
Dynamic Maintenance of Kinematic Structures

D. Halperin
�

J-C. Latombe
y

R. Motwani
z

Department of Computer Science

Stanford University

Stanford, CA 94305-2140.

E-mail: fhalperin,latombe,motwanig@cs.stanford.edu

Abstract

We study the following dynamic data structure problem. Given a collection of rigid

bodies moving in three-dimensional space and hinged together in a kinematic structure,

our goal is to maintain a data structure that describes certain geometric features of

these bodies, and e�ciently update it as the bodies move. This data structure problem

seems to be fundamental and it comes up in a variety of applications such as confor-

mational search in molecular biology, simulation of hyper-redundant robots, collision

detection and computer animation. In this note we present preliminary results on a

few variants of the problem.

1 Introduction

We de�ne an abstract data structuring problem and leave the motivation for the next section.
We are required to maintain a data structure for a path graph consisting of n nodes V =
fv1; v2; . . . ; vng arranged in a path P so that for 1 � i � n � 1 there is an edge (vi; vi+1),

and there are no other edges in the graph. At any time, each edge has a state that is either

unlocked or locked. There are two operations that are required to be supported.

update(vi; vi+1) This operation speci�es an edge and asks that it be unlocked temporarily,
unless the edge is already unlocked.

query(vi; vj) This operation speci�es a subpath from vi to vj, and requires a report that
involves examining all the unlocked edges in the subpath.

�Partially supported by a grant from P�zer Central Research.
yPartially supported by a grant from P�zer Central Research.
zSupported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award, an OTL

grant, and NSF Young Investigator Award CCR-9357849, with matching funds from IBM, Schlumberger

Foundation, Shell Foundation, and Xerox Corporation.

1



The algorithm's goal is to decide which edges to keep unlocked and which to keep

locked between any two operations in an input sequence of operations with an arbitrary

mix of update and query. The algorithm is free to unlock or lock any edge at any time

in the processing of the sequence, and it has to pay for the change in state. It resorts to the

following two primitive operations for this purpose: unlock(vi; vi+1) and lock(vi; vi+1).

Note that at any time, the set of unlocked edges decompose the path P into an ordered

sequence of subpaths P1, P2, . . . that are linked together by unlocked edges and do not

contain any internal unlocked edges. We call each such subpath a rigid subpath.

We de�ne the cost function for these operations as follows:

unlock(vi; vi+1) The cost is 0 when the edge (vi; vi+1) is already unlocked. Otherwise,

let Pj be the subpath containing the edge (vi; vi+1), and then the cost of the unlock

operation is the length of the path Pj.

lock(vi; vi+1) The cost is 0 when the edge (vi; vi+1) is already locked. Otherwise, let Pj

be the subpath created by locking the edge (vi; vi+1), and then the cost of the lock
operation is the length of the path Pj.

update(vi; vi+1) The cost is the same as that for unlock(vi; vi+1), except that the cost is

1 (instead of 0) when the edge is already unlocked.

query(vi; vj) The cost of this operation is the number of rigid subpaths in the interval
(vi; vj), namely the number of unlocked edges plus 1.

We will refer to the cost of UNLOCK as described above as the TOTAL cost measure,
because all the the nodes in the rigid path where we unlock are taken into consideration.
An alternative cost measure, the MIN cost, will be the minimum of the length of the two

subpaths resulting from the UNLOCK operation. The justi�cation of both measures are
given in the next section. A similar remark applies to the LOCK operation. In the TOTAL
measure its cost will be the number of nodes in both subpaths and in the MIN measure, the
cost will be that of the shorter of the subpaths.

We also observe that if we need to carry out a series of LOCK and UNLOCK operations

on a contiguous subpath (not necessarily rigid) of length k, than the overall cost of these
operations in the TOTAL measure is k. Again, this remark will be justi�ed in the next

section.

