
Improved Interior Point Algorithms for Exact and Approximate solution

of Multicommodity Flow Problems

Anil Kamath
�

Omri Palmon
y

Abstract

In this paper, we present a new interior-point based polynomial algorithm for the multicom-

modity 
ow problem and its variants. Unlike all previously known interior point algorithms for
multicommodity 
ow that have the same complexity for approximate and exact solutions, our algo-

rithm improves running time in the approximate case by a polynomial factor. For many cases, the

exact bounds are better as well.

Instead of using the conventional linear programming formulation for the multicommodity 
ow

problem, we model it as a quadratic optimization problem which is solved using interior-point
techniques. This formulation allows us to exploit the underlying structure of the problem and

to solve it e�ciently.

The algorithm is also shown to have improved stability properties. The improved complexity
results extend to minimum cost multicommodity 
ow, concurrent 
ow and generalized 
ow problems.

1 Introduction

The multicommodity 
ow problem is the problem of �nding several network 
ows, each satisfying a
demand between given source and sink, such that the total 
ow on each edge obeys capacity. The
multicommodity 
ow problems arises naturally in many contexts, including virtual circuit routing in
communication networks, VLSI layout, scheduling, and transportation, and hence has been extensively
studied [4, 6, 16, 9, 14, 15]. Though a natural extension of the single commodity 
ow problem, all
known combinatorial algorithms developed for the single commodity case do not readily extend to
the multicommodity 
ow problem. This is because many of the properties like unimodularity of the
constraint matrix in the linear programming formulation and the max-
ow min-cut relation do not
apply to the multicommodity 
ow case.

In this paper, we present a new approach to the multicommodity 
ow problem that is based on
the interior point method. Traditional interior-point based algorithms for this problem solve a linear
programming (LP) formulation of the problem. The LP formulation has two types of constraints, one
to enforce conservation and the second for capacity. The conservation constraints are independent over
commodities and the capacity constraints over edges. In this paper, we try to use the separability of the
constraints to design an e�cient algorithm for the problem. We retain the relatively simpler capacity
constraints in the linear form, but de�ne a quadratic objective function to enforce 
ow conservation.
The resulting quadratic programming problem (QP) can then be solved e�ciently using interior-point
techniques. For a multicommodity 
ow problem that has n nodes, m edges and k commodities, the new
approach has an improved complexity when m < n0:9k0:9. Moreover since in our formulation the region
of optimization is de�ned by simple separable linear conditions, we can �nd a good starting point to the

�
Department of Computer Science, Stanford University. Research supported by U.S. Army Research O�ce Grant

DAAL-03-91-G-0102, by NSF grant number CCR-9304971 and by Terman Fellowship of Prof. Plotkin.

y
Department of Computer Science, Stanford University. Research supported by a grant from Stanford O�ce of

Technology Licensing, by NSF grant number CCR-9304971 and by Terman Fellowship of Prof. Plotkin.



A. Kamath and O. Palmon

paper exact solutiona � approximationa

Vaidya [16] with FMMb k2:5m0:5n2Lc same

Vaidya [16] without FMM k3m0:5n2:5Lc same

Murray [11] k2:5m1:5nLc same

Leighton et. al. [8], Radzik [13] d kmn��2

Plotkin et. al. [12] (randomized) km2��2

Plotkin et. al. [12] k2m2��2

Kamath et. al. [5] kmn2��6

Current paper

Variant 1 k2:5m1:5nLe k2:5m1:5n log ��1

Variant 2 with FMM (k0:5m2:7 + km1:5n1:2 + km2:5)Le (k0:5m2:7 + km1:5n1:2 + km2:5) log ��1

Variant 2 without FMM (k0:5m3 + km1:5n1:5)Le (k0:5m3 + km1:5n1:5) log ��1

a
These are asymptotic complexities without log factors

b
Fast Matrix Multiplication

cL not speci�ed.

d
without costs.

eL = m logm+ logDU .

Figure 1: Comparison of Complexities.

algorithm and hence improve the running time by a polynomial factor whenever we need an approximate
solution to the problem.

We present two variants of our algorithm. Both variants compute an exact solution in O(k0:5m0:5L)
interior point iterations, where L = m logm + log(DU ), D is the biggest demand and U the
biggest capacity . The main step in each interior-point iteration involves solving a linear system of
equations. The �rst variant computes a single iteration in O(k2mn) time and the second requires
O(m2:5+k0:5n1:5m) time. Using fast matrixmultiplication the complexity of computing a single iteration
in the second variant can be improved to O(m2:2 + k0:5m2 + k0:5mn1:2 + kn2). The fastest previously
known multicommodity 
ow algorithm was due to Vaidya [6, 16], and achieves a complexity bound
of O(k2:5m0:5n2L log(nDU )), with fast matrix multiplication techniques and O(k3m0:5n3L log(nDU ))
without fast matrix multiplication. The complexities per iteration are O(n2k2) when using fast matrix
multiplication, and O(n2:5k2:5) when not. Even though fast matrix multiplication has better asymptotic
bounds it is considered to be impractical for any reasonable sized problems. Hence we report the
complexities with and without fast matrix multiplications. Our algorithm improves on the previously
best known complexity bound when m < n0:9k0:9. For example, when the multicommodity 
ow problem
has k = �(n) commodities and m = �(n) edges our algorithm is faster than the best previously known
algorithm by a factor of �(n). The same results apply to the minimum cost multicommodity 
ow and
the concurrent 
ow problems.

Most practical applications of the multicommodity 
ow problem do not need the exact solution but
only need to solve it up to a �nite precision. When this precision is small, relative to the problem size,
our algorithm is better than previous algorithms by a polynomial factor, in all cases. The improvement
in running time is possible because we can compute a good starting point for our algorithm. In previous
formulations of multicommodity 
ow as an LP problem the polytope is de�ned by both capacity and
conservation constraints. Because of the way these constraints interleave it does not seem possible to
compute a good starting point for these algorithms. Thus their asymptotic complexities for computing
both approximate and exact solutions are the same. On the other hand, the region of optimization in our
formulation is de�ned by only simple separable capacity constraints. Hence it is easier to compute a good
starting point from which we can converge faster to an approximate solution. To get the complexities
of our algorithms for computing �-approximate solutions, one can replace L (which is at least nk) by
lognDU��1. For example, in the case described above (k = �(n) and m = �(n)), our complexity is an
improvement by a factor of �(n3= log ��1) over previously known results. Moreover, previously known



Interior Point Algorithms for Multicommodity Flow

interior point algorithms for multicommodity 
ow [6] required to work with O(L) bits. If b bits of
precision are needed, then our algorithm needs to work with O (b+ log(nDU )) bits of precision.

