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Abstract

We provide O(1) approximation algorithms for the following NP-hard problem
called k-Delivery TSP : We have at our disposal a truck of capacity k, and there are
n depots and n customers at various locations in some metric space, and exactly
one item (all of which are identical) at each depot. We want to �nd an optimal tour
using the truck to deliver one item to each customer. Our algorithms run in time
polynomial in both n and k. The 1-Delivery problem is one of �nding an optimal
tour that alternately visits depots and customers. For this case we use matroid in-
tersection to show a polynomial-time 2-approximation algorithm, improving upon
a factor 2.5 algorithm of Anily and Hassin [1]. Using this approximation combined
with certain lower bounding arguments we show a factor 11.5 approximation to the
optimal k-Delivery tour. For the in�nite k case we show a factor 2 approximation.

1 Introduction

Consider the following k-Delivery TSP. There are n depots and n customers at various
locations in some metric space. There are n identical items (say refrigerators), exactly

one at each depot, and one must be delivered to each customer. We have a truck of
capacity k at our disposal and our problem is to compute an optimal route to do these

deliveries (starting at one of the depots, say). Note that some of the depots/customers

can be at the same location, so that our algorithm also works for any collection of depots
and customers with integral supplies and demands respectively (and the algorithms

would run in time polynomial in the total supply/demand).

This problem is easily seen to be NP-hard by reducing from the TSP: set up a
depot and customer at each point of the TSP problem, and set k = 1; now an optimal

solution to this 1-Delivery problem will be an optimal solution to the TSP.
Other TSP variants that constrain the order of visiting the vertices have been

considered in the OR literature, although not from an approximation viewpoint: (a)

the Dial-a-Ride problem [8, 7, 9]: compute an optimal route for a k-capacity van to
pick-up and drop o� n persons between di�erent origin-destination pairs, and (b) the

Precedence-Constrained TSP [7]: For each vertex i there is a set P (i) of vertices that

must be visited before visiting i, and we are required to �nd an optimal tour that
satis�es these constraints.

In the rest of the paper we will refer to the depots as blue points and the customers

as red points.
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2 Unit Capacity Truck: 1-Delivery TSP

When the truck has unit capacity, any delivery route must alternately pick up and
deliver one item at a time. The corresponding graph problem is the following.

Bipartite Traveling Salesman Problem. Given an edge-weighted graph G

satisfying the triangle inequality, with n blue vertices (depots) and n red vertices

(customers), �nd the optimal bipartite tour starting and ending at a designated

blue vertex s and visiting all vertices. A tour is bipartite if no two consecutively

visited vertices have the same color.

Anily and Hassin [1] have shown a 2.5-approximation algorithm for a generalization

of this problem known as the Swapping Problem. Their algorithm �nds a perfect match-
ing M consisting of edges that connect red and blue vertices, and uses Christo�des'

heuristic [3] to �nd a tour T of the blue vertices. The �nal delivery route consists of
visiting the blue vertices in the sequence speci�ed by the tour T , using the match-

ing edges in M to deliver an item to a customer and return to the blue vertex (or

\short-cut" to the next blue vertex on T ). If OPT is the optimal delivery tour, clearly
T � 1:5OPT andM � 0:5OPT, whereas the total length of the delivery tour is at most

T + 2M � 2:5OPT. We exploit some combinatorial properties of bipartite spanning

trees and matroid intersection to improve this factor to 2.

2.1 Matching Trees

One naive approach to achieve a factor 2 approximation that does not work is to

mimic the well-known factor-2 approximation algorithm for the TSP problem: pick a

bipartite spanning tree of G, perform a depth-�rst traversal followed by short-cutting.
A spanning tree of G is bipartite if each edge connects a red and blue vertex. Given a

bipartite spanning tree T , we can think of it as a tree rooted at s, and do a depth-�rst

traversal of T with short-cuts (there may in general be several ways to short-cut) and
obtain a tour of G. However, such a tour may not be bipartite; there are bipartite

spanning trees that do not yield a bipartite tour regardless of how we do the depth-
�rst traversal and short-cuts. Fig. 1 shows an example of such a tree. When does

a depth-�rst traversal (with short-cuts) of a bipartite spanning tree yield a bipartite

tour? Theorem 1 shows a su�cient condition (and Fig. 2 shows that the condition is
not necessary).

