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Abstract

Minimum-cost multicommodity 
ow problem is one of the classical optimization prob-
lems that arises in a variety of contexts. Applications range from �nding optimal ways to
route information through communication networks to VLSI layout.

In this paper, we describe an e�cient deterministic approximation algorithm, which
given that there exists a multicommodity 
ow of cost B that satis�es all the demands,
produces a 
ow of cost at most (1 + �)B that satis�es (1� �)-fraction of each demand. For
constant � and �, our algorithm runs in O�(kmn2) time, which is an improvement over the
previously fastest (deterministic) approximation algorithm for this problem due to Plotkin,
Shmoys, and Tardos, that runs in O�(k2m2) time.

The presented algorithm is inherently parallel and can be implemented to run in O�(mn)
time on PRAM with linear number of processors, instead of O�(kmn) time with O(n3)
processors of the previously known approximation algorithm.

1 Introduction

The multicommodity 
ow problem involves simultaneously shipping several di�erent commodi-

ties from their respective sources to their sinks in a single network so that the total amount of


ow going through each edge is no more than its capacity. Associated with each commodity

is a demand, which is the amount of that commodity that we wish to ship. In the min-cost

multicommodity 
ow problem, each edge has an associated cost and the goal is to �nd a 
ow

of minimum cost that satis�es all the demands. Multicommodity 
ow arises naturally in many

contexts, including virtual circuit routing in a communication network, VLSI layout, scheduling,

and transportation, and hence was extensively studied [5, 7, 17, 11, 15, 16, 2, 13].
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Since multicommodity 
ow approaches based on interior point methods for linear program-

ming lead to high asymptotic bounds on running time, recent emphasis was on designing fast

combinatorial approximation algorithms. If there exists a 
ow of cost B that satis�es all the

demands, the goal of an (�; �)-approximation algorithm is to �nd a 
ow of cost at most (1+�)B

that satis�es (1� �) fraction of each demand.

The main result of this paper is anO�(kmn2 log(CU)) deterministic approximation algorithm,1

where n, m and k denote the number of nodes, edges, and commodities, respectively, C and U

denotes the maximum cost and the maximum capacity, respectively; the constant in the big-O

depends on ��1 and ��1. The fastest previously known deterministic approximation algorithm

for min-cost multicommodity 
ow problem, due to Plotkin, Shmoys, and Tardos [12], runs in

O�(k2m2 log(CU)) time2 for constant � and �. Our algorithm represents a signi�cant improve-

ment in the running time when km � n2, which is the case for majority of multicommodity


ow problems arising in the context of routing in high-speed networks and VLSI layout. For

comparison, the best approximation algorithm based on interior point techniques, is due to

Kamath and Palmon [6], and is slower by a factor of 
(k1:5
p
m=n) for constant �.

Combinatorial approximation algorithms for various variants of multicommodity 
ow can

be divided according to whether they are based on relaxing the capacity [14, 9, 10, 12] or

conservation constraints [1, 2]. In particular, the algorithm in [12] is based on relaxing the

capacity and budget constraints. In other words, the algorithm starts with a 
ow that satis�es

the demands but does not satisfy either the capacity or budget constraints. It repeatedly

reroutes commodities in order to keep demands satis�ed while reducing the amount by which

the current 
ow over
ows the capacities or overspends the budget.

Recently, Awerbuch and Leighton [1, 2] proposed several algorithms for multicommodity


ow without costs that are based on relaxing the conservation constraints. More precisely, these

algorithms do not try to maintain a 
ow that satis�es all of the demands. Instead, they maintain

a pre
ow like in the single commodity 
ow algorithms of Goldberg and Tarjan [3, 4]. These

algorithms repeatedly adjust the pre
ow on an edge-by-edge basis, with the goal of maintaining

capacity constraints while making pre
ow closer to a 
ow. One of the main advantages of

this approach is that it leads to algorithms that can be naturally implemented in a distributed

system.

The main problem of extending the algorithms in [1, 2] to the min-cost case is the fact that

these algorithms are based on minimizing (at each step) a function that de�nes the penalties

for not satisfying the conservation constraints. The reason these algorithms are fast is that this

function is separable, i.e. it is a sum of non-linear terms where each term depends on a single

edge, and thus this function can be minimized on an edge-by-edge basis. A natural extension

of this approach to the min-cost case is to introduce an additional penalty term that depends

on the cost of the current pre
ow. Unfortunately, the resulting function is non-separable since

this term has to be non-linear for the technique to work. This, in turn, leads to an algorithm

that has to perform a very slow global optimization at each step. In fact, this optimization

does not seem to be much easier than solving the original problem.