Recently, several combinatorial methods have been suggested to compute approximate solutions to
the multicommodity 
ow problem [8, 1, 13, 12, 5]. Leighton et. al. [8] provided an algorithm that runs
in O�(k2mn��2) deterministic time1 and O�(kmn��2) randomized time. Radzik [13] showed how to
derandomize this algorithm without increasing the complexity . Best running times for the minimum
cost multicommodity 
ow problem are O�(k2m2��2) ([12]) and O�(kmn2��5) ([5]). Though for constant
�, these algorithms have better running times, their complexity increases exponentially with the desired
precision.

The algorithm extends to the generalized 
ow problem and the generalized multicommodity 
ow
problem. Our complexity bound for the generalized multicommodity 
ow is the same (up to log factors)
as for the multicommodity
ow problem. For the single commoditygeneralized 
ow problem, our running
time is O

�
m1:5n2 log(nUD
)

�
(where 
 is the biggest ratio between two generalized 
ow coe�cients)

which matches the best previously known result in [16] and [11].

Section 2 will describe the formulation of the multicommodity 
ow as a QP problem. Section 3
will describe the algorithm. Section 4 will describe methods to e�ciently solve the linear system that
arises in the formulation of the problem. Section 5 will describe how to obtain the starting point to the
algorithm. Section 6 will prove the numerical stability of the algorithm. Section 7 will show how an
exact solution is obtained. Section 8 will describe how to extend the algorithm to solve the minimum
cost, concurrent 
ow and generalized multicommodity 
ow problems.

2 Multicommodity 
ow as QP

An instance of the multicommodity 
ow problem consists of a directed graph G = (V;E), a non-negative
capacity u(e) for every edge e 2 E, and a speci�cation of k commodities, numbered 1 through k, where
the speci�cation for commodity i consists of a source-sink pair si; ti 2 V and a non-negative demand
di. We will denote the number of nodes by n, and the number of edges by m. We assume that m � n,
and that the graph G is connected and has no parallel edges. Let U be the biggest capacity and D the
biggest demand (all capacities and demands are greater than 1).

In this section, we shall formulate multicommodity 
ow as a QP problem. The problem will have

m(k+1) variables. De�ne the index set K
def
= f1; : : : ; k; sg . Let xle be the 
ow of commodity l = 1; : : : ; k

on edge e and let xse be the unused capacity (slack variable) for edge e. A feasible multi-commodity 
ow
solution has to obey conservation and capacity constraints.

The capacity constraints are written as linear equations. De�ne A as an m(k + 1) � m matrix
constructed from k + 1 blocks of identity matrices of dimension m �m:

A
def
= (Im�m Im�m � � �Im�m) :

Let �u 2 RE be the vector of capacities. The capacity constraints can then be written as

Ax = �u x � 0:

The conservation constraints are enforced through the objective function. We will de�ne a convex
quadratic objective function (positive semi-de�nite form) which has value 0 if and only if the 
ow
variables obey conservation. Denote the vector of 
ow variables for the lth commodity by xl 2 RE. For

1We say that f(n) = O�(g(n)) if f(n) = O(g(n) logk n) for constant k.



A. Kamath and O. Palmon

every v 2 V de�ne the excess of the lth commodity at vertex v to be

Exv(x
l) =

X
w:wv2E

xlwv �
X

w:vw2E

xlvw:

The conservation constraints are enforced by computing the minimum of the quadratic function

E(x)
def
=

X
v2V;l�k

�
Exv(x

l)� hl(v)
�2
;

where hl(sl) = dl, h
l(tl) = �dl and hl(v) = 0 otherwise. To write the matrix formalization, we will

de�ne B, an n�m matrix that calculates the excesses of the 
ow as

Bu;e=vw =

8<
:

�1 u = v

1 u = w

0 otherwise.

Now de�ne Q as an m(k+1)�m(k+1) matrix composed of (k+1)� (k+1) blocks of size m�m each:

Q
def
=

0
BBBBBB@

BTB 0 � � � 0 0

0 BTB
...

...
...

. . . 0
...

0 � � � 0 BTB 0
0 � � � � � � 0 0

1
CCCCCCA

De�ne clvw = hl(v)�hl(w) for l 6= s and csvw = 0, then the corresponding QP problem can be written as

min
1

2
E(x) = cTx+

1

2
xTQx s:t: Ax = �u x � 0:

A solution to the QP problem that minimizes E(x) subject to the capacity constraints gives a solution
to the multi-commodity 
ow problem. We shall use a primal-dual algorithm to solve this QP problem.
The algorithm introduces dual variables, ye corresponding to the capacity constraints for every edge e
and the dual slack variables zle for every edge e and l 2 K. The primal-dual feasible polytope W is
de�ned as

W =

�
(x; y; z)

���� x � 0 ; z � 0 ; Ax = �u ;

�Qx+ATy + z � c = 0

�
:

3 The Algorithm

In this section, we show how to solve the resulting QP problem using interior point techniques. The

interior point method, is an iterative method which computes a sequence of points in the interior of
the polytope de�ned by the constraints. The value of the objective function will be improved in each
iteration. The algorithm described in this paper is the same as in [10] but has been adapted to exploit
the underlying structure of the multicommodity 
ow problem.

In the feasible set W , we will de�ne the central path �(�) for every � > 0 as the point that minimizes

E(x)� �
X

l2Ke2E

logxle

subject to the capacity constraints. As � tends to zero, �(�) converges to the optimal solution. The
point �(�) is completely characterized by the following Karush-Kuhn-Tucker conditions:

8e 2 E 8l 2 K xle > 0 zle > 0
8e 2 E 8l 2 K xlez

l
e = �

Ax = �u
�Qx+ ATy + z � c = 0:



Interior Point Algorithms for Multicommodity Flow

The algorithm constructs a series of approximations to the central path until the current point is
su�ciently close to the optimal solution. At each step, given an approximation to a point on the central
path �(�) we will compute an approximation to �(�̂) where �̂ = (1 � �=

p
mk)� (� is a constant). The

approximation will be calculated using the Newton direction associated with the Karush-Kuhn-Tucker
conditions. The Newton direction (�x;�y;�z) will be approximately computed from the following
equations

8e 8l ~zle�x
l
e + ~xle�z

l
e = xlez

l
e � �̂

A�x = 0
�Q�x+AT�y +�z = 0

(3.1)

where ~x and ~z are approximations to x and z respectively.