Unless otherwise stated, we will assume that a query visits the entire path, hence from
this point on query will stand for query(v1; vn), and we call it a PATH query.

2 Background and Motivation

Our study is motivated by applications where a large number of rigid bodies moving in three-
dimensional space are hinged together in a kinematic structure. Our goal is to maintain a

data structure that describes certain geometric features of these bodies, and update it as

the bodies move. We will concentrate below on intersection queries. For an `intersection

query' with an additional object q, our data structure should report whether at the time of
the query the object q intersects any of the bodies in the original set.

2



2.1 The Motivating Applications

The need to maintain data structures to answer geometric queries for large kinematic systems

arises, among others, in the following application domains:

� molecular biology and rational drug design

� simulation of hyper-redundant robot manipulators

� computer animation.

Molecules can attain di�erent conformations according to kinematic constraints [6]. When

dealing with macromolecules the number of degrees of freedom can be in the hundreds or

even thousands. In robotics, several researchers suggested to construct highly 
exible robots

that have a large number of degrees of freedom [3], [18]. Models of such robots have al-

ready been constructed in laboratories. In yet another area, in computer animation, living
creatures with 
exible motion capabilities need to be modeled and displayed [11]. Realistic
kinematic models of humans and animals require a large number of degrees of freedom.

In all these areas, computation with the models, simulation and visualization require to
maintain certain geometric properties of the bodies involved, as they move.

2.2 Related Work

The problem that we study here is related to dynamic data structure problems in compu-
tational geometry; see, for example, [15],[17]. However, most of the study of dynamic data

structures deals with situations where the dynamization is in that objects are added to the
set or removed from it. In our study the set of objects remains �xed, and the dynamization
is in their motion while obeying kinematic constraints.

As we will see below, standard issues in dynamic data structures, namely insertions and
deletions, will come to play in our analysis as well. However, in the model that we adapt,

insertions and deletion are easy to perform and take O(1) time each. This is justi�ed in
certain applications; see the next subsection.

Another related area is that of data structures for N -body force calculations [1]. The
similarity to our problem is that in such calculations one aims to maintain a data structure

for a set of N bodies that move, where the set of bodies does not change. However, because

of the nature of change in the relative placements of the bodies, prevailing solutions to the

problem (see, e.g., [1]) compute the data structure from scratch at each step.

Collision checking in robot motion planning and robot simulation, has been a prevailing
area of research both theoretical and applied. However, since most of the prevailing robots

to date have up to six degrees of freedom, little attention has been given to the e�ect of the
number of degrees of freedom on the maintenance of geometric information on the robots

as they move. Our current study focuses on systems that have a large number of degrees of
freedom.

3



2.3 The Basic Model

We describe the static data structure for intersection queries in molecules. Our description

is taken from [9] and is presented here to lay the ground for the discussion below. The

structure represents the geometry of a molecule by representing each atom as a sphere in a

�xed placement in 3-space and with radius that depends on the atom type. For more details

on this so-called hard sphere model of a molecule see, for example, [4],[16].

Remark 1 Our choice to concentrate on the kinematic model of molecules is merely for

convenience: in molecules the description of the rigid links is especially simple. The same

discussion would be applicable with minor changes to robots with many degrees of freedom,

provided that their links are similar in shape and size [18]. The example of molecules also

has the advantage that the static data structures have been implemented and experimented

with to con�rm the theoretical bounds that we cite below.

As noted in [9], the spheres in the model of a molecule ful�ll certain properties that make
their manipulation easier than the manipulation of an arbitrary set of spheres in three-
dimensional space. Informally the two properties of interest are (i) the radii of the spheres
lie in a relatively narrow range, and (ii) the centers of any two spheres in the model cannot

get too close to one another. These properties are formalized in [9] and used to construct
e�cient data structures and e�cient visibility algorithms for this model.

