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Abstract

As large numbers of text databases have become available on the Internet, it is getting harder
to locate the right sources for given queries. In this paper we present gGlOSS, a generalized
Glossary-Of-Servers Server, that keeps statistics on the available databases to estimate which
databases are the potentially most useful for a given query. gGlOSS extends our previous
work [GGMT94a], which focused on databases using the boolean model of document retrieval,
to cover databases using the more sophisticated vector-space retrieval model. We evaluate
our new techniques using real-user queries and 53 databases. Finally, we further generalize our
approach by showing how to build a hierarchy of gGlOSS brokers. The top level of the hierarchy
is so small it could be widely replicated, even at end-user workstations.
Keywords: resource discovery, database selection, vector-space retrieval model, information

retrieval, text databases

1 Introduction

The dramatic growth of the Internet over the past few years has created a new problem: �nding the

right text databases to evaluate a given query. There are thousands of sources available to the users

on the Internet, and it is practically impossible to query all of them in search for information on a

given topic: not only would such an exhaustive search take a long time to complete, but it could

also cost the users lots of money, since some of the text databases on the Internet may charge for

their use. Consequently, users need a way to narrow their searches to a few useful text databases.

This is a speci�c instance of the more general resource-discovery problem [SEKN92, ODL93].

Many tools have recently appeared on the Internet to help users select the (text) databases that

might be more useful for their queries (see Section 2). However, many of these tools essentially

keep a global index of the documents that are available anywhere. This approach clearly does not
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scale well with the growing number of sources and documents. Alternatively, many other tools

index only a small part of each available document (e.g., its title). This approach fails to identify

many useful sources for the given queries because a signi�cant part of each document is simply

discarded. Similarly, other tools just keep succinct summaries of the contents of each database.

These summaries are sometimes manually written, are often out of date, and fail to capture the

whole content of the databases.

Our approach is to have a broker that users query �rst to obtain a rank of the potentially most

useful databases for their query. This broker keeps only partial information on the contents of each

database, so it scales with the growing number of available databases, but this information covers

the full-text content of the documents, so that the useful sources are identi�ed. In [GGMT94a] we

presented GlOSS (forGlossary-Of-Servers Server) 1, a centralized tool that keeps meta-information

about databases supporting the boolean model of document retrieval. GlOSS maintains statistics

on the databases, and uses these statistics to estimate the actual contents of the databases. When

users query GlOSS, it uses these statistics to rank the databases according to their estimated

usefulness for the given query. The users then access the databases themselves, following the order

that GlOSS suggested.

Example 1.1 Consider a boolean query \�nd documents with the word computer and the word

science in them." The documents that match this query, according to the boolean model of document

retrieval, are those containing both the word computer and the word science. Suppose that there

are two databases available to us, db1 and db2. GlOSS knows that db1 has, say, 10 documents with

the word computer in them, and 20 documents with the word science in them. GlOSS also knows

that there are 100 documents in database db1. (The databases periodically collect and send this

information to the GlOSS server.)

However, GlOSS does not know the identities of the documents that contain each word, and

therefore, it does not know how many documents in db1 contain the two words in the query. GlOSS

has to estimate this number. One way GlOSS does this estimation is by assuming that keywords ap-

pear in documents following uniform and independent probability distributions. (See [GGMT94a].)

Using this assumption, db1 has 10�20
100 = 2 documents matching the given query.

If db2 has 1000 documents, 50 of which have the word computer, and 100 of which have the

word science in them, then GlOSS estimates the number of documents matching the query in db2
as 50�100

1000
= 5. Therefore, GlOSS ranks database db2 higher than database db1, because db2 has a

higher estimate for the number of documents matching the given query.

Although the boolean model of document retrieval is widely used, it is a rather primitive

one. The information-retrieval community has worked for many years on developing more useful

document-retrieval algorithms and models. One of the most popular models is the vector-space

retrieval model [SM83, Sal89]. This model represents both the documents in a database and the

queries themselves as weight vectors. Given a query, the documents are ranked according to how

\similar" their corresponding vectors are to the given query vector.

Example 1.2 Consider a vector-space database db with N documents, and some word t. Suppose

that this word appears in df documents of db, and tf times in a document doc. The importance,

or weight w, of this word in document doc could be determined, for example, as [Sal89]:

w = tf � log
N

df

1We have implemented GlOSS and made it accessible at http://gloss.stanford.edu.
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Therefore, the weight of the word in document doc is higher if the word appears in doc many times,

and in very few other documents in database db.

Now, consider the query q =information retrieval. We need to express this query as a weight

vector too. For example, we could use the number of times that a word appears in the query as

the weight of that word in the query vector. Therefore, both the word information and the word

retrieval have weight one in the query vector, and all of the other words in the database vocabulary

have weight zero.

Suppose that a document doc1 in db has weight 0.3 for word information and weight 0.2 for

word retrieval. We can compute sim(q; doc1), the similarity of doc1 and q, as the inner product

of the doc1 and q weight vectors. Therefore, sim(q; doc1) = 0:3 � 1 + 0:2 � 1 = 0:5. Similarly,

if doc2 in db has weight 0.7 for word information and weight 0 for word retrieval, sim(q; doc2) =

0:7� 1 + 0� 1 = 0:7. Consequently, db ranks doc2 as more promising than doc1 for query q.

The information-retrieval theory community has designed smart algorithms that, given a database

and a query expressing an information need, try to �nd the documents that are relevant to the

information need [SM83, Sal89]. In this paper we do not deal with this problem. Instead, we focus

on choosing among di�erent databases that already have local search engines. How good these

search engines are at �nding relevant documents is outside the scope of this paper [SM83].

As discussed earlier, the goal of GlOSS is to \guess" the correct ranking of databases (by what-

ever correctness metric we target) without actually accessing the databases and without keeping

full indexes. However, since GlOSS only understands boolean queries, we would expect that its

rankings do not approximate well actual database rankings based on document and query vector

weights.

In this paper we present gGlOSS, a generalized and more powerful version of GlOSS that

also deals well with vector-space databases and queries. Like GlOSS, gGlOSS periodically collects

statistics on the underlying sources (this time including summary word-weight information). We

�rst analyze several di�erent options to decide the goodness of a database for a query, and to

de�ne the ideal database rank for a query (i.e., the rank that gGlOSS should try to produce for the

query). Then, given a query and a desired goodness metric, gGlOSS can rank the available sources.

Since gGlOSS produces estimates of the ideal database ranks, we need to compare these estimates

against the ideal ranks: we evaluate the performance of gGlOSS using real-user queries and 53

vector-space databases, in terms of how close the gGlOSS ranks are to the ideal ones. Although we

can estimate the size of the gGlOSS information to be only around 2% of the size of a full index

of the databases, the experimental results are good (Section 6), showing that gGlOSS can closely

approximate the ideal database ranks for the given queries.

We also present facilities for building hierarchies of gGlOSS servers. In this case, hGlOSS, a

high-level server, summarizes the contents of lower-level gGlOSS brokers, in much the same way

as the gGlOSS brokers summarize the contents of the underlying databases. Given a query, the

hGlOSS server suggests gGlOSS servers that might index useful databases for the query. Because

the hGlOSS server is much smaller than the gGlOSS brokers, we can easily replicate the hGlOSS

server so that it does not become a performance bottleneck, thus distributing the load of the whole

searching system.