1We say that f(n) = O�(g(n)) if f(n) = O(g(n) logk n) for constant k.
2Randomized version of this algorithm runs faster by a factor of k.
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In this paper we propose a di�erent approach that allows us to deal with the min-cost

multicommodity 
ow case. Our algorithm builds on the feasibility multicommodity algorithm

of Awerbuch and Leighton [2]. As in their algorithm, we relax the conservation constraints.

In addition, we relax the budget constraint. Our algorithm maintains a pre
ow that always

satis�es capacity constraints; the pre
ow is gradually adjusted through local perturbations in

order to make it as cheap and as close to 
ow as possible. The main innovation lies in the pair

of two functions { one that is separable (can be minimized on an edge-by-edge basis) and one

that is not separable, that are used to guide the 
ow adjustment at each step. Essentially, the


ow adjustment is guided by the separable function that is rede�ned at each step, while the

progress is measured by the other function, which is non-separable.

Our algorithm can be viewed as a generalization of the algorithm in [2] to the min-cost case,

and as such preserves some of the advantages of that algorithm. In particular, the edge-by-edge

adjustment of the 
ow, done by our algorithm, is inherently parallel. The min-cost multicom-

modity 
ow algorithm in [12] is based on repeated computation of shortest paths. Although this

computation can be done in NC, it requires n3 processors, making it impractical. For the case

where a linear number of processors is available (one for each variable, i.e. commodity-edge

pair), the algorithm in [12] runs in O�(kmn logCU) time for constant � and �. In contrast,

our algorithm runs in O�(mn) time. We believe that the inherent parallelism in our algorithm,

combined with locality of reference, will lead to e�cient implementation on modern superscalar

computers.

Recently, after the publication of the preliminary version of this paper, Karger and Plotkin

have discovered a new min-cost multicommodity 
ow algorithm [8]. Their algorithm is based

on capacity relaxation, and outperforms the algorithm described here in a sequential setting.

Section 3 presents the continuous version of the algorithm and proves fast convergence

assuming that at each iteration the algorithm computes an exact minimization of a quadratic

function for each edge. In Section 4 we show how to reduce the amortized time per iteration by

using a rounding scheme that allows us to compute approximate minimization at each iteration.

Section 5 presents a proof that this rounding does not increase the total number of iterations.

2 Preliminaries and De�nitions

An instance of the multicommodity 
ow problem consists of a directed graph G = (V;E), a

non-negative capacity u(vw) for every edge vw 2 E, and a speci�cation of k commodities,

numbered 1 through k, where the speci�cation for commodity i consists of a source-sink pair

si; ti 2 V and a non-negative demand di. We will denote the number of nodes by n, and the

number of edges by m. We assume that m � n, and that the graph G is connected and has no

parallel edges.

A multicommodity 
ow f consists of a non-negative function fi(vw) on the edges of G for

every commodity i, which represents the 
ow of commodity i on edge vw. Given 
ow fi(vw),

the excess Exi(f; v) of commodity i at node v is de�ned by:
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Exi(f; v) = di(v)�
X

w:vw2E

fi(vw) +
X

w:wv2E

fi(wv);(1)

where di(si) = di, di(ti) = �di and di(v) = 0 otherwise. Since the algorithm will update the

demands di, we will use d
�
i to denote the original demands.

A 
ow where all excesses are zero is said to satisfy the conservation constraints. A 
ow

satis�es capacity constraints if
P

i fi(vw) � u(vw) for all edges vw. A 
ow that satis�es both

the capacity and the conservation constraints is feasible.

Muticommodity 
ow with costs problem is to �nd a feasible multicommodity 
ow whose

cost with respect to a given nonnegative cost vector c is below a given budget B:X
vw

f(vw)c(vw)� B:

During the description of our algorithm it will be convenient to work with pre
ow, which

is a 
ow that satis�es capacity constraints but does not necessarily satisfy the conservation

constraints. An (�; �)-approximation to the multicommodity 
ow problem is a feasible 
ow

that satis�es demands (1 � �)di and whose cost does not exceed (1 + �)B. An (�; �)-pre
ow

is a pre
ow of cost at most (1 + �)B where the sum of the absolute value of excesses of each

commodity i does not exceed �di. Note that such pre
ow can be transformed into an (�; �)-

optimal solution in O(kmn) time.