It follows from these properties that one can construct a data structure for a molecule
of n atoms for e�ciently answering intersection queries with spheres of roughly the same
size. The structure uses O(n) storage, answers a query in O(1) time, and requires O(n)

randomized preprocessing time. The structure uses a three-dimensional grid and stores in
each grid cube those atom spheres that intersect it. The O(n) non-empty grid cubes are
then stored in a hash table. This structure is good for answering intersection queries when
the molecule is at a �xed nuclear con�guration.

The atoms in a molecule can move, and the molecule is said to attain di�erent confor-

mations. In a simpli�ed model the relative motion capabilities of atoms in a molecule are
described as if the atom spheres were rigid links in a robot and certain bonds between pairs
of atoms allow a rotation around the line connecting the two atom centers as if they are

rotational joints of the robot. Our extended model of the molecule, to include its capability
to change conformations, is a collection of spheres, some pairs of which are rigidly attached

to one another, while other pairs have a degree of freedom of rotation between them.
We will describe these kinematic constraints by a graph where each node corresponds

to an atom sphere, and an edge between nodes describes a constraint. An edge can be
either rigid|there is a �xed relative displacement between the atoms that it connects, or

rotatable|when there is a degree of freedom of rotation along a �xed line between the two
atoms. Molecules can often be described by graphs that are trees, although is some situations

cycles do arise. However, to simplify our discussion, we will assume for the moment that the

graph is a path. Some of the results below extend to trees and we will point these cases out
when we discuss them.

Next, we are given a sequence of update operations that are aimed at changing the
conformation of the molecule: this is done by giving a sequence of joint angles to which

4



we need to update the rotatable bonds, and this sequence is interleaved with intersection

queries: namely, does a given query sphere intersect any of the spheres in the molecule at

its current conformation.

To get a feeling for the problem that we are addressing in this paper consider the following

scenario. We are handling a molecule modeled as a path and having a large number of atoms,

and we get a long sequence of updates that all modify the joint angle of a single rotatable

bond somewhere near the middle of the path. To maintain our data structure valid for

intersection queries we can simply rebuild the structure after each update of the joint angle.

This will cost O(n) per update. However, in this limited example there is a much better

strategy to follow: break the path into two subpaths at the edge that represents the rotatable

bond that is being updated, and build a static data structure for each subpath. When an

update comes, all we have to update is the relative displacement between the two subpaths.

For a query sphere, we need to query each of the substructures separately. The cost of each

update is only O(1) and the cost of a query (which originally is O(1)) has only doubled.
For a more involved sequence of updates it may not be as obvious what is a good strategy
in terms of breaking the structure into substructures or merging substructures into a larger

structure.
The question that we address in this paper is: Given a set of objects and the kinematic

constraints between them, what is the best strategy to maintain a data structure, such that
a sequence of updates and queries will be answered in optimal time, where the algorithm
has the freedom to break or merge substructures.

To further justify the models that we will propose below, we now explain more formally
how each operation on our dynamic data structure, that consists of a series of static data
structures, is performed. Our molecule consists of atom spheres that correspond to the nodes
v1; v2; . . . ; vn in a path. Some of the edges of the path correspond to rotatable bonds. At
any time our data structure consists of one or more static data structures each representing
a contiguous set of nodes in the path. Let S1 denote the static structure (a hash table in the

example above) containing the sphere corresponding to v1, S2 is the next static structure
along the path and so on. We assume that the sphere corresponding to v1 is �xed in three-
space. Each static structure has a coordinate frame attached to it in which the spheres of
the structure are described. The coordinate frame attached to S1 is the universal frame, in

which the query spheres will be given. For every pair of successive static structures Si and

Si+1 we maintain a rigid transformation Ti which transforms points described in the frame
of Si to be described in the frame of Si+1.

Given a query sphere q, we query the structure S1 with q. Next, we transform q into
q0, using the transformation T1, we query S2 with q0, and so on. The �nal answer is easily

deduced from the answers in all the structures Si. For a path consisting of k static structures,

the cost of the query is clearly O(k).
To update the joint value of an edge that lies between two static structures (that is, it is

not internal to any static structure), we simple have to update the transformation between
the two structures on both its sides. This takes O(1) time.