In Section 3 we analyze several possible \ideal" database ranks for a query. Section 4 presents

di�erent ways in which gGlOSS approximates the ideal database ranks using partial information,

and Section 6 reports experimental results for gGlOSS using the methodology of Section 5. Finally,

in Section 7 we show how to build the higher-level hGlOSS servers.
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2 Related work

The text-database discovery problem and, more generally, the resource discovery problem [SEKN92,

ODL93], have received considerable attention during the last few years.

One approach to solving the text-database discovery problem is to let users \browse" infor-

mation about the di�erent databases. Well-known examples include Gopher [SEKN92] and the

World-Wide Web [BLCGP92]. The Prospero File System [Neu92] lets users organize information

available on the Internet through the de�nition (and sharing) of customized views of the di�erent

objects and services available to them.

A di�erent approach is to let users query a database of \meta-information" about the available

databases. For example, WAIS [KM91] provides a \directory of servers." This \master" database

contains a set of documents, each describing (in English) the contents of a database on the network.

The users �rst query the master database, and once they have identi�ed potential databases, direct

their query to these databases. Many search facilities have been created for Gopher and the World-

Wide Web, like the Veronica service [Fos92] for Gopher, and the Lycos service 2 for the World-Wide

Web, for example. To scale with the growing number of available databases, some of these systems

index only document titles or, more generally, just a small fraction of each document (e.g., the

World-Wide Web Worm 3). Other systems keep succinct, sometimes human-generated, summaries

of the contents of each database (e.g., the ALIWEB system 4).

[Sch90] follows a probabilistic approach to the resource-discovery problem that consists of two

phases: a dissemination phase, during which information about the contents of the databases is

replicated at randomly chosen sites, and a search phase, where several randomly chosen sites are

searched in parallel. Also, sites are organized into \specialization subgraphs." If one node of such a

graph is reached during the search process, the search proceeds \non-randomly" in this subgraph,

if it corresponds to a specialization relevant to the query being executed. See also [Sch93].

In Indie (shorthand for \Distributed Indexing")[DLO92], every \broker" has an associated

boolean query (called a \generator rule"). Each broker indexes (not necessarily local) documents

that satisfy its generator rule. Whenever a document is added to an information source, the brokers

whose generator rules match the new document are sent a descriptor of the new document. The

generator objects associated with the brokers are gathered by a \directory of servers," that users

query initially to obtain a list of the brokers whose generator rules match the given query. See

also [DANO91]. [SA89], [BC92], and [OM92] are other examples of this type of approach in which

users query \meta-information" databases.

The \content-based routing" system of [SDW+94, DS94] keeps a \content label" for each in-

formation server (or collection of objects, more generally), with attributes describing the contents

of the collection. Users assign values to the content-label attributes in their queries until a su�-

ciently small set of information servers is selected, and they can browse the possible values of each

content-label attribute. See also [BDB+92].

The Harvest system [BDH+94] provides a 
exible architecture for accessing information on the

Internet. \Gatherers" collect information about the data sources, and pass it to \brokers." The

\Harvest Server Registry" is a special broker that keeps information about all other brokers, among

other things. For 
exibility, Harvest leaves the broker speci�cation open, and many alternative

designs are possible.

2Lycos is accessible at http://fuzine.mt.cs.cmu.edu/mlm/lycos-home.html.
3The World-Wide Web Worm is accessible at http://www.cs.colorado.edu/home/mcbryan/WWWW.html.
4ALIWEB is accessible at http://web.nexor.co.uk/aliweb/doc/aliweb.html.
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The WHOIS++ directory service [WS93] organizes the WHOIS++ servers into a distributed

\directory mesh" that can be searched: each server automatically generates a \centroid" listing

the words it contains (for the di�erent attributes). Centroids are gathered by index servers, that in

turn must generate a centroid describing their contents. The index-server centroids may be passed

to other index servers, and so on. An index server forwards a given query to the (index) servers

whose centroids match the query.

In [FY93], every site keeps statistics about the type of information it receives along each link

connecting to other sites. When a query arrives in a site, the site forwards it through the most

promising link according to these statistics.

In [GGMT94a] and [GGMT94b] we described GlOSS 5 (for Glossary-Of-Servers Server), a

server that helps users select databases supporting the boolean model of document retrieval: given a

boolean query (e.g., \�nd documents with the word computer and the word science in them"), these

databases return a set of documents that match the query. We described a variety of ways in which

GlOSS estimates the size of the answer set in each of the databases, using partial information on

the databases. More speci�cally, for every database db, GlOSS only knows how many documents

in db include each word, not the identity of these documents. In [GGMT94a] and [GGMT94b]

we reported results on the performance of GlOSS for such scenario, and estimated the storage

requirements of GlOSS: GlOSS required only around 2% as much storage as a full index of the

databases, while choosing the \right" databases for most of the queries that we tried, for some

de�nitions of what \right" means. The main di�erences between our initial GlOSS work and this

paper are:

� We extend the approach to deal with vector-space databases: estimating vector-space search-

ing is harder than estimating boolean searching.

� We present ways of ranking vector-space databases for a query, and we compare these rankings

against the gGlOSS rankings.

� We evaluate gGlOSS more realistically by considering 53 databases, as opposed to the six we

used in the original work.

� We de�ne a hierarchy of gGlOSS servers that allows for wide replication of the (small) top

levels.

3 Ranking databases

Given a query, we would like to rank the available vector-space databases according to their use-

fulness. This ranking should capture the ideal order for searching the databases: we should �rst

search the most useful database(s), then the second most useful database(s), and so on, until we

either exhaust the rank, or become satis�ed with whatever documents we got up to that point.

This section explores how we can determine this ideal database rank. The next section explores

how gGlOSS will try to rank the databases in a way that resembles the ideal rank as closely as

possible.

One idea is to rank the databases based on the number of documents they contain that are

relevant to the given query. However, we believe that this is not a useful scheme. To illustrate

why, say a database db contains three relevant documents for some query q. (By relevant we mean

5
GlOSS is accessible at http://gloss.stanford.edu.
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that the user who submits q will judge these three documents to be of interest.) Unfortunately, it

turns out that the search engine at db does not include any of these documents in the answer to

q. So, the user will not bene�t from these three relevant documents. Therefore, in this paper, we

will only focus on the answers that each database gives to the user queries. We will not attempt

to rank the databases based on their contents, or on relevance judgments about the documents,

but rather on the search engine's answers to the users' queries.

Given a set of databases DB and a query q, we de�ne four di�erent ideal database ranks. Each

of these ranks orders the databases according to their goodness for q, for di�erent de�nitions of

what goodness means. Thus, each rank has associated a di�erent de�nition of Goodness(q, db),

the goodness of database db for query q.

The �rst two ranks, AllW (l) and AllD(l), consider only Docs(l; q; db), the set of documents in

db having similarity with q greater than a given threshold l. The underlying assumption is that

these documents are the ones that are most likely to be relevant to the user: documents with lower

similarity are unlikely to be useful, and therefore we ignore them. The Goodness metric associated

with rank AllW(l) adds the similarities of the \acceptable" documents:

Goodness(q; db) =
X

doc2Docs(l;q;db)

sim(q; doc) (1)

where Docs(l; q; db) = fdoc 2 dbjsim(q; doc) > lg, for some given threshold l, and sim(q; doc) is

the similarity between query q and document doc.