Now we can state the algorithm (compare to algorithm 3.1 in [10]):
. .
Monteiro-Adler Algorithm for QP

Initialize Set j = 0. Compute a starting point (x0; y0; z0) and the corresponding parameter �0.

Compute while �j > 0:9�2(m(k + 1)n)�1 do

1. Set �j+1 = (1 � �=
p
mk)�j.

2. Compute (�x;�y;�z) solving equations (3.1).

3. Set

(xj+1; yj+1; zj+1) = (xj; yj ; zj)� (�x;�y;�z)

and set j = j + 1.

Round If E(x) � 0:9�2(m(k+1)n)�1 round the solution, otherwise the problem has no feasible solution.

. .

A good starting point is important for proving good complexity bounds in the approximate case
and one such point is presented in section 5. The Newton direction is e�ciently computed by solving a
system of linear equations using one of the procedures described in Section 4. The rounding procedure
is outlined in theorem 3.2.

In order to state the theorems that prove the convergence result for this algorithm, we need the
following de�nitions:

Definition 3.1. A point w = (x; y; z) 2W will be called a � approximation to the central path �(�)
at � if X

e2E;l2K

(xlez
l
e � �)2 � �2�2:

Note that the de�nition of the central path implies that �(�) is the only point that satis�es xlez
l
e = �

for all e and l.

Definition 3.2. A vector ~v will be called a 
 approximation to a vector v if for each i we have

j~vi � vij
~vi

� 
:



A. Kamath and O. Palmon

We will also denote by kvku the Euclidean norm of the vector v normalized by the vector u, i.e.

kvku
def
=

 X
i

�
vi

ui

�2
!1=2

:

Using this notation, we can now state the following main theorem that proves that our algorithm
can compute approximations to the central path �(�) for decreasing values of �.

Theorem 3.1. Let � = � = 
 = 0:1. Let w = (x; y; z) 2 W and � > 0 such that w is a �

approximation to the central path at �. Assume that ~x and ~z are 
 approximations to x and z. Let

�̂ = �(1� �=
p
mk). Consider the point ŵ = w ��w where �w = (�x;�y;�z) solves equations (3.1).

Then we have

1. ŵ 2W

2. ŵ is a � approximation to the central path at �̂

3. kx̂� xkx � 0:28 and kẑ � zkz � 0:28.

Proof. Theorem 3.1 is exactly theorem 4.1 in [10].�

The above theorem implies the convergence of our quadratic optimizationmethod. The next theorem
will provide us with a technique for rounding the solution of the quadratic optimization problem to
compute an �-approximate solution of the multicommodity 
ow problem.

Theorem 3.2. Assume that there is a solution to the multicommodity 
ow problem. Let w =
(x; y; z) 2 W be a � approximation to the central path at � � (1 + �)�1�2(m(k + 1)n)�1. Then we can

obtain in O(kmn) time a solution to the multicommodity 
ow problem that obeys capacity constraints

and for each commodity l, satis�es at least (1� �) fraction of the total demand dl.

Proof. Since there is a solution to the multicommodity 
ow problem the optimal value of E(�) is 0.
Hence current dual value is non-positive. Thus (see section 2 in [10] for theoretical background)

E(x) = (primal value) � (primal value) � (dual value) = (primal dual gap) =X
e;l

xlez
l
e � m(k + 1)(1 + �)� � �2n�1:

Hence for each commodity l, we haveX
v2V

�
Exv(x

l)� hl(v)
�2 � �2n�1

which implies ��Exsl(xl) + dl
��+ ��Extl(xl)� dl

��+ X
v2V nfsl;tlg

��Exv(xl)�� � � � �dl

Now solving a single commodity max 
ow with current 
ow values as capacities will result in a feasible

ow that satis�es at least (1� �) fraction of the demand for each commodity.�

We shall now state the main complexity result for our algorithm. The result follows from various
theorems that we prove in the following sections.

Theorem 3.3. We can �nd an � approximation to the multicommodity 
ow problem (or determine

that no solution exists) in O(m0:5k0:5 log(n��1DU )) iterations. Each iteration can be done in

either O
�
k2mn

�
or O

�
m2:5 + k0:5mn1:5

�
time. The complexity of each iteration can be improved to

O
�
m2:2 + k0:5m1n1:2 + k0:5m2 + kn2

�
using fast matrix multiplication.



Interior Point Algorithms for Multicommodity Flow

Proof. Using theorem 3.2 and theorem 5.1 that is proved in section 5, we can bound the number of
iterations by O(m0:5k0:5 log(n��1DU )). From theorems 4.1 and 4.2, that are proved in the next section,
the overall complexity of the algorithm can be estimated. �

4 Analysis of number of operations per iterations

The dominant factor in the complexity of interior-point algorithms comes from the computation of the
Newton step which involves solving the linear system de�ned in (3.1). In this section, we will describe
two ways for using the underlying structure of the problem to e�ciently compute the Newton step.
In subsection 4.1, we will outline a procedure to solve the equations using conjugate gradient [3]. In
subsection 4.2, we will outline a procedure to solve the equations using matrix inversion and rank one
updates.

Denote by X;Z; ~X; ~Z the diagonal matrices with x; z; ~x; ~z on the diagonal respectively. Denote by
�1 the vector of ones. A symbol with superscript l will denote the part associated with commodity l (or
slack). Using the temporary variables vl 2 RE and Dl a diagonal m � m matrix for every l 2 K, a
generic procedure that uses the matrix structure for solving the linear system (3.1) is outlined below.
(compare to the equations on the bottom of page 47 in [10])
. .
Generic Procedure:

1. Compute the temporary variables vl and Dl for every l 2 K

Dl = ~Zl ~Xl�1

vl = (XlZl�1� �̂Im(k+1)�m(k+1)) ~X
l�1�1:

2. Using Dl and vl we compute �y such that

0
@(Ds)�1 +

X
l2Knfsg

�
Dl +BTB

��11A�y = �

0
@(Ds)�1 vs +

X
l2Knfsg

�
Dl +BTB

��1
vl

1
A :

3. From �y, vl and Dl we compute �x and �z

8l 2 K n fsg �xl =
�
Dl +BTB

��1
(�y + vl)

�xs = (Ds)
�1

(�y + vs)

8l 2 K �zl = vl �Dlxl:

. .

The following claim will be used extensively in the rest of the section

Claim 4.1. Given vectors x 2 RE and y 2 RV we can calculate Bx and BT y in O(m) operations.