3 Continuous algorithm

In this section we present the (slow) \continuous" version of the min-cost multicommodity 
ow

algorithm. The improvement in running time due to rounding is addressed in the next section.

If a feasible solution of cost B=(1+ �) satisfying all the demands exists, the algorithm produces

an (O(�); O(�))-pre
ow. We present here the algorithm for directed case; the undirected case

can be treated similarly. We assume without loss of generality that the minimum node degree

is m

2n
.

3.1 The Algorithm

The algorithm starts with zero 
ow, which is a valid pre
ow. For every node pair v; w such

that vw 2 E or wv 2 E and commodity i, it maintains an excess Exi(f; vw).
3 The excesses

Exi(f; vw) are maintained such that for every commodity i at node v, the excess Exi(f; v) as

de�ned by (1) is equal to the sum of Exi(f; vw) for all w such that vw 2 E or wv 2 E. Given

a 
ow f , we de�ne the following potential function:

� = �1 + 
�2
~�1

3Note that, in general, Exi(f; vw) 6= Exi(f;wv).
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where

�1 =
X

i;vw2E or wv2E

exp

�
�
Exi(f; vw)

d�i

�
;

�2 =
1

B

X
e2E

c(e)f(e):

We use d�i to denote the original demand of commodity i. ~�1 is the current approximation to

the current value of �1 and should satisfy:

(1 + �)�1�1 � ~�1 � (1 + �)�1:(2)

As we show below, the best performance is achieved for

� = 8��1m log(2mk);


 = ��=(2m):

Roughly speaking, �1 measures how close the current pre
ow is to a 
ow and �2 measures how

close the cost of the current 
ow is to the budget B. Unfortunately, it is not clear how to use

� to directly measure the progress of the algorithm, since it is rede�ned each time �1 changes

by more than a constant factor. Instead, we de�ne another potential function:

	 = log
�1

2mk
+




1 + �
�2:

The algorithm starts from the zero 
ow and proceeds in phases. In the beginning of a phase,

we choose � = �m

16�2n
	0, where 	0 is the value of potential function 	 in the beginning of the

phase. Each phase proceeds in iterations, where each iteration consists of the following steps:

Algorithm 1: (single iteration)

1. Add capacity �u(vw) to each edge vw 2 E. Change demand of each commodity i:

di = di + �d�i , where d�i is the original demand of commodity i. Update the value of

excesses accordingly.

2. Find the increment �f in the 
ow vector f that minimizes � under the constraint 0 �
�fi(vw) � �d�i and

P
�fi(vw) is less then the available capacity. Update f = f + �f .

3. Recompute new excess Exi(f; v) at each node and distribute it equally among the edges

incident to this node by setting Exi(f; vw) = Exi(f; v)=�(v), where �(v) is the degree of

v.

4. Update the current value of ~�1, if necessary.

A phase is terminated either after 1=� iterations or when the value of 	 falls below 	0=2. In

the end of a phase, we scale down all the 
ows, the demands, and the capacities (and hence all
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the excesses) by a factor of 1+ r�, where r is the number of iterations in this phase. Note that

in the end of each phase the capacities and the demands are equal to the original capacities and

the demands. Moreover, since we scale 
ows and capacities by the same factor, the pre
ow in

the end of each phase satis�es the original capacity constraints.

The second step is the heart of the algorithm. Since function � is separable, i.e. can be

written as a sum of functions where each one depends on the 
ow on a single edge, the algorithm

computes change in 
ow �f by minimizing the following function independently for each edge

vw 2 E:

kX
i=1

�
exp

�
�
Exi(f; vw)��fi(vw)

d�i

�
+ exp

�
�
Exi(f; wv) + �fi(vw)

d�i

��
+




B
~�1c(vw)�fi(vw):

3.2 Bounding number of phases

In this section we show a bound on the number of phases of Algorithm 1. Initially, we assume

that each phase is executed exactly as stated above, i.e. the minimization in step 2 and the

excess rebalancing at step 3 are computed exactly. First we show that su�ciently small value

of 	 implies that the current 
ow is close to optimum.

