R g � (n � g),

i.e., f is a �xed point operator. Then f 8p(C) �x.

Just like Proposition 4.2, we can prove that the type 8pt:t has exactly one element and the type

8pt:(t! t) has exactly two elements; the polymorphic operator 8p thus supports the parametricity

principles of system F extended with recursion on values.

5 Recursive Types

A standard method for obtaining recursive types is that given by [SP82] which shows that suitable

functors on Cpo-enriched categories admit recursive solutions. While these results are not directly

applicable to the category of e�ective cpos, we obtain analogous results by considering everything

\e�ectively" and reformulating the framework and results of [SP82] for a suitable notion of e�ec-

tivity. The main departure from earlier work in this regard (e.g., [AP90]) is that e�ectiveness of a

functor is a condition on its behaviour on objects in addition to arrows.

Let C be a category. We call it e�ective if it is equipped with a realization relation, `C, on

objects and morphisms that is onto on objects and an onto function on each homset, with iden-

tity morphisms e�ectively realizable from the objects and composition e�ective; de�ne e�ective

functors between e�ective categories in the obvious way. By the condition on `C, we can de�ne a

per corresponding to each homset as in Section 2. We say that C is an ECpo-enriched category

if the per corresponding to each homset C(A;B) is an e�ective cpo with its supremum function

e�ectively realizable from the objects A;B; this is of course just the internal proof that every

homset is a cpo. De�ne the category Cep whose objects are those of C and whose morphisms are

embedding-projection pairs (while the embeddings and projections determine each other uniquely,

they may not necessarily do so e�ectively; it therefore does not su�ce to consider the subcate-

gory of only embeddings or projections). As for morphisms in Per, any e�ective functor between

two Ecpo-enriched categories is automatically locally continuous in the sense of [SP82]. Call an

7



e�ective category C a PECpo-enriched category if it is an ECpo-enriched category and the per

corresponding to each homset C(A;B) is pointed with its least element e�ectively realizable from

the objects A;B.

Lemma 5.1 (Recursive Solutions) Suppose that C is an e�ectively !op-complete, PECpo-

enriched category with a terminal object ? and such that composition in C is left-strict, i.e.,

for any A
f
! B we have ?B;C � f = ?A;C . Then for any e�ective functor F :Cep!Cep, we

have an object �(F ) in C and morphisms foldF :F (�(F ))!�(F ); unfoldF :�(F )!F (�(F )) with

foldF ; unfoldF constituting an isomorphism pair in C. Moreover, the object �(F ) and the mor-

phisms foldF ; unfoldF are e�ectively realizable from the e�ective functor F .

De�ne ECpo to be the full subcategory of Per, of the e�ective cpos. The realization relation

on objects of ECpo is as in Section 4 for ECpo and on morphisms as in Section 2. Take PECpo to

be the full subcategory of ECpo of pointed e�ective cpos with the realization relation on objects

as in Section 4 for PECpo.

Lemma 5.2 The categories ECPo and PECpo are e�ectively !op-complete.

By Proposition 3.4, ECpo is an ECpo-enriched category and PECpo is a PECpo-enriched

category; it can also be seen that PECpo satis�es the other conditions of Lemma 5.1. Hence,

any e�ective functor F :ECpoep!ECpoep that induces an e�ective functor from PECpoep to

PECpoep has a recursive solution. This condition on the preservation of pointedness is not an

accident of our method of constructing recursive solutions; there are functors that do not map

pointed pers to pointed pers and provably cannot have any recursive solutions.

6 Subtyping

Suppose we have pers R; S with R � S as relations. Since the index of �x 2 N � x realizes an

e�ective map from R to S, we have by Lemma 3.1, that if x �R y then x �S y. Thus, if R � S,

then Seq(R) � Seq(S). For e�ective cpos R; S, we de�ne that R is a subtype of S, denoted R<: S,

i� R � S, if n ` supR and s: Seq(R) then n � s ` supS(s), and if R is pointed and n `R ?R then

S is pointed with n `S ?S . Essentially then, R is a subtype of S, if the proof of any \interesting

property" in R is also a proof in S; the interesting properties in our context being membership

in a per, equality in a per, and membership in the subcategories ECpo, PECpo. This notion of

subtyping is re
exive and transitive and one obtains all the usual subtyping relations between the

various type constructors. We can de�ne the per Top = N �N as the supertype of all types.