Alternatively, the Goodnessmetric associated with rankAllD(l) counts how many \acceptable"

documents there are:

Goodness(q; db) = jDocs(l; q; db)j (2)

For our next two ranks, TopW (k) and TopD(k), we take the documents from all the databases

together with their similarity with q, and generate a single document rank using these similarities.

We then consider only the top k documents in this rank, for some k. For each database db,

we consider Top(k;DB; q; db), the db documents that appear among the overall top k documents

for q. This set of documents determines the Goodness metrics associated with ranks TopW (k)

and TopD(k). The Goodness metric associated with rank TopW(k) adds the similarities of these

documents:

Goodness(q; db) =
X

doc2Top(k;DB;q;db)

sim(q; doc) (3)

where Top(k;DB; q; db) = fdoc 2 dbjdoc is one of the top-k documents for q in the DB databasesg.

Alternatively, the Goodness metric associated with rank TopD(k) counts how many db docu-

ments appear among the overall top k documents for q:

Goodness(q; db) = jTop(k;DB; q; db)j (4)

Example 3.1 Consider three databases, db1, db2, and db3, a query q, and the answers that the

three databases give when presented with query q:

db1 : (d11; 0:9); (d
1
2; 0:9); (d

1
3; 0:1)

db2 : (d21; 0:8); (d
2
2; 0:4); (d

2
3; 0:3); (d

2
4; 0:1)

db3 : (d31; 0:4); (d
3
2; 0:1)
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AllW (0:2) AllD(0:2) TopW (5) TopD(5)

db Goodness db Goodness db Goodness db Goodness

db1 1.8 db2 3 db1 1.8 db1 2

db2 1.5 db1 2 db2 1.2 db2 2

db3 0.4 db3 1 db3 0.4 db3 1

Table 1: The four database ranks for Example 3.1.

In the example, db1 returns documents d11, d
1
2, and d13 as its answer to q. Documents d11 and d12

are ranked the highest in the answer, because they are the \closest" to query q in database db1
(similarity 0.9). To determine how good each of these databases is for q, we use the de�nitions

above. The �rst two columns of Table 1 correspond to rank AllW (l) with threshold l = 0:2 (i.e., the

user is willing to examine every document with similarity with q higher than 0.2). For example, the

goodness of db1 (Equation 1) is Goodness(q; db1) = 0:9+0:9 = 1:8, because db1 has two documents,

d11 and d12, with similarity higher than 0.2. From Table 1, the AllW (0:2) database rank is db1, db2,

db3.

Alternatively, the second two columns of Table 1 correspond to rank AllD(0:2). For example, the

goodness of db1 (Equation 2) is Goodness(q; db1) = 1 + 1 = 2, because there are two documents in

db1, d
1
1 and d

1
2, with similarity higher than 0.2. The AllD(0:2) database rank is db2, db1, db3, which

is di�erent from the AllW (0:2) one: although db1 contains documents whose vectors are closer to

the query than those from db2, db2 contains more \acceptable" documents (i.e., documents with

similarity greater than the given threshold).

To determine the TopW (k) and TopD(k) ranks, we sort the documents from all databases using

their similarity with q:

(d11; 0:9); (d
1
2; 0:9); (d

2
1; 0:8); (d

2
2; 0:4); (d

3
1; 0:4); (d

2
3; 0:3); (d

1
3; 0:1); (d

2
4; 0:1); (d

3
2; 0:1)

Suppose the user is willing to inspect the �ve documents that are closest to q (k = 5). Then db1
contains two documents among the top �ve documents: (d11; 0:9) and (d12; 0:9). Using the TopW (5)

Goodness metric (Equation 3), Goodness(q; db1) = 0:9+0:9 = 1:8, and using the TopD(5) Goodness

metric (Equation 4), Goodness(q; db1) = 2. From Table 1, the TopW (5) and TopD(5) database

ranks are db1, db2, db3. (Actually, there is a tie between db1 and db2 in TopD(5).)

The de�nitions of a database's \goodness" try to quantify how useful the database is for the user

that issued the query. The AllW (l) and AllD(l) ranks are for users who �nd useful any document

that is close enough to the given query: they prefer to access �rst those databases containing

either the highest number of useful documents (AllD(l)), or the highest \accumulated" similarity

coming from useful documents (AllW (l)). Alternatively, the TopW (l) and TopD(l) ranks are for

users who want to access the k documents that are closest to the given query: they prefer to access

�rst those databases containing the highest number of such documents (TopD(l)), or the highest

\accumulated" similarity coming from top-k documents (TopW (l)).

Of course, there are other meaningful ways in which we could de�ne the \goodness" of a

database for a query. However, in this paper we focus on the four de�nitions above, just to

illustrate what the issues involved in choosing between databases are.
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4 Choosing databases

gGlOSS helps users determine what databases might be most helpful for a query. Users �rst query

gGlOSS to obtain a rank of the databases according to their potential usefulness. To perform

this task, gGlOSS keeps information on the available databases, to estimate their Goodness for

the query. One option would be for gGlOSS to keep complete information on each database: for

each database db and word t, gGlOSS would know what documents in db contain t, what weight

t has in each of them, and so on. Although gGlOSS's answers would always be accurate (if this

information is kept up to date), the storage requirements of such an approach would be too high:

gGlOSS needs to index many databases, and keeping so much information on each of them does

not scale.

The other extreme option would be for gGlOSS to not keep any information at all, and to rank

databases randomly, for example: although the storage requirement of this approach is very low,

it is not likely to be too useful, obviously.

In between these too extremes lie many reasonable solutions that keep incomplete yet useful

information on the databases. In this paper we explore some options for gGlOSS that require one

or both of the following matrices:

� F = (fij): fij is the number of documents in database dbi that contain word tj

� W = (wij): wij is the sum of the weight of word tj over all documents in database dbi

In other words, for each word tj and each vector-space database dbi, gGlOSS needs (at most) two

numbers. The second of these numbers is the sum of the weight of tj over all documents in dbi, as

determined by the vector-space retrieval algorithm that dbi uses. Typically, the weight of a word

tj in a document doc is a function of the number of times that tj appears in doc and the number of

documents in the database that contain tj [Sal89]. Although the information that gGlOSS stores

about each database is incomplete, it will prove useful to generate database ranks that resemble

the ideal database ranks of Section 3, as we will see in Section 6.2. Furthermore, this information is

orders of magnitude smaller than that required by a full-text index of the databases, for example.

Adapting the boolean-database estimates of [GGMT94a], we can estimate that the size of the

gGlOSS information about a vector-space database is only around 2% of the size of a full-text

index of the database: although gGlOSS needs to keep weights associated with the words as well as

document frequencies, so does a vector-space full-text index. Therefore, the gGlOSS information

about a database remains at only an estimated 2% of the size of the corresponding full-text index.