To break a static structure consisting of t spheres into two substructures of sizes t1 � t2
we have two options: either to rebuild the two substructures from scratch at the cost of
O(t1 + t2) = O(t), or to delete elements from the original structure so that it becomes one

5



of the desired substructures, and insert all the deleted elements into a new structure. This

can be done in O(t1) time as we assume that the operations of insert or delete in our static

structures each takes O(1) time. (The assumption that insert or delete each takes O(1) time

is justi�ed for the hard sphere model of a molecule, as long as we take care that the molecule

does not roll into conformations that induce a large volume of steric interference. Roughly,

this requires that in a sequence of updates whenever we detect steric interference beyond a

preset threshold we do not bend further into this conformation.)

Similarly to merge two structures into one we can either build the new structure from

scratch or move the smaller into the bigger. We will tackle a few slight variations as we go

on in the analysis, but this should give the 
avor of why we choose the cost measures that

we describe in the paper.

3 Worst-Case, Amortized, and Randomized Analysis

In this section we characterize the complexity of the update and query operations in each of

the following settings: worst-case, amortized, and randomized. We begin by considering the
case of paths, and then extend our results to trees.

Theorem 1 There is an algorithm that maintains this data structure at a worst-case cost

of O(
p
n) per operation, whether we use the MIN or the TOTAL cost measures.

Proof: The idea is very simple: the algorithm chooses the initial state to be one where
the unlocked edges are spaced regularly at distance of

p
n. This state remains �xed

throughout the execution of the input sequence. It is clear that any query can be answered
in timeO(

p
n) since that is the total number of unlocked edges in the entire path. Further,

any update operation has cost O(
p
n) since all subpaths are of length

p
n. Note that the

algorithm will break an edge for an update operation, but will then lock it right after that
unless the edge is one of the initially unlocked edges. The cost of the lock operation at

most doubles the cost of the update operation.
This bound is tight, even in the amortized and randomized settings.

Theorem 2 Any algorithm for maintaining this data structure must have a worst-case cost

per operation that is 
(
p
n). The same holds for both amortized and randomized time

measures, whether we use the MIN or the TOTAL cost measures.

Proof: We �rst prove the worst-case lower bound using an adversarial approach. At any

time, the adversary examines the state of the data structure being maintained by the algo-

rithm. If the number of unlocked edges exceeds
p
n, it inputs the operation query(v1; vn)

and this has a cost 
(
p
n). On the other hand, if the number of unlocked edges is fewer

than
p
n, then there exists a subpath Pj with more than

p
n edges. In that case, the ad-

versary inputs an operation which involves breaking the middle-most edge in this subpath.

This costs 
(
p
n) regardless of whether we are using the MIN or the TOTAL cost measure.

Notice that the above adversary strategy is completely impervious to the strategy of the

algorithm and can create an input sequence of an arbitrary length where each operation costs

6




(
p
n). Quite clearly then, the lower bound carries over to the amortized cost of operations

without any changes.

Finally, we extend our lower bound to the randomized case. Here we are allowing the

algorithm to be randomized, and now the adversary can no longer look at the state of the

data structure when choosing each operation in the input sequence. We modify the adversary

strategy as follows: at each step, the adversary chooses to either supply an update operation

or a query operation, with equal probability; if it chooses an update operation, the edge

to be updated is chosen uniformly at random, while the query operation refers to the entire

path. Suppose that the data structure has more than
p
n unlocked edges, then with

probability 1=2, the query operation causes a cost of 
(
p
n). On the other hand, when the

data structure has fewer than
p
n unlocked edges, the update operation is chosen with

probability 1=2 and the edge involved in this operation lies in a subpath of expected length


(
p
n). It follows that the expected cost of each operation is 
(

p
n).