7 A Model of F! with recursion and subtyping

We can present our semantics as a categorical version of [BMM90] with additional structure for

the distinction between types and pointed types, �xed points at pointed types, higher-order poly-

morphism and recursive solutions for maps from pointed kinds to pointed kinds. At a �rst approx-

imation, we can take the category for kinds to be the category of all ECpo-enriched categories

and e�ective functors, and take the categories ECpo and PECpo to interpret types and pointed

types respectively. The problem with this is that type operators such as! cannot be expressed as

covariant functors and are thus not morphisms of this category. Inspired by [AP90], we consider

doubles of categories and symmetric functors; our main technical contribution is that we exhibit

8



a cartesian closed structure, which allows us to give a categorical semantics of F! and recursive

kinds.

Let K be the category whose objects are CD for C an e�ectively !op-complete, ECpo-enriched

category with terminal object and left-strict composition (which categories we henceforth abbreviate

as \good" categories), and whose morphisms are e�ective symmetric functors. We can de�ne the

product of CD;DD itself as the double of another \good" category and similarly for exponentials;

this establishes K to be cartesian-closed. We take types to be the object ECpoD and pointed

types to be PECpoD. By extending the de�nitions of all the semantic constructions given in

earlier sections on objects to morphisms in the standard way, we can de�ne them as symmetric

e�ective functors into ECpoD as well as PECpoD describing their behaviour as type constructors

as well as pointed type constructors.

We interpret terms as e�ective natural transformations between appropriate functors (essen-

tially, dropping the \double" on their domain and range). The term constructors arise from the

adjunctions expressing the cartesian closure of ECpo, the natural transformations asserting that

the functor (�)? is a monad, the natural isomorphism between R*S and R!S?, and 8C as a

right adjoint to the diagonal functor. Finally, by Lemma 3.2 the morphism �xR is e�ectively real-

izable from R and by Lemma 5.1 the morphisms foldF ; unfoldF are e�ectively realizable from F ;

we can also prove that they are natural in R and F respectively which gives their interpretations

as e�ective natural transformations. It turns out that except for the �xed point operator and the

isomorphism pair between a recursive kind and its unfolding, every other term constructor arises

from a uniform natural transformation.

We de�ne the subtyping relation for objects of ECpo as in Section 6. Usually, coherence of a

semantics (in the presence of subtyping) means that the meaning of a term does not depend on its

typing derivation. Inspite of a �xed point operator whose interpretation depends on the type, we

can prove a stronger form of coherence for our semantics. Informally, we can show that if for two

terms M;N of type � their erasures are the same then [[M : �]] = [[N : �]], i.e., their meanings are

the same at type �. We show this property for �xed points and the isomorphism pair between a

recursive type and its unfolding; since the interpretation of all other term constructors arises from

uniform natural transformations, our coherence theorem asserting the equality of the meaning of

two terms with the same erasure at a particular type follows.

8 Uniform Fixed Point Realizer

We �rst investigate the existence of a uniform realizer for all supremum functions. The following

lemma shows that this is impossible even for N?; (N*N)?.

Lemma 8.1 (Failure of Uniform Suprema) There is no natural number f such that f ` supN
and f ` supN*N , i.e., such that if s: Seq(N) then f � s `N supN (s) and if s: Seq(N*N) then

f � s `N*N supN*N (s).

Corollary 8.2 There is no natural number f such that f ` supN? and f ` sup(N*N)?
.

Next, we focus on uniformly computing �xed points of f : (R*S)!(R*S) for e�ective cpos R; S.

A natural candidate for a uniform �xed point operator is the index, Y , of the untyped call-by-value

�xed point operator (also given by the �rst recursion theorem e.g., see [Cut80]). Of course,

untyped lambda calculus abounds with other �xed point operators (c.f. [Bar84]); the following

de�nition captures the essential property of any untyped �xed point operator.

9



De�nition 8.3 A natural number f is an untyped �xed point operator if for any n:N!N we have

f � n (N*N) n � (f � n).

Lemma 8.4 (Failure of Untyped Fixed Points) Consider any untyped �xed point operator f .

Suppose that R; S are pers with :(k(R*S)k), for some k 2 N . Then there is an e: (R*S)!(R*S)

with :(f � e(R*S)f � e). Thus, f does not even realize a morphism from ((R*S)!(R*S)) to

(R*S) and hence cannot realize a �xed point operator for the per R*S.

In particular, the index Y cannot be a realizer for the �xed point operator on all R*S. The

de�nition of e, in the proof of Lemma 8.4, uses an equality test on its argument y which essentially

depends on the fact that realizers for functions (y:R*S in this case) are accessible as realizers of

natural numbers and thus susceptible to equality tests. In Section 9 we show that this is the only

reason for the failure of Y as a �xed point operator.