To obtain the data that gGlOSS keeps about a database dbi, namely columns fi� and wi� of

the F and W matrices above, database dbi will have to periodically extract this information from

its local indexes and send it to the gGlOSS server. In the current implementation of the boolean

GlOSS server, we provide the text databases that GlOSS indexes with a collector program. Each

database runs this collector locally: the collector scans the local database's indexes, extracts the

appropriate information, and sends it to the GlOSS server 6. So far we provide a collector for

WAIS [KM91] databases, and this collector already extracts the term-weight information that

gGlOSS would need. (These weights are simply ignored by the current implementation of the

boolean GlOSS server.)

6The GlOSS collector is described in http://gloss.stanford.edu/collector.html.
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Example 4.1 Consider a database db and the word computer. Suppose that the following are the

documents in db having the word computer in them, together with the associated weights:

computer : (d1; 0:8); (d2; 0:7); (d3; 0:9); (d8; 0:9)

That is, document d1 contains the word computer with weight 0.8 (for some weight-computation

algorithm [SM83]), document d2, with weight 0.7, and so on. The gGlOSS collector will not send

gGlOSS all this information: it will only tell gGlOSS that the word computer appears in four

documents in database db, and that the sum of the weights with which the word appears in the

documents is 0:8 + 0:7 + 0:9 + 0:9 = 3:3.

In our de�nitions below, we assume that a query q is expressed as a weight vector Q =

(q1; : : : ; qj ; : : : ; qt) [SM83], where qj is the weight of word tj in query q. For example, this weight

can simply be the number of times that word tj appears in the query. We also assume throughout

this paper that the vector-space databases compute the similarity between a document and a query

by taking the inner product of the corresponding document and query vectors.

Since gGlOSS represents both the databases and the queries as vectors, gGlOSS can compute

similarities between these vectors analogously to how documents and queries are compared. gGlOSS

can use these similarities to rank the databases for the given query. For example, gGlOSS could esti-

mate the goodness of database dbi for query q as the inner product wi�:Q, where wi� = (wi1; : : : ; wit)

is the column of W that corresponds to dbi. This estimate will be a special case of the more gen-

eral estimates that we describe below. (See Section 4.2.) Also, note that the vectors with which

gGlOSS represents each database can be viewed as cluster centroids [Sal89], where each database

is considered as a single document cluster 7.

Because the information gGlOSS keeps about each database is incomplete, it has to make

assumptions regarding the distribution of query keywords and weights across the documents of

each database. These assumptions allow gGlOSS to compute better estimates. The following

sections present two sets of assumptions that gGlOSS will use to derive two di�erent sets of

database ranks for a given query. These assumptions are unrealistic: very rarely would a set

of databases and queries conform to them. However, we use them because these type of assump-

tions proved themselves useful in the boolean-GlOSS case for choosing the \right" databases for a

query [GGMT94a, GGMT94b].

Although we will build the gGlOSS database ranks so they approximate the AllW (l) and the

AllD(l) ideal ranks of Section 3, the gGlOSS ranks of the following sections could also be used to

approximate the TopW (k) and TopD(k) ranks of Section 3.

4.1 High-correlation scenario

To derive MaxW (l) and MaxD(l), the �rst two database ranks with which gGlOSS tries to match

the AllW (l) and AllD(l) database ranks of Section 3, gGlOSS assumes that if two words appear

together in a user query, then these words will appear in the database documents with the highest

possible correlation:

Assumption 4.1 If query keywords t1 and t2 appear in fi1 and fi2 documents in database dbi,

respectively, and fi1 � fi2, then every dbi document that contains t1 also contains t2.

7An interesting direction to explore is to represent each database db as a set of (very few) cluster centroids. Each

of these centroids would summarize a set of closely related documents of db.
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Example 4.2 Consider a database dbi and the query q=computer science department. For sim-

plicity, let t1= computer, t2= science, and t3= department. Suppose that fi1 = 2, fi2 = 9, and

fi3 = 10: there are 2 documents in dbi with the word computer, 9 with the word science, and 10

with the word department.

gGlOSS assumes that the 2 documents with the word computer also contain the words science

and department. Furthermore, all of the 9� 2 = 7 documents with word science but not with word

computer also contain the word department. Finally, there is exactly 10 � 9 = 1 document with

just the word department.

gGlOSS also needs to make assumptions on the weight distribution of the words across the

documents of a database:

Assumption 4.2 The weight of a word is distributed uniformly over all documents that contain

the word.

Thus, word tj has weight
wij

fij
in every dbi document that contains tj . The goal of this (unrealistic)

assumption is to simplify the computations that gGlOSS has to make to rank the databases.

Example 4.2 (cont.) Suppose that the total weights for the query words in database dbi are

wi1 = 0:45, wi2 = 0:2, and wi3 = 0:9. According to Assumption 4.2, each of the two documents

that contain word computer will do so with weight 0:45
2 = 0:225, each of the 9 documents that

contain word science will do so with weight 0:2
9
= 0:022, and so on.

gGlOSS uses the assumptions above to estimate how many documents in a database have

similarity greater than some threshold l with a given query, and what the added similarity of these

documents is. These estimates determine the MaxW (l) and MaxD(l) database ranks.

Consider database dbi with its two associated vectors fi� and wi�, and query q, with its asso-

ciated vector Q. Suppose that the words in q are t1; : : : ; tn, with fia � fib for all 1 � a � b � n.

Assume that fi1 > 0. From Assumption 4.1, the fi1 documents in dbi that contain word t1 also

contain all of the other n� 1 query words. From Assumption 4.2, the similarity of any of these fi1
documents with the query q is:

sim1 =
X

j=1;:::;n

qj �
wij

fij

Furthermore, these fi1 documents have the highest similarity with q among the documents in

dbi. Therefore, if sim1 � l, then there are no documents in dbi with similarity greater than

threshold l. If, on the other hand, sim1 > l, then gGlOSS should explore the fi2 � fi1 documents

(Assumption 4.1) that contain words t2; : : : ; tn, but not word t1. Thus, gGlOSS �nds p such that:

simp =
X

j=p;:::;n

qj �
wij

fij
> l, but (5)

simp+1 =
X

j=p+1;:::;n

qj �
wij

fij
� l (6)

Then, the fip documents having (at least) query words tp; : : : ; tn have an estimated similarity

with q greater than threshold l (Condition 5), whereas the documents having only query words

tp+1; : : : ; tn do not.
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Using this de�nition of p and the assumptions above, we give the �rst de�nition for Estimate(q; dbi),

the estimated goodness of database dbi for query q, that determines theMaxW(l) database ranks:

Estimate(q; dbi) =
X

j=1;:::;p

(fij � fi(j�1))� simj

= (
X

j=1;:::;p

qj � wij) + fip �
X

j=p+1;:::;n

qj �
wij

fij
(7)

where we de�ne fi0 = 0, and simj is the similarity between q and any document having words

tj ; : : : ; tn, but not words t1; : : : ; tj�1. There are fij � fi(j�1) such documents in dbi.

Alternatively, for rank MaxD(l) we de�ne:

Estimate(q; dbi) = fip (8)

The �rst de�nition (Equation 7) computes the added similarity of the fip documents estimated to

have similarity with q greater than threshold l (see Conditions 5 and 6, and Assumptions 4.1 and

4.2). The second de�nition (Equation 8) is how many such documents there are. The MaxW (l)

and MaxD(l) database rank approximate the AllW (l) and AllD(l) database ranks of Section 3.