Proof. The proof follows immediately from the sparseness of B.�



A. Kamath and O. Palmon

4.1 Computing the Newton step using conjugate gradient. The dominant factor in the
complexity of Generic Procedure is in computing �y in Step 2. It involves solving the linear system,0

@ X
l2Knfsg

�
Dl + BTB

��1
+ (Ds)

�1

1
A�y = b

where

b = �

0
@(Ds)

�1
vs +

X
l2Knfsg

�
Dl +BTB

��1
vl

1
A :

The problem is equivalent to �nding al; l 2 K such that

a1 + � � �+ ak + as = b

8l 2 K n fsg
�
Dl +BTB

�
al = Dsas = �y:

We will �nd these al's using conjugate gradient method. For a description of the conjugate gradient
method see pages 516{526 in [3].

The procedure for solving the equation is the following:
. .
Variant-1:

1. Compute vl and Dl for all l 2 K in the way they are de�ned. Compute b, using conjugate gradient

to compute each of the terms
�
Dl + BTB

��1
vl.

2. De�ne

~D =

0
BBB@

I I � � � I

�Ds D1

...
. . .

�Ds Dk

1
CCCA

~B =

0
BBBB@

0 � � � � � � 0
... BTB
...

. . .

0 BTB

1
CCCCA

Compute b0 2 Rm(k+1) as

b0 =
�
I + ~D�1 ~B

�T
~D�1

�
bT 0 � � � 0

�T
:

where I is Im(k+1)�m(k+1).

3. Compute �a = (as; a1; : : : ; ak) that solves the following equation using conjugate gradient

�
I + ~D�1 ~B

�T �
I + ~D�1 ~B

�
�a = b0:

where I is Im(k+1)�m(k+1).

4. Compute �y = Dsas.

5. Compute �xl and �zl, using conjugate gradient to compute �xl.



Interior Point Algorithms for Multicommodity Flow

. .
To estimate the complexity of the procedure we need the following claims.

Claim 4.2. Given y 2 RE and a diagonal m � m matrix D, we can compute
�
D +BTB

��1
y in

O(mn) operations.

Proof. The solution x should satisfy�
Im�m +D

�
1

2B
T
BD

�
1

2

��
D

1

2 x

�
= D

�
1

2 y:

The matrix Im�m +D� 1

2BTBD� 1

2 is self adjoint and positive de�nite, hence we can use the conjugate
gradient method. Since rankB = n, the conjugate gradient method will converge in n iterations. It
follows from claim 4.1 that each iteration (i.e. multiplying a vector by the matrix) can be done in O(m)
operations.�

Claim 4.3. Given x 2 Rm(k+1) we can compute ~D�1x and ~Bx in O(km) operations.

Proof. We can look at the matrix ~D as a (k + 1) � (k + 1) matrix where each entry is a m � m

diagonal matrix. As a (k + 1) � (k + 1) matrix, computing ~D�1x takes only O(k) \operations" (this is
a diagonal matrix with two rank one updates) where each \operation" involves multiplying an m vector
by a diagonal m �m matrix. Hence computing ~D�1x takes O(km) time.

The complexity of computing ~Bx follows directly from claim 4.1.�

Claim 4.4. Given y 2 Rm(k+1) using conjugate gradient to �nd the x such that

�
Im(k+1)�m(k+1) + ~D�1 ~B

�T �
Im(k+1)�m(k+1) + ~D�1 ~B

�
x = y

will converge in O(kn) iterations.

Proof. Since the matrix is self adjoint and positive de�nite the conjugate gradient method will �nd
a solution. To estimate the number of iterations observe that the matrix can be written as the identity
matrix plus three rank n matrices. Hence the claim follows.�

Theorem 4.1. The complexity of the procedure Variant-1 is O(k2mn).

Proof. The bottleneck for computing one iteration is step 3 which can be computed in O(k2mn)
time, because it is involves O(nk) iterations of conjugate gradient, each with complexity of O(mk).

Step 1 can be done in O(kmn) time by claim 4.2. Step 2 can be done in O(km) time by claim 4.3.
Step 5 can be done in O(kmn) time by claim 4.2. �

4.2 Computing the Newton step using matrix inversion and rank one updates. In the
following procedure, we will show how to e�ciently solve the equations using matrix inversions. We will
use a standard technique �rst proposed in [7] to maintain approximate inverses of the matrices involved.
The approximation to the inverse matrix is updated using rank one update, when an entry in x or z
changes signi�cantly. The convergence of the algorithm is still assured since in theorem 3.1, ~x and ~z
need only be approximations to x and z.

We will use Cl and C to denote

8l 2 K n fsg Cl def=
�
In�n + BDlBT

��1



A. Kamath and O. Palmon

C
def
=

0
@(Ds)

�1
+

X
l2Knfsg

�
Dl +BTB

��11A
�1

:

The matrices Cl; C and Dl will be updated after each update in ~x and ~z rather than being computed in
each iteration (compare step 5 to section 5 in [10]). Let r denote a constant integer that will be set later
to minimize the complexity, i be the iteration counter and let 
 = 0:1. The procedure is the following:
. .
Variant-2:

1. If i mod r = 1 do the following:

(a) Set ~x = x and ~z = z. Compute Dl .

(b) Calculate explicitly for every l 2 K n fsg

Cl =
�
In�n +BDl�1BT

��1
�
Dl + BTB

��1
= Dl�1 �Dl�1BTClBDl�1

where Cl is computed using standard matrix inversion techniques and
�
Dl + BTB

��1
is

computed using the Sherman-Morrison-Woodbury formula.

(c) Calculate explicitly using results from previous step and standard matrix inversion techniques

C
def
=

0
@(Ds)

�1
+

X
l2Knfsg

�
Dl + BTB

��11A
�1

:

2. Compute vl for every l 2 K in the way they are de�ned.

3. Using the Sherman-Morrison-Woodbury formula compute for l 2 K n fsg�
Dl +BTB

��1
vl = Dl�1vl �Dl�1BTClBDl�1 vl:

4. Using the results of the previous step compute

�y = �C

0
@(Ds)

�1
vs +

X
l2Knfsg

�
Dl + BTB

��1
vl

1
A :

Compute �xl and �zl as in Step 3 of the Generic Procedure. Use the Sherman-Morrison-
Woodbury formula as in step 3 when needed.

5. Set x = x � �x and z = z � �z. For every e 2 E and l 2 K if either
��xle � ~xle

�� =~xle > 
 or��zle � ~zle
��=~zle > 
 set ~xle = xle and ~zle = zle, and update Dl ; Cl and C using rank one updates.

. .

Claim 4.5. The complexity of step 1 is O(kn3 + km2 +m3).