Remark 2 The latter theorem illustrates the need for applying competitive analysis to this

problem. It is fairly easy to see that this problem is a special case of the metrical task
systems formulation of Borodin, Linial, and Saks [2]. However, it also appears that the

special structure of this problem should lead to far more e�cient solutions than the ones

given by them.

3.1 Extension to Trees

To understand the case of trees, it is instructive to �rst examine the other extreme from paths,
i.e., stars. By analogy with paths, we may at �rst think that the goal is to �nd

p
n edges

which decomposes the star into in subtrees of size O(
p
n) each. Clearly, this is impossible

and so it may seem that we will have to pay a linear worst-case cost for the update/query
operations. However, upon closer examination it turns out that stars are much easier than
paths provided we work with the MIN cost measure rather than the TOTAL cost measure.

This is because under the MIN cost measure, the cost of an update operation is O(1) for
each edge, even if it is locked. Thus, for stars, the right solution is to not unlock any
edges at all, leading to O(1) cost for a query and O(1) cost for an update.

Motivated by this insight, we make the following de�nition:

De�nition 1 In a tree T , the two subtrees resulting from the removal of an edge (vi; vj) are
denoted Ti and Tj, according to which of these contains the two endpoints vi and vj. The

heaviness k of the edge is de�ned to be k = minfjTij; jTjjg. An edge of heaviness k is said to

be k0-heavy for any k0 � k.

Basically, the \heaviness" of an edge is the cost of unlocking or updating the edge.
We now extend the notion of heaviness to the entire tree.

De�nition 2 The heaviness k of a tree T is the maximum heaviness of an edge in it. A tree

T of heaviness k is said to be k0-heavy for all k0 � k.

Based on this, we de�ne the notion of balance number of a tree.

7



De�nition 3 The balance number � of a tree T is the smallest integer k such that the re-

moval of k�1 edges from T decomposes it into k subtrees T1; T2; . . . ; Tk (some of which may be

empty) none of which is k-heavy. Such a decomposition is called a k-balanced decomposition

of T .

Note that an edge that is not k-heavy in some Ti could be k-heavy in the original tree T ,

and in the above de�nition we are considering the heaviness of the edges in each Ti with

respect to that tree itself.

Before relating the balance number � to the data structure problem, we will need to

determine the value of � and, in fact, to �nd the � � 1 edges that induce the balanced

decomposition. This is not immediately obvious. The following lemma seems useful.

Lemma 1 For any tree T and any k, the set of k-heavy edges in T form a connected subtree

of T .

Proof: Let e1 = (v1; v2) and e2 = (v3; v4) be two k-heavy edges in T . Assume that v2 is
closer to e2 than v1, and that v3 is closer to e1 than v4. We will show that the edges on the

(unique) path from v2 to v3 are all k-heavy, and this will imply the desired result.
Suppose that the removal of the edge e1 from T creates a subtree T1 containing v1 and

a subtree T2 containing v2; similarly, the removal of the edge e2 from T creates a subtree T3
containing v3 and a subtree T4 containing v4. Clearly, each of T1; T2; T3, and T4 has size at
least k, since e1 and e2 are both assumed to be k-heavy.

Let e = (v5; v6) be an edge on the path from v2 to v3, and suppose that the removal of
the edge e from T creates a subtree T5 containing v5 and a subtree T6 containing v6. Clearly,
T1 is contained in T5 and T4 is contained in T6, implying that both T5 and T6 have size at
least k, and therefore e is k-heavy.

We now turn to the task of determining the balance number � and the set of � edges
whose deletion gives a �-balanced decomposition into subtrees that are not �-heavy. Note

that we can do binary search on the value of �, so it basically boils down to the issue of
deciding whether a tree has balance number � = k for some given value k. We prove the
following theorem.

Theorem 3 Given a tree T with balance number �, the �-balanced decomposition of T can

be computed in O(n2�) time.