Example 4.2 (cont.) Assume that query q has weight 1 for each of its three words. According

to Assumption 4.1, the two documents with the word computer also have the words science and

department in them. The similarity of any of these two documents with q is, using Assumption 4.2,
0:45
2
+ 0:2

9
+ 0:9

10
= 0:337. If our threshold l is 0.2, then all of these documents are acceptable, because

their similarity with q is higher than 0.2. Also, there are 9 � 2 = 7 documents with the words

science and department but not computer. The similarity of any of these 7 documents with q

is 0:2
9
+ 0:9

10
= 0:112. Then these documents are not acceptable for threshold l = 0:2. There is

10� 9 = 1 document with only the word department, but this document's similarity with q is even

lower. Consequently, p = 1 (see Conditions 5 and 6).

According to the MaxW (0:2) de�nition of Estimate:

Estimate(q; dbi) = fi1 � (
wi1

fi1
+
wi2

fi2
+
wi3

fi3
)

= 2� (
0:45

2
+
0:2

9
+

0:9

10
)

= 0:674

According to the MaxD(0:2) de�nition of Estimate:

Estimate(q; dbi) = fi1 = 2

4.2 Disjoint scenario

To derive SumW (l) and SumD(l), two ranks that gGlOSS uses to approximate AllW (l) and AllD(l),

gGlOSS assumes that if two words appear together in a user query, then these words do not appear

together in any database document:

Assumption 4.3 The set of dbi documents with word t1 is disjoint with the set of dbi documents

with word t2, for all t1 and t2, t1 6= t2, that appear in query q.
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Therefore, the words that appear in a user query are assumed to be negatively correlated in the

database documents. gGlOSS also needs to make Assumption 4.2, that is, the assumption that

weights are uniformly distributed.

Consider database dbi with its two associated vectors fi� and wi�, and query q, with its asso-

ciated vector Q. Suppose that the words in q are t1; : : : ; tn. For any query word tj (1 � j � n),

then the fij documents containing tj do not contain query word tp, for all 1 � p � n, p 6= j

(Assumption 4.3). Furthermore, the similarity of each of these fij documents with q is exactly

qj �
wij

fij
, if fij > 0 (from Assumption 4.2).

Therefore, for rank SumW(l) we de�ne Estimate(q; dbi), the estimated goodness of database

dbi for query q, as:

Estimate(q; dbi) =
X

j=1;:::;nj(fij>0)^(qj�
wij

fij
>l)

fij � (qj �
wij

fij
)

=
X

j=1;:::;nj(fij>0)^(qj�
wij

fij
>l)

qj � wij (9)

Alternatively, for rank SumD(l) we de�ne Estimate(q; dbi) as:

Estimate(q; dbi) =
X

j=1;:::;nj(fij>0)^(qj�
wij

fij
>l)

fij (10)

The �rst de�nition (Equation 9) computes the added similarity of the acceptable documents, while

the second de�nition (Equation 10) computes the total number of such documents.

Example 4.3 Consider the data of Example 4.2. According to Assumption 4.3, there are 2 docu-

ments containing the word computer and none of the other query words, 9 documents containing

the word science and none of the other query words, and 10 documents containing the word de-

partment and none of the other query words. The documents in the �rst group have similarity
0:45
2

= 0:225 (from Assumption 4.2), and are thus acceptable, because our threshold l is 0.2. The

documents in the second and third groups have similarity 0;2
9
= 0:022 and 0:9

10
= 0:09, respectively,

and are thus not acceptable for our threshold. So, the only documents close enough to query q are

the two documents that contain word computer. Then, according to the SumW (0:2) de�nition of

Estimate:

Estimate(q; dbi) = fi1 �
wi1

fi1
= 0:45

According to the SumD(0:2) de�nition of Estimate:

Estimate(q; dbi) = fi1 = 2

Notice the special case when the threshold l is zero. In this case, the MaxW (0) and SumW (0)

de�nitions of Estimate (Equations 7 and 9) become:

Estimate(q; dbi) =
X

j=1;:::;n

qj � wij

assuming that if fij = 0, then wij = 0. Then, Estimate(q; dbi) becomes the inner product Q:wi�.

To compute the MaxW (0) and SumW (0) ranks, gGlOSS does not need the matrix F of document
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frequencies of the words; it only needs the matrix W of added weights. Similarly, when l = 0 the

MaxD(0) de�nition of Estimate (Equation 8) becomes:

Estimate(q; dbi) = fin

and the SumD(0) de�nition of Estimate (Equation 10) becomes:

Estimate(q; dbi) =
X

j=1;:::;n

fij

To compute the MaxD(0) and SumD(0) ranks, gGlOSS does not need the matrix W of added

weights. Therefore, the storage requirements for gGlOSS to compute the database ranks are much

lower if l = 0 (even when we are emulating ranks AllW (l0) and AllD(l
0) with l0 > 0, for example).

We will then pay special attention to these ranks in our experiments of Section 6.2.

In the preceding discussion we just considered vector-space databases. However, gGlOSS can

also deal with boolean databases by adapting the results of [GGMT94a, GGMT94b] to the frame-

work presented in this paper.

In the following section we study how to compare the database ranks that gGlOSS generates

against the ideal database ranks of Section 3.

5 Comparing database ranks

In this section we analyze how we can compare gGlOSS's ranks (Section 4) to the ideal ones (Sec-

tion 3) 8. In the following section we report experimental results using the comparison methodology

of this section.

Let q be a query, and DB = fdb1; : : : ; dbsg be the set of available databases. Let G =

(dbg1; : : : ; dbgs0) be the database rank that gGlOSS generated for q, using one of the schemes

of Section 4. We only include in G those databases with estimated goodness greater than zero:

we assume that users ignore databases with zero estimated goodness. Thus, in general, s0 � s.

Finally, let I = (dbi1; : : : ; dbis00) be the ideal database rank, according to one of the de�nitions of

Section 3. We only include in I those databases with actual goodness greater than zero. Our goal

is to compare G against I , and quantify how close the two ranks are.

One way to compare the G and I ranks is by using the Goodness metric that we used to build

I . We consider the top n databases in rank I , and compute in, the accumulated Goodness of these

n databases for query q. Because rank I was generated using this metric, the top n databases in

rank I have the maximum accumulated Goodness for q that any subset of n databases of DB can

have. We then consider the top n databases in rank G, and compute gn, the accumulated Goodness

of these n databases for q. Because gGlOSS generated rank G using only partial information about

the databases, in general gn � in. (If n > s0 (resp. n > s00), we compute gn (in) by just taking the

s0 (s00) databases in G (I).) We then compute:

Rn =

(
gn
in

if in > 0

1 otherwise

This number gives us the fraction of the optimum goodness (in) that gGlOSS captured in the top n

databases in G, and models what the user that searches the top n databases that gGlOSS suggests

8Our de�nition of the Rn metric in this section is partially based on work by Peter Schwarz and Laura Haas at

IBM Almaden (personal communication, 1994).
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I G H

db Goodness db Estimate Goodness db Estimate Goodness

db1 0.9 db2 0.8 0.4 db2 0.9 0.4

db2 0.4 db1 0.6 0.9 db1 0.8 0.9

db3 0.3 db3 0.3 0.3 db3 0.4 0.3

db4 0.2 db5 0.2 0

Table 2: The ideal and gGlOSS database ranks for Example 5.1.

would get, compared to what the user would have gotten by searching the top n databases in the

ideal rank.