Proof. Because of the structure of B as vertex-edge adjacency matrix each entry of BDl�1BT can
be computed by at most one subtraction depending on whether there is an edge between the two vertices
that de�ne the entry. Hence computing each matrix Cl in step 1b can be done in O(n3) time. Using the

same argument, we can prove that each entry of Dl�1BTClBDl�1 can be computed in constant time
using only 4 entries in Cl. All other estimates are standard.�



Interior Point Algorithms for Multicommodity Flow

Claim 4.6. Each update in step 5 can be done in O(m2) time.

Proof. Since each update in step 5 is a simple rank one update, we can prove the claim using the
Sherman-Morrison-Woodbury formula. �

Claim 4.7. Assuming that r �
p
mk, the total number of updates done in step 5 in the r iterations

between two applications of step 1 is O(r2).

Proof is the same as in [6].

Theorem 4.2. The average complexity of the procedure Variant-2 is O(m2:5+ k0:5mn1:5+ kn2).

Proof. The average complexity of step 1 is O
�
(kn3 +m3 + km2)=r

�
. The complexity of steps 3 and

4 is O(m2 + kn2). The average complexity of step 5 is O(rm2) (using claims 4.6 and 4.7). Choosing r
to balance these terms we get the result.�

Theorem 4.3. Assuming usage of fast matrix multiplication procedure that inverts an n�n matrix

in O(n2:4) time the average complexity of the procedure Variant-2 is O(m2:2+k0:5m2+k0:5mn1:2+kn2).

5 Starting Point For The Algorithm

In this section, we provide a good starting point for our algorithm that enables us to prove a good
complexity for our approximation algorithm. The idea behind the choice of the point is outlined below.
The algorithm can be shown to converge rapidly if we start at a point close to the central path. As
� converges to in�nity the central path converges to the center of the polytope (the minimizer of the
barrier function). Since our constraints are separable it is very easy to calculate this center by splitting
the capacity equally between the commodities. Near the center of the polytope, the value of � changes
rapidly on the central path and we can show a polynomial bound on �, for which our starting point is
a �-approximation. We can set w0 = (x; y; z) as follows:

xle = xse = xe =
u(e)

k + 1
denote �x = (xe)e2E

ye = � �

xe
+
�
BTB�x

�
e

z = c+ Qx�ATy

Theorem 5.1. We can �nd � such that w0 is a � approximation to the central path �(�) at � with

log� = O(log(��1nUD)).

Proof. As mentioned above the values of x are chosen to minimize the barrier function (regardless
of the objective function). The values of y are chosen such that

zle = cle +
�
BTB�x

�
e
� ye = cle +

�

xe
= cle +

�(k + 1)

u(e)
8l 2 K n fsg

zse = �ye =
�

xe
� �BTB�x

�
e

The values of z are set by the feasibility of the dual problem.

The proof of the theorem follows from the next two claims.

Claim 5.1. If � � 2nUD then (x; y; z) is primal and dual feasible.



A. Kamath and O. Palmon

Proof. The only non-obvious thing to check is z � 0. Now

zle = cle +
�(k + 1)

u(e)
� �D + �

k + 1

U
� 0

zse =
�

xe
�
�
BTB�x

�
e
� �(k + 1)

u
� 2n

U

k + 1
� 0

�

Claim 5.2. X
e2E;l2K

(zlex
l
e � �)2 � nkD2U2 + 4mU4n2

Proof.

X
e2E;l2Knfsg

(zlex
l
e � �)2 =

X
e2E;l2Knfsg

(clex
l
e)
2 � nkD2U2

X
e2E

(zsex
s
e � �)2 =

X
e2E

(� � xe
�
BTB�x

�
e
� �)2 � m

�
U

k + 1
� 2n U

k + 1

�2

� 4mU4n2

�

The theorem now follows since we proved that for � which is polynomial in ��1; n; d and U the
chosen point is a feasible point and a � approximation to the central path at �. �

6 Stability

In this section, we will bound the precision needed in performing each arithmetic operation.

Claim 6.1. A vector x is the global optimum solution of

mincTx+
1

2
xTQx�

X
i

�i lnxi

s. t. Ax = b x � 0

if and only if there exist vectors z and y such that the following Karush-Kuhn-Tucker conditions are

met:

8i xizi = �i

Ax = b x � 0

�Qx+ ATy + z � c = 0 z � 0:

Proof. Using standard primal-dual arguments.

Claim 6.2. Let w = (x; y; z) be a � approximation to the central path �(�) at � then log zle=x
l
e is

O (log((1 + �)�nU )) and logxle=z
l
e is O

�
log((1 + �)��1U )

�
for every edge e and commodity l.



Interior Point Algorithms for Multicommodity Flow

Proof. Set

�le = xlez
l
e 2 [(1� �)�; (1 + �)�]:(6.2)

Using claim (6.1) we know that x is the minimizer of

E(x) �
X

e2E l2K

�le lnx
l
e(6.3)

s.t. 8e 2 E
X
l2K

xle = u(e):

For a given e = vw 2 E and l; j 2 K de�ne

p(t)
def
=

�
Exv(x

l)� hl(v) � t
�2

+
�
Exw(x

l)� hl(w) + t
�2

+
�
Exv(x

j) � hj(v) + t
�2

+
�
Exw(x

j)hj(w)� t
�2 �

�le ln(x
l
e + t) � �je ln(x

j
e � t)

From the fact that x minimizes the potential function de�ned in 6.3 we can deduce

0 =
@

@t
p(t)

����
t=0

= 2
�
�Exv(xl) +Exw(x

l) +Exv(x
j)� Exw(x

j)
�
� �le

1

xle
+ �je

1

x
j
e

Using the bounds in (6.2) we get

1

xle
� 1 + �

x
j
e

+
2

�(1 + �)

���Exv(xl)��+ ��Exw(xl)�� + ��Exv(xj)��+ ��Exw(xj)��� � 1 + �

x
j
e

+
2

�(1 + �)
4nU

Since for every e there exists j 2 K such that xje � u(e)=(k+ 1) � 1=(k+ 1) we get that for every e 2 E

and l 2 K
1

xle
� (1 + �)(k + 1) +

2

�(1 + �)
4(nU +D):

The claim follows now from the facts (1� �)� � xlez
l
e � (1 + �)� and xle � U . �

Claim 6.3. In each iteration, the logarithms of the condition numbers of the matrices involved are

O (log(UDn�)).