9 E�ective Cpos over Lambda Terms

We consider an untyped call-by-value �-calculus that has term constants corresponding to numerals

and some basic operations on natural numbers. It thus corresponds closely to the \turing machine"

application operation on G�odel numbers, except for introducing a distinction between codes of nat-

ural numbers (numerals) and codes of functions (�-abstractions). We take the partial combinatory

algebra whose elements are observational congruence classes of the terms of the calculus and con-

sider e�ective cpos over them. We inherit all the results from previous sections on e�ective cpos

over natural numbers, since their proofs only use computability arguments, and all computable

functions are expressible in this calculus.

We can show that the untyped term Y = �f � (�x� f (�z� xxz)) (�x� f (�z� xxz)) is a realizer for

the least �xed point operator �xR*S for any e�ective cpos R; S, using the observational preorder

v on terms. The partial combinatory algebra, equipped with this ordering, is not a cpo; however, if

an; n 2 N are such that an v an+1, we denote its least upperbound by
F
n an when it exists. For any

e�ective cpo R, we can prove the remarkable property that if s: Seq(R) is an increasing sequence

such that s � n v s � (n + 1) then
F
n(s � n) `R supR(s), i.e., if an increasing sequence is also an

increasing sequence with respect tov then its supremum in the e�ective cpo must be the equivalence

class of the least upper bound with respect to the global ordering. Now, consider the elements Fn
de�ned by F0 = �f �
, where 
 is any divergent term and Fn+1 = �f � f (�z� Fn f z). Because of

the distinction between numerals and �-abstractions, Fn v Fn+1 and Y =
F
n Fn. We also have

that Fn: ((R*S)!(R*S))!(R*S) and that �xR*S = sup((R*S)!(R*S))!(R*S)(s) where

s is the sequence with s � n = Fn. From all this it follows that Y ` �xR*S .

10 Comparison with related work

From domain theory, we have several classes of domain models of polymorphism and recursion. The

�rst are the universal domains. A general construction explored in [ABL86] interprets types as the

�nitary projections over a universal domain. Since types are domains, recursion is straightforward.

An alternative model in essentially the same spirit uses the closures of P! [Sco76, McC79, BMM90].

Two models that are not based on universal domains are the coherent spaces of Girard [Gir86] and

the related use of dI-domains developed in [CGW89]. In each of these cases, we would interpret

subtyping by selecting a class of continuous \subtype maps." However, since there is no general

characterization of subtyping, this would have to be done on an ad hoc basis for each model.

10



An example study identifying the linear maps between dI-domains as candidate subtype maps is

[BTCGS91].

The alternatives to these domain models all use partial equivalence relations. The per models

fall into two groups, one using pers over domains and the other pers over the natural numbers.

Some constructions in the �rst group are explained in [AP90, Ama91, Car89, BM92]. The most

sophisticated construction is [AP90], which uses an intrinsic order similar to the present paper, but

in addition to being a cpo, the pers need to satisfy other conditions (e.g., uniformity). In as much

as the model presented in Section 9 works with only the simple conditions of being an e�ective

cpo and is a semantics of polymorphism and recursion with uniform �xed points, these additional

conditions on pers seem to be a direct consequence of working over specially constructed domains.

There are two previous models using pers over the natural numbers. The more accessible is the

class of extensional pers [FRMS92]. Unfortunately, the property of being an extensional per is not

categorical as evidenced by the fact that the class of extensional pers is not closed under recur-

sive isomorphism. More importantly from our point of view, the natural interpretations of basic

datatypes such as natural numbers and booleans also fail to be extensional (in the technical sense

of \extensional pers"). The extensional pers are also not closed under the natural constructions

of products, total function spaces and partial function spaces. Hence one uses variants of these

operations that work but seem to have no natural explanation. In short, although the development

of extensional pers is mathematically elegant and rich, these pers do not support our motivating

intuition for preferring per models over the natural numbers.

The �nal class of models involve the development of domains within the e�ective topos [Hyl82,

Hyl88]. The main idea, as explained brie
y in [Pho90b] and elaborated in [Pho90a, Hyl90, HRR90]

is to carry out the usual development of domain theory within a constructive set theory that may

be interpreted over pers. This leads to a class of domain-like pers that are essentially the same as

our e�ective cpos. However, the class of maps, interpretation of lifting, and �xed-point operators

are technically di�erent from ours. In particular, it does not seem that polymorphism is interpreted

by considering supremum operators as the realizers of domains. There is also a model over untyped

call-by-name lambda-terms in [Pho90a], using pers that have an order property de�ned using a

speci�c per ! and its completion �!. The main di�erence is that our de�nition of e�ective cpo,

which implies Phoa's condition on relations, makes sense for any partial combinatory algebra,

while Phoa's condition appears speci�c to lambda terms.