Example 5.1 Consider a query q, and �ve databases dbi, 1 � i � 5. Table 2 shows I, the

ideal database rank, and G and H, two di�erent gGlOSS database ranks for q, for some de�nition

of these ranks (Sections 3 and 4). For example, db1 is the top database in the ideal rank, with

Goodness(q; db1) = 0:9. Database db5 does not appear in rank I, because Goodness(q; db5) = 0.

gGlOSS correctly predicted this for rank G (Estimate(q; db5) = 0 for G), and so db5 does not

appear in G. However, db5 does appear in H, because Estimate(q; db5) = 0:2 for H.

Let us focus on the G rank: db2 is the top database in G, with Estimate(q; db2) = 0:8. The

real goodness of db2 for q is Goodness(q; db2) = 0:4. From the ranks of Table 2, R1 =
0:4
0:9: if we

access db2, the top database from the G rank, we obtain Goodness(q; db2) = 0:4, whereas the best

database for q is db1, with Goodness(q; db1) = 0:9. Similarly, R3 =
0:4+0:9+0:3
0:9+0:4+0:3

= 1. In this case,

by accessing the top three databases in the G rank we access exactly the top three databases in the

ideal rank, and thus R3 = 1. However, R4 = 0:4+0:9+0:3
0:9+0:4+0:3+0:2

= 0:89, since the G rank does not

include db4 (Estimate(q; db4) = 0), which is actually useful for q (Goodness(q; db4) = 0:2).

Now consider the H rank. H includes all the databases that have Goodness> 0 in exactly the

same order as G. Therefore, the Rn metric for H coincides with that for G, for all n. However,

rank G is in some sense better than rank H, since it predicted that db5 has zero Goodness, as we

mentioned above. H failed to predict this. The Rn metric does not distinguish between the two

ranks. This is why we introduce our following metric.

As the previous example motivated, we need a new metric, Pn, that distinguishes between

gGlOSS ranks that include useless databases and those that do not. Given a gGlOSS rank G for

query q, Pn is the fraction of the top n databases of G (which have a non-zero Estimate for being

in G) that actually have non-zero Goodness for query q:

Pn =
jfdb 2 DBjdb is a top-n database in G and Goodness(q; db)> 0gj

jfdb 2 DBjdb is a top-n database in Ggj

(Actually, Pn = 1 if for all db, Estimate(q; db) = 0.) Note that Pn is independent of the ideal

database rank I : it just depends on how many databases that gGlOSS estimated as potentially

useful turned out to actually be useful for the query. From the point of view of the end users, a

ranking with higher Pn is better because it leads them to fewer fruitless database searches.

Example 5.1 (cont.) In the previous example, P4 =
3
3
= 1 for G, because all of the databases

in G have actual non-zero Goodness. However, P4 =
3
4
= 0:75 for H: of the four databases in H,

only three have non-zero Goodness.
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We should notice that many other alternative metrics are possible for comparing database

ranks. For example, we could consider the minimum number of swaps of pairs of databases that

are required to obtain I from G (viewing I and G as permutations of DB). Alternatively, we

could consider the top n databases in G, and compare them as a set against the top n databases

in I , and report what fraction of the second set is in the �rst one (related to the recall metric of

information-retrieval theory [SM83]), and what fraction of the �rst set is in the second set (related

to the precision metric of information-retrieval theory) [GGMT94b]. In the following section, we

only evaluate gGlOSS by using the Pn and Rn metrics, for di�erent values of n, because we believe

these metrics better re
ect the users' expectations: if gGlOSS includes in its top-n database rank

some database db that is not among the best n databases, gGlOSS should be given \partial credit"

if db turns out to be useful for the query, even if db is not as useful as one of the best n databases.

The metrics of [GGMT94a] and [GGMT94b] do not re
ect this, unlike the Rn and Pn metrics that

we use in the following section.

6 Evaluating gGlOSS

In this section we evaluate gGlOSS experimentally, for di�erent gGlOSS ranking algorithms (Sec-

tion 4) and di�erent ideal-ranking de�nitions (Section 3). We �rst describe the real-user queries

and databases that we used in the experiments. Then, we report results for MaxW (l), MaxD(l),

SumW (l), and SumD(l), the four gGlOSS ranking algorithms of Section 4, and for AllW (l) and

AllD(l), two of the ideal ranking de�nitions of Section 3.

6.1 Queries and databases

To evaluate gGlOSS experimentally, we used real-user queries and databases. The queries that

we used where pro�les that real users submitted to the SIFT Netnews server developed at Stan-

ford [YGM95] 9. Users send pro�les in the form of boolean or vector-space queries to the SIFT

server, which in turn �lters Netnews articles every day and sends the articles matching the pro�les

to the corresponding users. We used the 6800 vector-space pro�les that were active on the server

in December 1994.

To evaluate the gGlOSS performance using these 6800 queries, we used 53 newsgroups as 53

databases: we took a snapshot of the articles that were active at the Stanford Computer-Science-

Department news host on one arbitrary day, and used these articles to populate the 53 databases.

We selected all the newsgroups in the comp.databases, comp.graphics, comp.infosystems,

comp.security, rec.arts.books, rec.arts.cinema, rec.arts.comics, and rec.arts.theatre

hierarchies that had active documents in them when we took the snapshot. Note that some of

these newsgroups cover closely related topics, while others cover totally unrelated topics.

We indexed the 53 databases and evaluated the 6800 queries on them using the SMART system

(version 11.0) developed at Cornell University. To keep our experiments simple, we chose the same

weighting algorithms for the queries and the documents across all of the databases. We indexed

the documents using the Smart ntc formula, which generates document weight vectors using the

cosine-normalized tf.idf product [Sal89]. We indexed the queries using the Smart nnn formula,

which generates query weight vectors using the word frequencies in the queries. The similarity

coe�cient between a document vector and a query vector is computed by taking the inner product

of the two vectors.

9SIFT is accessible at http://sift.stanford.edu.
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For each query, ideal-rank de�nition, and gGlOSS ranking algorithm, we compared the ideal

rank against the gGlOSS rank using the methodology of Section 5. For a �xed ideal-rank de�nition

and a query, we generated the ideal rank of databases for that query: we evaluated the query at

each of the 53 databases. For a �xed gGlOSS ranking de�nition and a query, we generated the rank

of databases that gGlOSS would generate for that query: we extracted the (partial) information

that gGlOSS needs from each of the 53 databases. For each query word, gGlOSS needs the number

of documents in each database that include the word, and the sum of the weight of the word in

each of these documents. To extract all this information, we queried the 53 databases using each

query word individually, what totaled an extra 18,213 queries. We should stress that this is just

the way we performed the experiments, not the way a gGlOSS server will obtain the information

it needs about each database: in a real system, each database will periodically scan its indexes,

generate the information that gGlOSS needs, and send it to the gGlOSS server. (See Section 4.)

6.2 Experimental results

In this section we experimentally compare the gGlOSS database ranks against the ideal ranks

in terms of the Rn and Pn metrics. We study which of the AllW (l), AllD(l), SumW (l), and

SumD(l) database ranks is better at predicting ideal ranks AllW (l) and AllD(l), and what impact

the threshold l has on the performance of gGlOSS. We also investigate whether keeping both the

F and W matrices of Section 4 is really necessary, since gGlOSS needs only one of these matrices

to compute ranks AllW (0), AllD(0), SumW (0), and SumD(0) (Section 4.2).