Proof. Since the matrix Dl + BTB is symmetric and positive de�nite we can estimate

�2(D
l +BTB) =

maxkxk
2
=1 x

T (Dl +BTB)x

minkxk
2
=1 xT (Dl +BTB)x

� n+maxe z
l
e=x

l
e

mine zle=x
l
e

and the claim about this matrix follows from the previous claim. For the matrix�
(Ds)

�1
+
P

l2Knfsg

�
Dl +BTB

��1��1
note that it is the sum of symmetric positive de�nite matrices

and hence the claim follows also for this matrix. All the other matrices that appear in the computations
can be bounded in the same way.�

Theorem 6.1. To compute a solution with b bits of precision, the computations need to be done

with O (b+ log(nUD)) bits of precision.

Proof. Using the theorem 3.2 we know that if only b bits of precision in the solution are needed we
need to continue the algorithm until log��1 becomes O(b+ log(nUD)). The theorem now follows from
the previous claim. �



A. Kamath and O. Palmon

There are two conditions that should be satis�ed at each iteration, namely, Ax = u and z =
c+Qx�AT y. When working with in�nite precision the conditions are maintain because of the de�nitions
of �w = (�x;�y;�z). When working with �nite precision in order to avoid accumulation of rounding
errors we should calculate the following values in the end of each iteration again:

xse = u(e)�
X

l2Knfsg

xle

z = c+ Qx�ATy

The variables resulting from these corrections can be shown to obey central path conditions since the
only errors are those introduced by rounding.

7 Finding an Exact Solution

If we �nd an �-approximate solution then for su�ciently small �, we can round to an exact solution using
the technique described in [17]. The conditions under which the technique is guaranteed to give an exact
solution is stated in the following theorem, which is proved in [17].

Theorem 7.1. If there exists an optimum solution to a quadratic programming problem in n

variables, in which every non zero variable is at least � then an �2=n-approximate solution can be rounded

to an exact optimum solution in O(n) time.

To use this result we will prove the following theorem:

Theorem 7.2. Given a multicommodity 
ow problem which has a solution, we can �nd � > 0 such

that log ��1 = O(m logm + logUD) and such that there exists a solution in which every non zero 
ow

is at least �.

Proof. Formulate the multicommodity 
ow problem as a linear programming feasibility problem,
where a variable is associated with every path between a source and a sink of a commodity. We will
denote by xp the variable corresponding to the 
ow on the path p. The constraints are:

8p xp � 0

8i � k
X

p:p from si to ti

xp = di

8e 2 E
X
p:e2p

xp � u(e)

Using the theory of linear programming, we know that every linear optimization problem has a vertex
solution which is de�ned by a solution of a linear system which is a sub-matrix of the constraints matrix.
Using Cramer's rule we can give a lower bound on a non-zero entry in the solution by giving an upper
bound on the determinant of a sub-matrix of the constraints matrix.

The constraints matrix is exponential in size, but it is easy to check that all the rows associated with
the equalities of the type xp � 0 do not contribute to the determinant. Hence every subdeterminant is
bounded by the determinant of a (m + k) � (m + k) matrix with entries in f0; 1g. Hence the theorem
follows. �

Note also that for a given 
ow solution, we can always use the zero vectors for the dual variables
(this can be proved either directly from the equations, or intuitively, by noting that the optimal value
on the polytope of the objective function is also the global optimal value).



Interior Point Algorithms for Multicommodity Flow

Theorem 7.3. An exact solution to the multicommodity 
ow problem can be obtained by computing

an �-approximate solution where log ��1 = O(m logm+ logU + logD).

8 Extensions

In this section, we show that our results extend to other variants like minimum cost multicommodity

ow, concurrent 
ow and generalized multicommodity 
ow.

8.1 Minimum Cost Multicommodity Flow. The minimum cost multicommodity 
ow instance is
a multicommodity 
ow instance with costs p(e) � 0 on the edges e. The optimum 
ow is the solution to
the multicommodity 
ow problem which minimizes the cost function P (x) =

P
e p(e)

P
l x

l
e. Denote by

�p 2 RE the vector of costs and let P be the maximum cost. In order to �nd an �-approximate solution
to the problem we will use our algorithm on the following objective function:

F�(x)
def
=

PUm

�
E(x) + P (x):

Theorem 8.1. The results that we obtained for the multicommodity 
ow problem (complexity,

starting point, stability and exact solution) also hold for the minimum cost multicommodity 
ow problem

with additional log of the ratio between biggest and smallest cost in the number of iterations.

To prove the theorem we will state several claims that will show how we can use the results for the
multicommodity case for the case of 
ow with costs.

Claim 8.1. Assume that p� is the minimum cost of a solution to the multicommodity 
ow problem

and F �
� is the optimum value of F�. Also, assume that for a given pre-multi
ow x, we have F�(x) � F �

� +�,
then

E(x) � 2�

P (x) � p� + �:

Proof. Let x� be the minimizer of F� and ~x the minimum cost 
ow, then

F�(x
�) � F�(~x) = P (~x) = p�:

Thus
P (x) � F�(x) � F�(x

�) + � � p� + �:

Using the same inequalities
PUm

�
E(x) � p� + �:

hence

E(x) � �

�
p�

PUm
+

�

PUm

�
� 2�:

�

Claim 8.2. The complexity of computing a single iteration for the minimum cost multicommodity


ow problem is the same as that for the feasibility problem.

Proof. Since the only change from the original problem was changing the linear part of the objective
function the algorithm stays exactly the same. The linear part does not a�ect the computation of a
single iteration.�



A. Kamath and O. Palmon

Claim 8.3. We can �nd a starting point w = (x; y; z) and � such that w is a � approximation to

the central path �(�) at � with log� = O(log(��1nUDP��1)).

Proof. Following the same idea as in section 5 we will choose the following starting point for a given
� :

xle = xse = xe =
u(e)

k + 1
denote �x = (xe)e2E

ye = � �

xe
+
PUm

�

�
BTB�x

�
e

z =
PUm

�
c + p+

PUm

�
Qx� ATy

Calculating the z's explicitly gives (note that slack variables are not multiplied by the prices):

zle =
PUm

�
cle+p(e)+

PUm

�

�
BTB�x

�
e
�ye =

PUm

�
cle+p(e)+

�

xe
=

PUm

�
cle+p(e)+

�(k + 1)

u(e)
8l 2 Knfsg

zse = �ye =
�

xe
� PUm

�

�
BTB�x

�
e

In order to check the feasibility of the starting point we need to check if z > 0. The z's can be estimated
as (compare to claim 5.1)

zle =
PUm

�
cle + p(e) +

�(k + 1)

u(e)
� �DPUm

�
+
�(k + 1)

U
8l 2 K n fsg

zse =
�

xe
� PUm

�

�
BTB�x

�
e
� �(k + 1)

U
� PUm

�
2n

U

k+ 1
:

Hence if � � max(��1DPU2m;U3Pm��12n) then (x; y; z) is primal and dual feasible.