Proof: Consider an edge e = (v1; v2) and suppose that the removal of the edge e1 from
T creates a subtree T1 containing v1 and a subtree T2 containing v2. Assume, without loss

of generality, that jT1j � jT2j. We will say that e is �-critical if the tree T1 is not �-heavy,

but the addition of the vertex v2 (and the edge e) to T1 gives a tree T 0

1
that is �-heavy.

Consider the following greedy algorithm: pick any �-critical edge e and delete it; set
aside the tree T1 that is not �-heavy, and recurse on the residual tree T2. We terminate in �

stages with a �-balanced decomposition, or possibly report that the tree is not �-balanced.
The analysis of the greedy algorithm is based on the following monotonicity property: if T 0

is a subtree of a tree T and T 0 is a k-heavy tree, then T must also be k-heavy.

The claim is that this algorithm deletes the smallest possible number of edges so as to
decompose T into subtrees that are not �-heavy. This can be established (inductively) as

8



follows. Let OPT be some optimal set of edges to delete to ensure that T decomposes into

subtrees that are not �-heavy. If OPT contains the edge e chosen at the �rst step, then we

are done. Otherwise, OPT must delete some edge in T1; clearly, removing all such edges

from OPT and adding e to the remaining set gives a set OPT 0 of (at most) the same size

as OPT . We claim that OPT 0 must be also be an optimal set of edges to delete to obtain

a �-balanced decomposition. Since OPT 0 n e must be an optimal solution for the residual

subtree T2, we can apply induction to complete the proof.

We now show that the greedy algorithm can be implemented in O(n2�) time. At any

stage, we consider each edge in turn and determinewhether it is �-critical. This requiresO(n)

time since the heaviness of a tree can be computed in linear time using depth-�rst search.

The total work for each stage of the greedy algorithm is O(n2), and since the number of

stages cannot exceed �, the time bound follows.
We now relate the balance number to the complexity of the data structure problem.

Theorem 4 Let T be a tree with balance number �. There is an algorithm that maintains

a kinematic data structure at a worst-case cost of O(�) per operation, using the MIN cost

measure.

Proof: Let U be a set of at most ��1 edges in T which gives a �-balanced decomposition

into trees that are not �-heavy. The idea is to keep the edges in U unlocked. The cost a
query is clearly at most �. An update is also going to cost at most � since in each of the
connected subtrees none of the edges are �-heavy,

This bound is tight, even in the amortized setting.

Theorem 5 Let T be a tree with balance number �. Any algorithm for maintaining a kine-

matic data structure must have a worst-case cost per operation that is 
(�). The same holds

for the amortized time measure.

Proof: We �rst prove the worst-case lower bound using an adversarial approach. At
any time, the adversary examines the state of the data structure being maintained by the
algorithm. If the number of unlocked edges exceeds �, it inputs a query operation and

this has a cost 
(�). On the other hand, if the number of unlocked edges is fewer than �,
then there exists a subtree Tj which is �-heavy and contains a �-heavy edge e. The adversary

then inputs an update operation involving e and this costs 
(�).

Notice that the above adversary strategy is completely impervious to the strategy of the
algorithm and can create an input sequence of an arbitrary length where each operation costs

(�). Quite clearly then, the lower bound carries over to the amortized cost of operations

without any changes.

4 The TOTAL Problem

In this section, we focus on the TOTAL problem. Interpreting the problem in geometric

terms, we obtain that the it is NP-complete. We also indicate brie
y the known results for

approximations to the problem.

9



q1 q2 qm

v1

v2

vn

qi qi+1

vj

vj+1

R

update

Figure 1: A geometric interpretation of the problem with PATH and TOTAL

4.1 The TOTAL Problem is NP-complete

Let q1; q2; . . . ; qm denote the queries and recall that v1; v2; . . . ; vn denote the nodes in the

path. We consider an n�m grid, lying inside a rectangle R, where each column stands for
a query and each row stands for a node in the path. With a slight abuse of notation we will
refer to the columns as q1; q2; . . . and to the rows as v1; v2; . . .