References

[ABL86] R.M. Amadio, K. Bruce, and G. Longo. The �nitary projection model for second order lambda

calculus and solutions to higher order domain equations. In Proc. IEEE Symp. on Logic in

Computer Science, pages 122{130, 1986.

[Ama91] R.M. Amadio. Recursion over realizability structures. Information and Computation, 91(1):55{

86, 1991.

[AP90] M Abadi and G.D. Plotkin. A PER model of polymorphism and recursive types. In Proc. IEEE

Symp. on Logic in Computer Science, pages 355{365, 1990.

[Bar75] J. Barwise. Admissible sets and structures. Springer-Verlag, Berlin, 1975.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam,

1984. Second edition.

[BM92] K. Bruce and J.C. Mitchell. PER models of subtyping, recursive types and higher-order poly-

morphism. In Proc. 19th ACM Symp. on Principles of Programming Languages, pages 316{327,

January 1992.

11



[BMM90] K. B. Bruce, A. R. Meyer, and J. C. Mitchell. The semantics of second-order lambda calcu-

lus. Information and Computation, 85(1):76{134, 1990. Reprinted in Logical Foundations of

Functional Programming, ed. G. Huet, Addison-Wesley (1990) 213{273.

[BTCGS91] V. Breazu-Tannen, T. Coquand, C.A. Gunter, and A. Scedrov. Inheritance as explicit coercion.

Information and Computation, 93(1):172{221, 1991. Reprinted in [GM94].

[Car89] F. Cardone. Relational semantics for recursive types and bounded quanti�cation. In ICALP,

pages 164{178, Berlin, 1989. Springer LNCS 372.

[CGW89] T. Coquand, C.A. Gunter, and G. Winskel. Domain-theoretic models of polymorphism. Infor-

mation and Computation, 81(2):123{167, 1989.

[Cut80] N.J. Cutland. Computability: An introduction to recursive function theory. Cambridge Univ.

Press, Cambridge, 1980.

[FRMS92] P. Freyd, G. Rosolini, P. Mulry, and D.S. Scott. Extensional PER's. Information and Com-

putation, 98(2):211{227, 1992. Preliminary version appeared in Proc. IEEE Symp. on Logic in

Computer Science, IEEE, 1990, 346{354.

[Gir86] J.-Y. Girard. The system F of variable types, �fteen years later. Theor. Comp. Sci., 45(2):159{

192, 1986.

[GM94] C.A. Gunter and J.C. Mitchell, editors. Theoretical aspects of object-oriented programming.

MIT Press, Cambridge, MA, 1994.

[GS90] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, Volume B, pages 633{674. North-Holland, Amsterdam, 1990.

[HRR90] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the e�ective topos.

Proc. London Math. Soc., 60:1{36, 1990.

[Hyl82] J.M.E. Hyland. The e�ective topos. In The L.E.J. Brouwer Centenary Symposium, pages

165{216. North-Holland, Amsterdam, 1982.

[Hyl88] J.M.E. Hyland. A small complete category. Ann. Pure and Applied Logic, 40, 1988. Lecture

delivered at the conference Church's Thesis: Fifty Years Later, Zeiss(NL), June 1986.

[Hyl90] J.M.E. Hyland. First steps in synthetic domain theory. In A. Carboni et al., editor, Category

Theory, Proc. Como 1990, pages 131{156. Springer LNM 1488, 1990.

[McC79] N. McCracken. An Investigation of a Programming Language with a Polymorphic Type Struc-

ture. PhD thesis, Syracuse Univ., 1979.

[Pho90a] W. Phoa. Domain theory in realizability toposes. PhD thesis, Cambridge, 1990. Available as

University of Edinburgh Dept. of Computer Science report CST-82-91 and ECS-LFCS-91-171.

[Pho90b] W. Phoa. E�ective domains and intrinsic structure. In Proc. IEEE Symp. on Logic in Computer

Science, pages 366{377, 1990.

[Sco76] D. Scott. Data types as lattices. Siam J. Computing, 5(3):522{587, 1976.

[SP82] M. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain equations.

SIAM J. Computing, 11:761{783, 1982.

12