Lemma 3.1 If 	 � (1 + �)
, then the current pre
ow is (2�; 3�)-optimum.

Proof: Assume that the current pre
ow is not (2�; 3�)-optimum. There can be two cases: either

there exists an edge vw with excess Exi(f; vw) > �d�i =m or the current cost of the 
ow exceeds

(1 + 3�)B. In the second case, �2 > (1 + �), and hence the fact that �1 � 2mk implies that

	 > (1 + �)
. If there exists an edge vw with excess Exi(f; vw) > �d�i =m,

�1 > exp(��=m) � (2m)8k8:

Thus:

log
�1

2mk
� 7 log(2mk) = 1:75��=(2m)> (1 + �)


when � < 0:75.

Observe that 	 might increase during an iteration. On the other hand, the rescaling of

the demands, 
ows and capacities at the end of each phase halves 	. The main point of the

following lemma is to show that this reduction is signi�cantly larger than the total sum of

increases in a single phase.

Lemma 3.2 The increase in � during a single iteration is bounded from above by:

4�2�2 n

m
�1 +




1 + �
� ~�1:
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We defer the proof of this lemma. Instead, we prove that it implies convergence in a small

number of phases. Lemma 3.2, together with the de�nition of 	 gives a bound on the increase

in 	:

Lemma 3.3 The increase �	 in 	 during a single iteration is bounded by 4�2�2 n

m
+ 
�.

Proof: Let ��1 and ��2 denote the change in �1 and �2 during one iteration, respectively.

Denote the total increase in � during one iteration by �� = ��1 + 
 ~�1��2. Lemma 3.2

implies that:

�	 � log
�1 +��1

�1

+



1 + �
��2 �

1

�1

(��1 + 
��2

�1

1 + �
)

� 1

�1

(��1 + 
 ~�1��2) =
��

�1

� 4�2�2 n

m
+ �

~�1

�1




1 + �
� 4�2�2 n

m
+ �


Note that we used the bounds on ~�1, given by (2).

Lemma 3.4 Let 	0 and 	s be the value of the potential function 	 at the beginning of a phase and

at the end of this phase (after scaling of the demands and capacities), respectively. If 	0 � 
(1+�)

then 	s � (1� �=4)	0.

Proof: Observe that scaling down of demands and 
ows at the end of a phase can not increase

	. Hence, the claim holds for the case when the phase was terminated because 	 fell below

	0=2. Otherwise, demands and 
ows are halved at the end of the iteration, causing halving

of the excesses. This corresponds to taking a square root of each one out of 2mk terms in �1,

which causes log[�1=(2mk)] to go down by at least a factor of 2. Since �2 is linear in the value

of the 
ow, we have:

	s � 1

2

�
	0 + (4��2 n

m
+ 
)

�

= 	0 �
1

2

�
	0 � (4��2 n

m
+ 
))

�

� 	0 �
1

2

�
�	0 � 4��2 n

m

�

where the last equality is implied by the assumption that 	0 > (1 + �)
. The desired result

can be obtained by choosing

� =
�

16�2 n

m

	0:

Initial value of 	 is bounded by O�(�); by Lemma 3.1 the algorithm terminates when it

had succeeded to reduce 	 to O(
) = O(��=m). Hence we have the following theorem:
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Theorem 3.5 The algorithm terminates in O(��1 log(m��1)) phases, where each phase consists

of O(��1) = O�(��1��2mn) iterations.

Proof of Lemma 3.2: Consider a min-cost multicommodity 
ow f� that satis�es the original

demands d�i . Note that �f
�
i (vw) is one of the possibilities for �fi(vw) computed in the second

step of each iteration. Hence, the total increase in � in a single iteration is not worse than the

increase in � if we set

8i : �fi(vw) = �f�i (vw):

In order to bound increase in �, we will use the fact that ex+t � ex+ tex+ t2ex for jtj � 1=2.

Observe that our choice of � and � implies that ��d�i � d�i =2 for all i, and hence we can use the

above second order approximation. Consider the contribution to � of the change in excesses

due to increase in demand of every commodity i by �d�i and due to 
ow change �f = �f�.