Estimating the distance of w from the central path at � gives (compare to claim 5.2)

X
e2E;l2Knfsg

(zlex
l
e � �)2 =

X
e2E;l2Knfsg

�
xle

�
PUm

�
cle + p(e)

��2

� 2m3U3P 2D2��2

X
e2E

(zsex
s
e � �)2 =

X
e2E

(� � xe
PUm

�

�
BTB�x

�
e
� �)2 � m

�
U

k + 1
� PUm

�
2n

U

k+ 1

�2

� 4m3U6n2P 2��2

Hence we can �nd a feasible starting point which is a � approximation to the central path at � where �
is a polynomial in n; U;D; P and ��1 . �

Claim 8.4. The stability results proved for the multicommodity 
ow problem hold for the minimum

cost multicommodity 
ow problem.

Proof: Following the same proof as in section 6 proves the claim. An additional term of logP should
be added to the number of bits to be used. �

8.2 The Concurrent Flow Problem. A concurrent 
ow problem involves �nding the minimum
factor � such that the demands can be satis�ed with capacities scaled to �u(e). In order to �nd an
�-approximate solution to the concurrent 
ow problem we will de�ne for � > 0 the following objective
function

G�(x; t)
def
= E(x) � �t



Interior Point Algorithms for Multicommodity Flow

We will �nd an approximate solution to the problem by minimizing G�(x; t) subject to

8e 2 E
X
l2K

xle + tu(e) = u(e) t � 0 xle � 0:

To ensure that a solution exists we will multiply each capacity by kD.

Theorem 8.2. The results that we obtained for the multicommodity 
ow problem (complexity,

starting point, stability and exact solution) apply to the concurrent multicommodity 
ow problem as

well.

To prove the theorem we will state and prove several claims that will show how to use the same
methods obtained for the multicommodity 
ow problem to the concurrent 
ow problem.

Claim 8.5. Assume that � � 1. Suppose that ~t is the optimal value of the concurrent 
ow problem

and that G�
� is the optimal value of G� subject to the constraints. Assume that for a given pre-
ow x

and parameter t we have G�(x; t) � G�
� + �2, then

t � ~t � �

E(x) � 2�

Proof. Let (~x; ~t) be the solution for the concurrent 
ow problem. Then

G�
� � G�(~x; ~t) = ��~t

hence
��t � G�(x; t) � G�

� + �2 � ��~t + �2

which implies the �rst inequality. In addition to that

E(x) = G�(x; t) + �t � G�
� + �2 + �t

Note that always G�
� � 0, t � 1, � � 1 , hence

E(x) � 2�

�

remark: Note that since we scaled the capacities by kD to ensure the existence of a solution, an
�-approximation to our problem is an �kD approximation to the original concurrent 
ow problem.

Claim 8.6. The asymptotic complexity of one iteration in optimizing G� is the same as in the

multicommodity 
ow problem.

Proof. The algorithms described in section 4 are can be seen as solving the following linear system:0
@ Z 0 X

A 0 0
�Q AT I

1
A
0
@ �x

�y
�z

1
A =

0
@ XZe � �̂e

0
0

1
A

In the concurrent-
ow problem we have two additional variables t and zt and the matrix to solve is the
following: 0

BBBB@
Z 0 X 0 0
0 0 0 zt t

A 0 0 �u 0
�Q AT I 0 0
0 uT 0 0 1

1
CCCCA

0
BBBB@

�x
�y
�z
�t
�zt

1
CCCCA =

0
BBBB@

XZe � �̂e

0
0
0
0

1
CCCCA



A. Kamath and O. Palmon

Hence the linear system for the concurrent 
ow case is the same as the multicommodity 
ow case, except
a constant number of rank one updates. Using the Sherman-Morrison formula, it then follows that the
complexity of solving the linear system is a constant multiple of that for the multicommodity 
ow case.
�

Claim 8.7. We can �nd a starting point w = (x; y; z; t) and � such that w is a � approximation to

the central path �(�) at � with log� = O(log(��1nUD��1)).

Proof. As in section 5 we will use as a starting point the point that minimizes the barrier function
regardless of the objective function. By di�erentiating the barrier function we get that the starting
primal-dual point (x; y; z; t) for a given � is:

t =
1

m(k + 1) + 1

xle = xse = xe = (1� t)
u(e)

k + 1
denote �x = (xe)e2E

ye = � �

xe
+
�
BTB�x

�
e

zle = cle +
�
BTB�x

�
e
� ye = cle +

�

xe
= cle +

�(k + 1)

u(e)(1� t)
8l 2 K n fsg

zse = �ye =
�

xe
� �BTB�x

�
e

zt = ���
X
e2E

u(e)ye = �� + �
X
e2E

u(e)

xe
� �BTB�x

�
e
= ��+ �m

k + 1

1� t
� �BTB�x

�
e
=

��+ �(m(k + 1) + 1) � �BTB�x
�
e

To ensure that the point (x; y; z; t) is primal-dual feasible we have to check that z > 0. Estimating z
can be done by (compare to claim 5.1):

zle = cle +
�(k + 1)

u(e)(1 � t)
� �D +

�(k + 1)

U

zse =
�

xe
� �BTB�x

�
e
� �(k + 1)

U
� 2n

U

k + 1

zt = �� + �(m(k + 1) + 1)� �BTB�x
�
e
� �1 + �(m(k + 1) + 1)� 2n

U

k + 1

Hence if � � max(UD; 2U2n) then (x; y; z; t) is primal and dual feasible.

To bound the distance from the central path we can calculate (compare to claim 5.2):X
e2E;l2Knfsg

(zlex
l
e � �)2 =

X
e2E;l2Knfsg

(clex
l
e)
2 � nkD2U2

X
e2E

(zsex
s
e � �)2 =

X
e2E

(� � xe
�
BTB�x

�
e
� �)2 � m

�
U

k + 1
� 2n U

k + 1

�2

� 4mU4n2

(tzt��)2 = (�t�+t�(m(k+1)+1)�t
�
BTB�x

�
e
��)2 = (�t��t

�
BTB�x

�
e
)2 �

�
�+ 2n

U

k+ 1

�2

� 5n2U2

Hence for � polynomial in n;D;U and � we know that (x; y; z; t) is a � approximation to the central
path at �. �



Interior Point Algorithms for Multicommodity Flow

Claim 8.8. We can �nd an approximate solution to the concurrent 
ow problem with the same

asymptotic complexity as in the multicommodity 
ow problem.