The queries are interleaved with update operations. Suppose that between queries qi
and qi+1 we have an update operation update(vj; vj+1). In our geometric model this update

operation translates into a point that lies at the intersection of the vertical grid line between
columns qi and qi+1 and the horizontal grid line between rows vj and vj+1; see Figure 1. If
there is more than one update operation between the queries qi and qi+1, they all translate
into points on the same vertical grid line lying on the appropriate horizontal lines. Let
P = fp1; p2; . . . ; pNg be the set of all the points corresponding to update operations.

Consider an axis parallel rectangle whose height spans rows vi; vi+1; . . . ; vj and whose

width spans columns qk; qk+1; . . . ; ql. This rectangle represents the following situation: im-

mediately before query qk any unlocked interior edge along the path vi; vi+1; . . . ; vj was
locked, and each of the exterior edges of the path, namely the edges (vi�1; vi) and (vj; vj+1),
was unlocked (if it was previously locked), and all the interior edges of this path remain

locked until the completion of query ql.

We claim that an optimal (i.e., minimum cost) plan for the problem with PATH and
TOTAL corresponds to partitioning the entire grid rectangle R into rectangles R1; R2; . . . ; Rt

such that
Pt

i=1(hi + wi) is minimized, where hi (resp. wi) is the length in unit grid size of

the horizontal (resp. vertical) edge of Ri, and such that no rectangle Ri contains a point of

P in its interior.

To see why this is true consider �rst the intersection of a single column qi with the

rectangles Ri. The cost of the query qi is the number of rectangles in the intersection, as
we assumed that the cost of a path query is equal to the number of rigid components in

the path. So we charge the cost of the query per rectangle Ri, to the portion of the lower

10



qk qk+1

Figure 2: The cost of restructuring between queries qk and qk+1

horizontal edge of Ri that intersects the column qi. Next consider the vertical grid line
between the query columns qk and qk+1 (see Figure 2). The rectangle edges that appear
on this vertical line correspond to the subpaths that have undergone change. The cost of

these changes is exactly the length of these vertical rectangle edges. Recall that, if there
are several update operations between queries qk and qk+1 our planner executes them all
at the same time, and the cost of restructuring a subpath of length s, by a collection of
and lock operations is s.

The only constraint that our original problem imposes on the partitioning of R is that
no rectangle in the partitioning contains a point of P in its interior. If a rectangle contains

a point Pj 2 P in its interior this means that our data structure has not been updated by
the update operation corresponding to the point Pj .

Lingas et al. [13] have shown that partitioning an axis-parallel rectangle R with N point
holes into axis-parallel rectangles with minimumtotal edge length, and such that no rectangle
in the partitioning contains a point hole in its interior, is an NP-complete problem. Hence

we can state the following theorem

Theorem 6 The problem with PATH and TOTAL is NP-complete.

4.2 Approximation Algorithms for the TOTAL Problem

A number of approximation algorithms have been proposed over the years for the rectangular

partition problem. Most of these algorithms rely on the connection between the rectangular
partition as above and the so-called \guillotine" partition [5]. Finding the optimal guillotine

partition is solvable in polynomial time, and it has been shown [5] that the optimal guillotine

partition has edge length no greater than 1:75 times the length of the optimal rectangular
partition.

Gonzalez and Zheng [5] give a 1:75 approximation bound for partitioning a rectangle

with N point holes into axis-parallel rectangles, using dynamic programming. The running

11



time of their algorithm is O(N5). Gonzalez, Razzazi and Zheng [8] give a simple O(N logN)

algorithm that obtains a factor 4 approximation for the same problem.

5 Further Results and Work in Progress

We currently exploring several di�erent aspects of the basic problem discussed above. In

the near future, we intend to prepare a revision to this report describing our e�orts. The

following are some of the issues we have considered.