Observe that for every i, this operation does not change excesses of commodity i at its source

si and its sink ti. Recall that we have assumed that there exists a solution of cost B=(1 + �).

Thus, the cost of f� is bounded by B=(1 + �). To simplify notation, denote

�i(f; v; w) = exp

�
�
Exi(f; vw)

d�i

�
:

Hence the increase in � during a single iteration can be bounded by:

X
i;

v 62fsi;tig

��
X

w:vw2E

(�i(f; w; v) � �i(f; v; w))
f�i (vw)

d�i

+
X
i;

vw2E

�2�2 (�i(f; w; v) + �i(f; v; w))

�
f�i (vw)

d�i

�2

+�



1 + �
~�1:

(3)

We will bound each term in equation (3) separately. In order to bound the �rst term,
decompose f� into a collection of 
ow paths from sources to their respective sinks. Consider

ow path P of commodity i from si to ti and denote its value by �f�i (P ). The contribution of
this 
ow path to the �rst term is bounded by:

X
wv2P
vw02P

�� (�i(f; w; v)� �i(f; v; w
0))

f�i (P )

d�i
(4)

Since the excesses associated by node v with all its incident edges are the same (by Step 3

of Algorithm-1), the above contribution is zero. The fact that f�i (vw) � d�i , implies that the

second term can be bounded by:
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X
i;vw2E

�2�2 (�i(f; w; v) + �i(f; v; w))
f�i (vw)

d�i

Since we have assumed that the minimum degree is m

2n
, the contribution to this term of a


ow path P of value f�i (P ) is bounded by:

X
wv2P
vw02P

�2�2 (�i(f; w; v) + �i(f; v; w
0))

f�i (P )

d�i
(5)

� 4�2�2
n

m

f�i (P )

d�i
�1:

The claim of the lemma follows from the fact that the sum of 
ow values fi(P ) over all 
ow

paths of commodity i in the 
ow f� is exactly d�i .

Theorem 3.5 implies that for constant � and �, we can �nd an (�; �)-approximate pre
ow

in O�(mn) iterations, where each iteration consists of minimizing convex function (3) for each

edge. In fact, it is easy to see that the proof of Lemma 3.2 remains unchanged if we will

optimize over a second-order approximation to (3). Thus, each iteration can be implemented

in O(mk log k) time, which implies the following theorem.

Theorem 3.6 Algorithm-1 can be implemented to run in O�(��2��2km2n) time.

Observe that since each iteration can be implemented in O(log k) time using km processors

on PRAM, the algorithm can be implemented to run in O�(��2��2mn) time in parallel, as

mentioned in the introduction.

4 Improving The Running Time

Each iteration of Algorithm-1, involves optimizing a quadratic function for each edge, which

can take up to O(mk log k) time per iteration. Intuitively, the problem lies in the fact that large

fraction of the 
ow updates made by the continuous algorithm do not lead to a su�ciently large

progress toward the solution. In this section, we will present a variation of Algorithm-1 which

not only simpli�es the algorithm but ensures that each 
ow update leads to a substantial

progress. The improvement is based on the \packetizing" technique introduced in [2].

In Section 5 we will prove that this algorithm converges to a solution in asymptotically the

same number of phases as Algorithm-1.

The �rst modi�cation is to restrict Step 2 of the algorithm so that on any edge it considers

9



for optimization only those commodity/edge pairs (i; vw 2 E) that satisfy:

Exi(f; vw) � Exi(f; wv) + 4�d�i(6)

Exi(f; vw) � ��di
where � = log(mk��1��1)=�. All the 
ow and excess vectors considered henceforth will be

restricted to the subspace determined by this restriction. Also, the algorithm uses a new set of

excesses ~Ex, de�ned as follows:

~Exi(f; vw) =

(
Exi(f; vw)� �di vw 2 E

Exi(f; vw) + �di wv 2 E
:

Let �0
(i;vw) (Ex) be the negated gradient of the potential function w.r.t. the 
ow vector for

commodity i in edge vw 2 E, de�ned as:

�0
(i;vw) (Ex) = �




B
c(vw)~�1 +

�

di

�
exp(�

Exi(f; vw)

d�i
)� exp(�

Exi(f; wv)

d�i
)

�
:

Note that since the edges and commodities obey condition (6) the gradient vector �0( ~Ex)

is non-negative. The updated algorithm is as follows:

Algorithm-2 (single iteration)

1. Add capacity �u(vw) to each edge vw 2 E. Change demand of each commodity i:

di = di + �d�i , where d�i is the original demand of commodity i. Update the value of

excesses accordingly.