Theorem 1 If a bipartite spanning tree T (rooted at s) of G contains a perfect match-
ing of G, then there is a depth �rst traversal of T that visits red and blue vertices
alternately (and this DFT therefore yields a bipartite tour of G).

Proof: Consider T as a tree rooted at the designated vertex s. For any vertex v of

T , let T (v) denote the subtree of T rooted at v. Let r(v) and b(v) denote the number

of red and blue vertices (including v) in T (v) (see Fig. 3). For any set of vertices S, a
vertex v is a neighbor of S if there is an edge of T connecting v to some vertex in S.

Suppose WLOG that v is red. Clearly the number of neighbors of the red vertices

in T (v) equals b(v) if v is the root of T and equals b(v) + 1 otherwise. By Hall's
theorem, since T contains a perfect matching, b(v) � r(v)�1 must hold. On the other

hand the number of neighbors of the blue vertices in T (v) is exactly r(v), and by Hall's

theorem we must have r(v) � b(v). Thus for any vertex v, either r(v) = b(v) (we will
say v is even in this case) or the number of the vertices of T (v) having the color of v
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Figure 1: A bipartite spanning tree for which no depth-�rst traversal yields a bipartitie

tour.
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Figure 2: A bipartite spanning tree that does not contain a perfect matching and yet

there is a depth-�rst traversal that can be short-cut to yield a bipartite tour.
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Figure 3: A bipartite spanning tree that contains a perfect matching, with the matching

edges shown in dark. The values r(v) and b(v) of the root node are shown. The
vertices are numbered in the depth-�rst order speci�ed above;this is an alternating-

color ordering of the vertices.
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Figure 4: A bipartite spanning tree where the blue (shaded) vertices have degree at
most 2. The edges of the perfect matching are shown in dark.

outnumber the other vertices by exactly 1 (we will say v is odd). Clearly if v is even
then exactly one child of v is odd, and if v is odd, then all of its children are even.

Consider the DFT of T speci�ed by the following rule:

Depth First Traversal Rule. After visiting a vertex v, traverse the subtrees

rooted at the even children (if any) before visiting the odd child (if any).

We claim that this DFT visits the vertices of T in alternating-color order. The proof is
by induction on the number of vertices visited. The claim is trivially true for the very

�rst vertex s (the root) visited. For any vertex v other than s, assume inductively that

the vertices visited before v were visited in alternating color-order. Suppose WLOG
that v is red. We must show that the last vertex visited before visiting v is blue. Let

the parent of v be u. Since even children are visited before the (at most one) odd child,
the set S of descendants of u visited before v contains an equal number of red and blue

vertices (this number could be zero). Since u is blue, and by induction hypothesis the

vertices in S [ fug were visited in alternating-color order, the last vertex of S [ fug
visited must have been blue.

We refer to a bipartite spanning tree that contains a perfect matching as a matching
tree. Clearly, the optimal bipartite tour OPT contains a matching tree, so the weight

of a minimum-weight matching tree is a lower bound on the length of OPT. Theorem

1 implies that a depth-�rst traversal (with short-cuts) of any matching tree yields a
bipartite tour, and by the triangle inequality, the length of this tour is at most twice

the length of the tree. Thus, if one could �nd the minimum-weight matching tree T

in polynomial time, a depth-�rst traversal (with short-cuts) of T would yield a tour
whose length is at most 2:OPT . However, �nding the minimum-weight matching tree

is NP-hard!

The trick is to use the following su�cient (but not necessary, see Fig. 3) condition
for a bipartite spanning tree to contain a perfect matching (see Fig. 4).

Lemma 2 Any bipartite spanning tree T whose blue vertices have degree at most 2
must contain a perfect matching. (That is a bipartite spanning tree where the blue
nodes have degree at most 2 must be a matching tree)

Proof: The spanning tree T must have 2n � 1 edges, and since blue vertices have

degree at most 2, exactly one blue vertex has degree 1, and all other blue vertices have
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degree 2. Consider any subset S of blue nodes, and let jSj = m. There are at least

2m� 1 edges going out of S, since at most one of the vertices of S has degree 1. Let
N(S) denote the set of neighbors of S, and suppose jN(S)j < m. Thus jN(S)[Sj< 2m

and the number of tree edges connecting vertices of N(S)[S is at least 2m� 1, which

means there is a cycle. This is impossible since T is a spanning tree. Thus any subset
S of blue vertices has at least jSj red neighbors. Hall's theorem then implies that T

contains a perfect matching.