� Providing fast approximation algorithms for the o�ine problem under the MIN cost

measure.

� The online version of these problems can be viewed from the perspective of competitive

analysis. There are several ways to model the online setting in this respect, including
metrical task systems [2], but we are particularly interested in a model we have devel-

oped that is a strict generalization of the k-server problem [14]. We will report this
model and our observations concerning it in a future version of this article.

References

[1] J. Barnes and P. Hut. A HierarchicalO(N logN) Force-Calculation Algorithm. Nature,
324 (1986), pp. 446{449.

[2] A. Borodin, N. Linial, and M.E. Saks. An Optimal On-Line Algorithm for Metrical
Task Systems. Journal of the ACM, 39 (1992), pp. 745{763.

[3] G.S. Chirikjian and J.W. Burdick. Kinematics of Hyper-Redundant Manipulators.
In Proc. 2nd International Workshop on Advances in Robot Kinematics, Linz, 1990,
pp. 392{399.

[4] M.L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221
(1983), pp. 709{713.

[5] D.-Z. Du, L.-Q. Pan and M.-T. Shing. Minimum Edge Length Guillotine Rectangular

Partition. Technical Report MSRI 02418-86. January 1986, Berkeley, California.

[6] N. Go and H.A. Scheraga. Ring Closure and Local Conformation Deformations of

Chain Molecules. Macromolecules 2 (1980), pp. 178{187.

[7] T. Gonzalez and S.-I. Zheng. Improved Bounds for Rectangular and Guillotine Parti-
tions. J. Symbolic Computation 7 (1989), pp. 591{610.

[8] T. Gonzalez, M. Razzazi and S.-I. Zheng. An E�cient Divide-and-Conquer Approxima-

tion for Hyperrectangular Partitions. In Proceedings of the 2nd Canadian Conference

on Computational Geometry, 1990, pp. 214{217.

12



[9] D. Halperin and M.H. Overmars. Spheres, Molecules, and Hidden Surface Removal. In

Proceedings of the 10th ACM Symposium on Computational Geometry, 1994, pp. 113{

122.

[10] F.K. Hwang. An O(n log n) algorithm for rectilinear minimal spanning tree. J. ACM

26 (1979), pp. 177{182.

[11] Y. Koga, K. Kondo, J. Ku�ner and J.-C. Latombe. Planning Motions with Intentions.

In Proceedings of SIGGRAPH, 1994, pp. 395{408.

[12] C. Levcopoulos and A. Lingas. Bounds on the Length of Convex Partitions of Poly-

gons. In Proceedings of the 4th Conference Found. Softw. Tech. Theoret. Comput. Sci.,

Lecture Notes in Computer Science 181, Springer-Verlag, pp. 279{295.

[13] A. Lingas, R.Y. Pinter, R.L. Rivest, and A. Shamir. Minimum edge length partitioning

of rectilinear polygons. In Proceedings of the 20th Annual Allerton Conference on

Communication, Control and Computing, 1985, pp. 53{63.

[14] M. Manasse, L. McGeoch, and D.D. Sleator. Competitive Algorithms for Server Prob-
lems. Journal of Algorithms, 11 (1990), pp. 208{230.

[15] K. Mehlhorn. Multi-dimensional Searching and Computational Geometry, Volume 3 of

Data Structures and Algorithms. Springer Verlag, New York, 1985.

[16] P.G. Mezey. Molecular surfaces, in Reviews in Computational Chemistry, Volume I.

K.B. Lipkowitz and D.B. Boyd, Eds., VCH Publishers, 1990.

[17] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-

rithms. Prentice Hall, New York, 1993.

[18] M. Yim. Locomotion with a Unit-Modular Recon�gurable Robot. PhD thesis, Stanford
Univ., December 1994. Stanford Technical Report STAN-CS-94-1536.

13