2. Find an unsaturated edge and a commodity i satisfying condition (6) with the largest

gradient �0
(i;vw)

�
~Ex
�
and move a unit �d�i or an amount that is su�cient to saturate that

edge (whichever is less). Update the 
ow and excesses. Observe that this is equivalent

to �nding the change �f in the 
ow vector f that maximizes
P

�0
(i;vw)

�
~Ex
�
�fi(vw)

under the constraints that 0 � �fi(vw) � �d�i and
P

i�fi(vw) does not exceed available

capacity.

3. Recompute new excesses Exi(f; vw) at each node v. Rebalance excesses inside each node

to within an additive error of �d�i by moving excess in increments of at least �d�i .

4. Update the current value of ~�1, if necessary.

As in Algorithm-1, a phase is terminated either after 1=� iterations or when the value of

	 falls below 	0=2. In the end of a phase, we scale down all the 
ows, the demands, and the

capacities (and hence all the excesses) by a factor of 1+ r�, where r is the number of iterations

in this phase.
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Using a heap on every edge-node pair, it is straightforward to implement Algorithm-2

to run in O(log k) time per excess update. Excess updates can be divided into two types

depending on whether or not the the update was large (exceeded �d�i ) or small. Observe that if


ow of commodity i on edge vw was updated by less than �d�i , the only reason this 
ow might

not be updated again in the next iteration is if for some commodity j, the excess Exj(f; vw)

or Exj(f; wv) was changed by a multiple of �d�j during rebalancing in Step 3 of the current

iteration. If, on the other hand, the excess updates add-up to �di over several iterations, then

we can precompute the number of iterations and do one single excess update of �di at the end.

Hence, the work associated with each update can be ammortized over the large updates, that

require O(log k) work each. Thus, it is su�cient to bound the number of large excess updates.

Theorem 4.1 The total number of large updates to excesses in a single phase is bounded by

O�(��3��2kmn2):

Proof: Let � be de�ned as in condition (6), and consider a potential function

� =
X

i;vw2E

max

�
�� � 2�;

Exi(f; vw)

di

�2

Let 	0 denote the value of 	 at the start of the phase. The fact that at the start of the phase,

log[�1=(2mk)] � 	0 together with the fact that 	0=� � 2�, implies that the initial value of �

is bounded by O(mk	2
0=�

2 +mk�2). Increase in � due to increase in demands by �d�i during

an iteration is bounded by

O(k�(	0=� + � + �)) = O(k�(	0=�+ �)):

Thus, the total increase in � throughout a phase is bounded by O(k(	0=� + �)). Note that

each time we move �d�i amount of excess across an edge or within a node, the decrease in � is


(�2), and hence the total number of updates can be bounded by

1

�2
O(mk	2

0=�
2 +mk�2 + k(	0=�+ �))

and the claim follows from the observation that


(
�

m
�) � 	0 � O(�):

Thus, we have the following Theorem:

Theorem 4.2 Single phase of Algorithm-2 can be implemented to run in O�(��3��2kmn2) time.
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5 Bounding the number of phases of Algorithm-2

In this section, we analyze the behavior of Algorithm-2 during a single phase and show a

bound on the number of phases needed for obtaining an (�; �)-approximate pre
ow. There are

several important di�erences between Algorithm-1 and Algorithm-2. First, instead of exact

rebalancing of excesses inside each node, we execute an approximate rebalancing. Second, we

ignore commodities on edges with small potential di�erences. Third, we do not compute 
ow

increment that leads to the largest reduction in the potential function.

First, we will show that the approximate rebalancing and ignoring commodity/edge pairs

with small potential di�erence does not increase the number of phases by more than a constant

factor.

Lemma 5.1 If redistribution of excesses in Step 3 of Algorithm-1 is done within an additive error

of 2�d�i and if we limit Step 2 to include only those edges and commodities that satisfy condition

(6) then the increase in � during a single iteration is bounded from above by:

O

�
�2�2 n

m

�
�1 +




1 + �
� ~�1:

Proof: The main ideas in the proof are that relatively small imperfections during rebalancing in

Step 3 add-up to only a minor increase in the potential function and that we do not lose much

by ignoring edge-commodity pairs that do not give large reduction in the potential function.