Figure 1 shows the values of the Rn metrics for ideal database rank AllW (0), i.e., in this case

any document with non-zero similarity with the query is considered useful. Ranks MaxW (0) and

SumW (0) are identical to ideal rank AllW (0), and so they haveRn = 1 for all n, as the �gure shows.

Ranks MaxD(0) and SumD(0) also have high Rn values (0.91 and higher). All of the ranks have

Pn = 1, for all n, and we thus do not show the corresponding �gure. (This is immediate for ranks

MaxW (0) and SumW (0) because they coincide with the target rank AllW (0). For ranks MaxD(0)

and SumD(0), a given query q, and a database db, if Estimate(q; db)> 0, then Goodness(q; db)> 0.

Consequently, Pn = 1 for all n.) In summary, if a user wishes to locate databases where the overall

similarity between documents and the given query is highest and any document with non-zero

similarity is interesting (AllW (0) rank), then gGlOSS should use the MaxW (0) (or, identically,

SumW (0)) ranks and get perfect results.

To study the impact of higher rank thresholds, Figures 2 and 3 show results for the AllW (0:2)

ideal rank. Surprisingly, in all of our experiments ranks MaxW (l) and MaxD(l) performed almost

identically for l > 0. Although the estimates de�ning both ranks are di�erent, they are based on the

same assumptions, and so they produce similar database orderings. Analogously, ranks SumW (l)

and SumD(l) performed almost identically for l > 0. Therefore, for clarity, we just present the data

for MaxW (l) and SumW (l), labeled as MaxW (l)=MaxD(l) and SumW (l)=SumD(l), respectively,

and we ignore MaxD(l) and SumD(l) in the rest of the discussion. Also, we show Rn and Pn for

values of n ranging from 1 to 15. We do not report data for higher n's because most of the queries

have fewer than 15 useful databases according to AllW (0:2). So, the results for high values of n are

not that signi�cant. Figure 3 shows that rank SumW (0:2) has perfect Pn (Pn = 1) for all n, because

if a database db has Estimate(q, db)> 0 according to the SumW (0:2) rank, then Goodness(q; db)>

0 according to AllW (0:2). In other words, rank SumW (0:2) only includes databases that are

guaranteed to be useful. Rank MaxW (0:2) may include databases not guaranteed to be useful,

yielding higher Rn values (Figure 2), but lower Pn values (Figure 3).

To decide whether gGlOSS really needs to keep both matrices F and W (Section 4), we
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also use ranks MaxW (0), MaxD(0), SumW (0), and SumD(0) to approximate rank AllW (0:2).

gGlOSS needs only one of the two matrices to compute these four ranks (Section 4.2). Since ranks

MaxW (0) and SumW (0) are always identical, and ranks MaxD(0) and SumD(0) performed very

similarly in all of our experiments, we just present the data for MaxW (0) and MaxD(0), labeled

MaxW (0)=SumW (0) and MaxD(0)=SumD(0), respectively. Figure 2 shows that the MaxW (0)

rank has the highest values of Rn, followed by SumW (0): these ranks assume a threshold l = 0,

and thus they tend to include more databases in the ranks than their counterparts with thresh-

old 0.2. This is also why MaxW (0) and SumW (0) have much lower Pn values (Figure 3) than

MaxW (0:2) and SumW (0:2): they include more databases that have zero Goodness according to

AllW (0:2).

In summary, if the users are interested in not missing any useful database, but are willing

to search some useless ones, then MaxW (0) is the best choice for gGlOSS, and gGlOSS can do

without matrix F . If the users wish to avoid searching useless databases, then SumW (0:2) is the

best choice. Unfortunately, SumW (0:2) also has low Rn values, which means it can also miss some

useful sources. As a compromise, a user can have MaxW (0:2), which has much better Pn values

than MaxW (0) and generally better Rn values than SumW (0:2). Also, note that in the special

case where users are interested in accessing only one or two databases (n = 1; 2) then MaxW (0:2)

is the best choice for the Rn metric. In this case, it is worthwhile for gGlOSS to keep both matrices

F and W .

To show the impact of the rank thresholds, Figures 4 and 5 show the Rn and Pn values for the

di�erent ranks and a �xed n = 3, and for values of the threshold l from 0 to 0.4. For larger values

of l, most of the queries have no database with Goodness greater than zero. For example, for ideal

rank AllW (0:6) each query has on average only 0.29 useful databases, making the experimental

results for such a threshold not that meaningful. Therefore, we only show the data for threshold

0.4 and lower. At �rst glance one might expect the Rn and Pn performance of MaxW (0) not

to change as the threshold l varies, since the ranking it computes is independent of the desired

l. However, as l increases, the ideal rank AllW (l) changes, and the static estimate provided by

MaxW (0) performs worse and worse. The MaxW (l) and SumW (l) ranks do take into account

the target l values, and hence do substantially better. Also notice that our earlier conclusion still

holds: strategy SumW (l) is best at avoiding useless databases, while MaxW (0) provides the best

Rn values (at the cost of low Pn values).

Finally, for ideal rank AllD(l), the number of documents in a database with similarity greater

than l with the given query determines the goodness of the database. The performance of the

gGlOSS ranks for AllD(l) is very similar to that for AllW (l). For space limitations, we only show

how the Rn metric changes for di�erent thresholds, for n = 3 (Figure 6). The Pn values are

identical to those for ideal rank AllW (l) (Figure 5): a database db has Goodness(q; db)> 0 for rank

AllW (l) if and only if db has Goodness(q; db)> 0 for rank AllD(l), from the de�nition of these ranks

(Section 4). However, unlike the AllW (0) rank, the AllD(0) rank is not matched exactly by any

gGlOSS rank. (Recall that the MaxW (0) and SumW (0) ranks coincide with rank AllW (0).) Thus,

from the point of view of suggesting good sources, it does not matter if the users are looking for sites

with the largest number of above-threshold documents (AllD(l) rank), or if they are looking for

sites with the largest total similarity with the given query of above-threshold documents (AllW (l)

rank).

In summary, gGlOSS generally predicts fairly well the best databases for a given query. Actually,

the more gGlOSS knows about the users' expectations, the better gGlOSS can rank the databases

for the query. If high values of both Rn and Pn are of interest, then gGlOSS should produce
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Figure 1: Parameter Rn as a function of n, the number of databases examined from the ranks, for

the AllW (0) ideal database ranking and the di�erent gGlOSS rankings.

ranks based on the high-correlation assumption of Section 4.1: ranks MaxW (l) and MaxD(l) are

the best candidates for ranks AllW (l) and AllD(l) with l > 0. If only high values of Rn are of

interest, then gGlOSS can do without matrix F , and produce ranks MaxW (0) or SumW (0). If

only high values of Pn are of interest, then gGlOSS should produce ranks based on the disjoint-

scenario assumption of Section 4.2: ranks SumW (l) and SumD(l) are the best candidates. For

rank AllW (0), ranks MaxW (0) and SumW (0) give perfect answers. Furthermore, gGlOSS does

not need the F matrix to compute these ranks. For rank AllD(0), ranks MaxD(0) and SumD(0)

give the best approximation, and they do not require the W matrix.