Proof. Given � > 0, in order to �nd an � approximation to the concurrent 
ow problem we will �nd
the approximate optimal of G�(�). Claim 8.5 proves that this will give an approximate solution to the
concurrent 
ow problem. Combining claim 8.7, theorem 3.1 and theorem 3.2 (adjusted to G� instead of
the original quadratic objective function) assures us that an � approximate solution will be calculated
in O(

p
mk log(nDU��1)) iterations. Claim 8.6 assures us that the complexity of each iteration is the

same. �

Claim 8.9. We can �nd an exact solution to the concurrent 
ow problem with the same asymptotic

complexity as the multicommodity 
ow problem.

Proof. Following the same technique as in the multicommodity case, we will show that the number
of bits needed to compute an exact solution is O(m logm+logUD) which is su�cient to prove the claim.

To bound the number of bits needed to describe an exact solution we will follow the same proof as
in section 7, adjusted to the concurrent 
ow problem. We will associate a variable with every path from
a source and a sink of a commodity. In addition slack variables s(e), and a variable t will be de�ned.
The linear constraints de�ned for each edge will be:

8e 2 E;
X
p:e2p

xp + s(e) + tu(e) � u(e)

Estimating the solution in the same way, we have to bound the determinant of an m+ k�m+ k matrix
in which all entries are 0 or 1, except possibly the column containing the capacities. Hence the claim
follows.

8.3 The Generalized Flow Problem. For the de�nition of the generalized 
ow problem see
[2]. In this problem, 
ows moving on edges have di�erent gains or losses. To solve the generalized
multicommodity 
ow problem using our algorithm, all we have to change are the entries in B which
instead of being 0 and 1, will now depend on the gain/loss factor on the edges. Let 
 be the ratio between
the biggest and smallest generalized 
ow coe�cients. The next two theorems can be easily veri�ed:

Theorem 8.3. Each iteration of our algorithm, as applied to the generalized multicommodity 
ow

problem has the same complexity as for the original multicommodity 
ow problem. However, for �nding

the exact solution there is an additional O(log
) factor in the number of iterations and for �nding an

approximate solution there is an additional factor of n log
.

Proof. Since complexity proofs used only the sparseness of B and not the fact that all entries are
either 0 or 1, the complexity of a single iteration remains the same in the generalized 
ow problem.
In the estimation of the starting point, � will depend polynomially on 
, adding a log
 factor to the
running time. Also, in converting a pre-
ow to a 
ow, we can gain or lose as much as 
n factor. Hence,
to satisfy 1� � fraction of all the demands , we may need more accurate solutions, giving an additional
term of n log
 in the number of iterations. �

Theorem 8.4. We can solve the single commodity generalized 
ow problem without using fast

matrix multiplication in O
�
n2m1:5 log(nUD
)

�
.

Proof. Wewill use the conjugate gradient variant to compute each iteration and hence the complexity
of each iteration is O(mn). To estimate the convergence criterion for rounding to the exact solution, we
have to bound the largest sub-determinant of the matrix,�

Q A

A 0

�
:



A. Kamath and O. Palmon

In our case, the matrix is 0
@ BTB 0 I

0 0 I

I I 0

1
A :

Since the log of the biggest subdeterminant of BTB is O(n logn
) and the number of variables is 2m
the overall complexity of our algorithm is O(mn �m0:5 � (n logn
 + logDU )) and the theorem follows.�

Acknowledgements

We thank Serge Plotkin for helpful discussions.

References

[1] B. Awerbuch and T. Leighton. A simple local-control approximation algorithm for multicommodity 
ow.

In Proc. 26th Annual ACM Symposium on Theory of Computing, 1994. To appear.
[2] A. V. Goldberg, S. A. Plotkin, and �E. Tardos. Combinatorial Algorithms for the Generalized Circulation

Problem. In Proc. 29th IEEE Annual Symposium on Foundations of Computer Science, pages 174{185,

1988.
[3] G. H. Golub and C. F. Van Loan. Matrix Computations. hopkins, second edition, 1989.

[4] T. C. Hu. Multi-Commodity Network Flows. J. ORSA, 11:344{360, 1963.

[5] A. Kamath, O. Palmon, and S. Plotkin. Fast Approximation Algorithm for Minimum Cost Multicommodity
Flow. In Proc. 6th ACM-SIAM Symposium on Discrete Algorithms, 1995.

[6] S. Kapoor and P. M. Vaidya. Fast Algorithms for Convex Quadratic Programming and Multicommodity

Flows. In Proc. 18th Annual ACM Symposium on Theory of Computing, pages 147{159, 1986.
[7] N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming. Combinatorica, 4:373{395,

1984.

[8] T. Leighton, F. Makedon, S. Plotkin, C. Stein, �E. Tardos, and S. Tragoudas. Fast approximation algorithms
for multicommodity 
ow problems. In Proc. 23st Annual ACM Symposium on Theory of Computing, 1991.

[9] T. Leighton and S. Rao. An approximate max-
ow min-cut theorem for uniform multicommodity 
ow

problems with applications to approximation algorithms. In Proc. 29th IEEE Annual Symposium on

Foundations of Computer Science, pages 422{431, 1988.

[10] R. D.C. Monteiro and I. Adler. Interior Path Following Primal-Dual Algorithms. Part II: Convex Quadratic

Programming. Math. Prog., 44:43{66, 1989.
[11] S. M. Murray. An Interior Point Approach to the Generalized Flow Problem with Costs and Related

Problems. PhD thesis, Department of Operations Research, Stanford University, Stanford, CA., 1992.

[12] S. A. Plotkin, D. Shmoys, and �E. Tardos. Fast Approximation Algorithms for Fractional Packing and
Covering. In Proc. 32nd IEEE Annual Symposium on Foundations of Computer Science, 1991.

[13] T. Radzik. Fast Deterministic Approximation for the Multicommodity Flow Problem. In Proc. 6th ACM-

SIAM Symposium on Discrete Algorithms, 1995.

[14] F. Shahrokhi and D. W. Matula. The maximum concurrent 
ow problem. Technical Report CSR-183,

Department of Computer Science, New Mexico Tech., 1988.
[15] C. Stein. Approximation algorithms for multicommodity 
ow and scheduling problems. PhD thesis, MIT,

1992.

[16] P. M. Vaidya. Speeding up Linear Programming Using Fast Matrix Multiplication. In Proc. 30th IEEE

Annual Symposium on Foundations of Computer Science, 1989.

[17] Y. Ye. Toward Probabilistic Analysis of Interior-Point Algorithms for Linear Programming. Math. of Oper.

Res., pages 38{52, 1994.