Step 3 of Algorithm-2 redistributes excesses inside nodes within an additive error of �d�i . That

is:

8i; v 2 V; w; w0 adjacent to v either :

jExi(f; vw)� Exi(f; vw
0)j � 2�d�i

or � �d�i � maxfExi(f; vw);Exi(f; vw0)g:

Since for x � 1 we have ex � 1 � 3x, the contribution to the �rst term in (3) of a 
ow path

P of value f�i (P ) can be bounded by:

O

0
BB@ X

wv2P
vw02P

�2�2min(�i(f; w; v); �i(f; v; w
0))

f�i (P )

d�i

1
CCA+ O

0
BB@ X

wv2P
vw02P

�� exp(���)
f�i (P )

d�i

1
CCA :

If we consider the error due to disregarding commodity/edge pairs that have very small

excesses i.e.

Exi(f; vw) � ��di

12



then the associated error can be bound by

O

0
BB@ X

wv2P
vw02P

�� exp(���)f
�
i (P )

d�i

1
CCA :

Now consider the error introduced by disregarding commodity/edge pairs that do not satisfy

Exi(f; vw) � Exi(f; wv) + 4�d�i :(7)

Again using the fact that for x � 1, we have ex � 1 � 3x, the error associated with edge vw,
commodity i and path P can not exceed:

��

�
exp

�
�
Exi(f; vw)

d�i

�
� exp

�
�
Exi(f; wv)

d�i

��
f�i (P )

d�i
� �� exp

�
�
Exi(f; wv)

d�i

�
(exp (4��)� 1)

f�i (P )

d�i

� O

�
�2�2 exp

�
�
Exi(f; wv)

d�i

�
f�i (P )

d�i

�
:

By summing up over all the 
ow paths and over all the commodities, substituting the value

of �, and using the fact that �1 � 2mk, we see that each of the three di�erent types of error

can be bounded by

O(�2�2 n

m
�1):

Thus, increase in � during a single iteration remains bounded by

O

�
�2�2 n

m

�
�1 +




1 + �
� ~�1:

We shall use the notation Ex+�f to indicate the excesses that result after updating the 
ow

by amount �f . The increase in potential function due to incrementing the demand depends

only on the excesses at the beginning of the iteration and is independent of the technique used

for incrementing the 
ow. Hence we need to bound only the change in potential function due

to the 
ow updates. We �rst claim that using ~Ex instead of Ex does not adversely a�ect the

potential function reduction. The proof of the following Lemma is essentially identical to the

proof of Lemma 5.1.

Lemma 5.2 If f� is the optimal solution then

�( ~Ex+ �f�)� �( ~Ex) � O

�
�2�2 n

m

�
�1 +




1 + �
� ~�1:

Lemma 5.3 The change in potential function due to the 
ow increment �f used by Algorithm-2

can be bounded by

�(Ex+�f)� �(Ex) � �( ~Ex+ �f�)� �( ~Ex):
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Proof: Since for all i and vw 2 E the 
ow �f satis�es 0 � �fi(vw) � �di and the excesses

satisfy condition (6), we know that �0(Ex + �f) � �0( ~Ex) . Using �rst-order Taylor series

expansion we get

�(Ex+ �f)� �(Ex) � ��fT�0(Ex+�f) � ��fT�0( ~Ex):

Furthermore, since �f is the optimal solution in the space (that includes �f�) that maximizes

the linear objective �fT�0( ~Ex) we have

��fT�0( ~Ex) � ��f�T�0( ~Ex) � �( ~Ex+ �f�)� �( ~Ex):

Hence the result follows.

Combining Lemmas 5.2 and 5.3 we conclude that the increase in the potential function for

the modi�ed algorithm is a constant multiple of the bound obtained for Algorithm-1. Hence

we have the following theorem.

Theorem 5.4 Algorithm-2 terminates in O(��1 log(m��1)) phases.

Using the above theorem together with Theorem 4.2, we get the following claim:

Theorem 5.5 An (�; �)-approximation to the minimum-cost multicommodity 
ow problem can be

obtained in O�(��3��3kmn2) time.
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