7 Decentralizing gGlOSS

So far, we described gGlOSS as a centralized server that users query to select the most promising

sources for their queries. In this section we show how we can build a more distributed version of

gGlOSS using essentially the same methodology that we developed in the previous sections.

Suppose that we have a number of gGlOSS servers G1; : : : ; Gs, indexing each a set of databases

as we described in the previous sections. (Each of these servers can index the databases at one

University or company, for example.) We will now build a higher-level gGlOSS server, hGlOSS,

that summarizes the contents of the gGlOSS servers in much the same way as the gGlOSS servers

summarize the contents of the underlying databases. The users will then query the hGlOSS server

�rst, and obtain a rank of the gGlOSS servers according to how likely they are to have indexed

useful databases. Later, the gGlOSS servers will produce the �nal database ranks. Although the

hGlOSS server is still a single entry point for users to search for documents, the size of this server

will be so small that it will be inexpensive to massively replicate it, distributing the access load

among the replicas. In this way, organizations will be able to manage their own \traditional"

gGlOSS servers, and will let replicas of a logically unique higher-level gGlOSS, hGlOSS, concisely

summarize the contents of their gGlOSS servers, as Figure 7 illustrates.
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Figure 2: Parameter Rn as a function of n, the number of databases examined from the ranks, for

the AllW (0:2) ideal database ranking and the di�erent gGlOSS rankings.
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the AllW (0:2) ideal database ranking and the di�erent gGlOSS rankings.
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Figure 4: Parameter R3 as a function of the threshold l, for ideal rank AllW (l).

The key point is to notice that hGlOSS can treat the information about a database at a

traditional gGlOSS server in the same way as the traditional gGlOSS servers treat the information

about a document at the underlying databases. The \documents" for hGlOSS will be the database

summaries at the gGlOSS servers.

To keep the size of the hGlOSS server small, the information that the hGlOSS server keeps

about a gGlOSS server Gr is limited. For example, hGlOSS keeps one or both of the following

matrices (see Section 4):

� H= (hrj): hrj is the number of databases in gGlOSS Gr that contain word tj

� D= (drj): drj is the sum of the number of documents that contain word tj in each database

in gGlOSS Gr

In other words, for each word tj and each gGlOSS server Gr, hGlOSS needs (at most) two numbers,

in much the same way as the gGlOSS servers summarize the contents of the document databases

(Section 4).

Example 7.1 Consider a gGlOSS server Gr and the word computer. Suppose that the following

are the databases in Gr having documents with the word computer in them, together with their

corresponding gGlOSS weights and frequencies:

computer : (db1; 5; 3:4); (db2; 2; 2:1); (db3; 1; 0:3)

That is, database db1 has �ve documents with the word computer in them, and their added weight

is 3.4 for that word, database db2 has two documents with the word computer in them, and so on.

hGlOSS will only know that the word computer appears in three databases in Gr, and that the sum

of the number of documents for the word and the databases is 5+2+1 = 8. hGlOSS will not know

the identities of these databases, or the individual document counts associated with the word and

each database.
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Figure 5: Parameter P3 as a function of the threshold l, for ideal rank AllW (l).
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Figure 7: The hGlOSS server summarizes the contents of the traditional gGlOSS servers, who in

turn summarize the contents of the underlying databases.

We can now use the same methodology we used for gGlOSS in the previous sections: given a

query q, we de�ne the Goodness of each gGlOSS server Gr for the query: for example, we can take

the database rank that Gr produces for q, together with the goodness Estimate for each of these

databases according to Gr, and de�ne the Goodness of Gr for q as a function of this rank. This

computation is analogous to how we computed the goodness of the databases in Section 3.

After de�ning what the Goodness of each gGlOSS server is for query q, we de�ne how hGlOSS is

going to estimate this goodness given only partial information about each gGlOSS server. hGlOSS

will determine the Estimate for a gGlOSS server Gr using the vectors hr� and dr� for Gr in a way

analogous to how the gGlOSS servers determine the Estimate for a database dbi using the fi� and

wi� vectors. After de�ning the Estimate for each gGlOSS server, hGlOSS ranks the gGlOSS servers

so that the users can access the most promising servers �rst, i.e., those most likely to index useful

databases.

Due to space limitations, we are unable to present detailed results for hGlOSS. However,

simply to illustrate its potential, here we brie
y describe one experiment. For this, we divide the

53 databases of Section 6 into �ve randomly-chosen groups of around ten databases each. Each of

these groups corresponds to a di�erent gGlOSS server.

We assume that the gGlOSS servers approximate ideal rankAllD(0) with theMaxD(0) database

rank. Therefore, the gGlOSS servers only keep the document-count vector F (Section 4). Next,

we de�ne the goodness of a gGlOSS server for a query. This goodness determines the ideal rank

of gGlOSS servers in a way analogous to how we de�ned the ideal database rank for a given query

(Section 3). We de�ne the goodness of a gGlOSS server Gr for a query q as the number of databases

indexed by Gr having a goodness Estimate for q greater than zero. (This de�nition is analogous

to the goodness de�nition associated with ideal rank AllD(0).) Finally, we de�ne how hGlOSS

approximates the ideal rank of gGlOSS servers. hGlOSS periodically receives the H matrix de�ned

above from the underlying gGlOSS servers. For query q with words t1; : : : ; tn and gGlOSS server

Gr, hr1; : : : ; hrn are the database counts for Gr associated with the query words. (Word t1 appears

in hr1 databases in gGlOSS server Gr, and so on.) Assume that hr1 � : : : � hrn. Then, hGlOSS

estimates the goodness of Gr for q as hrn. (This is analogous to the Estimate de�nition associated

with rankMaxD(0) in Section 4.2.) In other words, hGlOSS estimates that there are hrn databases

in Gr that have a non-zero goodness estimate for q.

Table 3 shows the di�erent values of the (adapted) Rn and Pn metrics for the 6,800 queries of
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n Rn Pn

1 0.985217 1

2 0.990884 1

3 0.994409 1

4 0.997599 1

5 1.000000 1

Table 3: The Rn and Pn metrics for hGlOSS and our sample experiment.

Section 6. Note that Pn = 1 for all n, because every time hGlOSS chooses a gGlOSS server using

the ranking described above, this server actually has databases with non-zero estimates. From the

high values for Rn it follows that hGlOSS is extremely good at ranking \useful" gGlOSS servers.

Our single experiment used a particular ideal ranking and evaluation strategy. We can also use

the other rankings and strategies we have presented adapted to the hGlOSS level, and tuned to the

actual user requirements. Also, the hGlOSS server will be very small in size and easily replicated,

thus eliminating the potential bottleneck that the centralized gGlOSS architecture can su�er.

8 Conclusion

We have shown how to construct an information broker for both vector-space text databases and

hierarchies of brokers. Based on compact collected statistics, the broker can provide very good hints

for �nding the relevant databases, or �nding relevant lower-level brokers with more information for

a given query. An important feature of our approach is that the same machinery can be used for

both types of brokers, either the lower-level or the higher-level ones. Our experimental results show

that the gGlOSS and the hGlOSS brokers are quite promising and could provide useful services in

large, distributed information systems.
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