Clearly, the OPT bipartite tour contains a bipartite spanning tree where all blue
vertices have degree at most 2. Therefore the weight of the minimum-weight bipartite

spanning tree whose blue vertices have degree at most 2, is a lower bound on OPT.

Again, if we can �nd (in polynomial time) the minimum-weight bipartite spanning tree
T whose blue vertices have degree at most 2, then a depth �rst traversal of T with

short-cuts will yield a tour whose length is at most 2.0 times OPT.

2.2 Matroid Intersection

It turns out that the problem of �nding T can be viewed as that of �nding the

minimum-weight, maximum-cardinality subset in the intersection of two matroids, and
polynomial-time algorithms exist for this problem [6, 4, 5]. The two matroids in this

case are: M1, the matroid of all bipartite forests, and M2, the matroid of all bipartite
subgraphs whose blue vertices have degree at most 2.

For completeness we review here the de�nition of a matroid, following the standard

text [6].
De�nition. Amatroid M = (E; I) is a structure in which E a �nite set of elements

and I is a family of subsets (called independent sets) of E, such that

� � 2 I and all proper subsets of a set I 2 I are in I.

� If Ip and Ip+1 are sets in I containing p and p + 1 elements respectively, then

there exists an element e 2 Ip+1 such that Ip [ feg 2 I

An example of a matroid is the graphic matroid M = (E; I) where E is the set of

edges of an undirected graph, and a subset I � E is in I if and only if I is cycle-free.

Another example of a matroid is the matrix matroid M = (C; I) where C is the set
of columns of a �xed matrix A and a subset S of columns is in I if and only if the

columns of S are linearly independent. A maximal-cardinality independent subset of a
matroid is called a base of a matroid; all bases of a matroid have the same cardinality.

Returning to our problem, let E be the set of all edges that connect red vertices to

blue vertices. Let F denote the collection of all subsets of E that are cycle-free, and let
D denote the collection of subsets S of E such that no more than two edges of S are

incident on any blue vertex. Then it is easily seen that M1 = (E;F) and M2 = (E;D)

are matroids. In addition, the problem of �nding

a minimum-weight bipartite spanning tree where the blue vertices have degree at

most two,

is equivalent to the problem of �nding

a minimum-weight common base of M1 and M2.

This is a special case of the matroid intersection problem, which was �rst solved
in polynomial time by Edmonds [4, 5]. Other authors [2] have exploited the special

structure of problems such as ours to improve the running times.

Thus we have our main theorem:
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Theorem 3 There is a polynomial time 2-approximate algorithm for the Bipartite
Traveling Salesman problem

3 Finite Capacity Truck: k-Delivery TSP

3.1 Lower bounds

We now derive some useful lower bounds. Let Ck denote the (length of the) optimal

k-Delivery tour, and let Cr and Cb denote the (length of the) optimal tours on the red

and blue points respectively.

Lemma 4
1

2k
C1 � Ck.

Proof: Start with an optimal k-Delivery tour Ck: this de�nes an ordering r1; r2; . . . ; rn
on the red points and an ordering b1; b2; . . . ; bn on the blue points. We then construct

a 1-Delivery tour T starting at the blue vertex b1 as follows: Consider the blue vertices

in the order imposed by Ck, connecting the ith blue vertex bi to the earliest red vertex
in the Ck-ordering that has not already been connected to a blue vertex; then add

another edge connecting this red vertex to the next blue vertex bi+1 (if this red vertex
is the last one, connect it to the starting blue vertex b1). By the triangle inequality,

each edge e of T is no longer than the sum of the Ck-edges connecting the endpoints of

e; we can thus \charge o�" each edge of T to a collection of edges of Ck. Since there is
never a sequence of more than k consecutive red or consecutive blue points in the tour

Ck, it follows that no edge of T is charged more than 2k times. Thus T � 2kCk, from

which the lemma follows since C1 � T .

The following lower bounds are easy to see:

Lemma 5 Cr � Ck and Cb � Ck.

3.2 An O(1) approximation

We now use the two lower bounds just presented to design a constant-factor approxi-

mation algorithm for the k-Delivery problem. Assume for simplicity of exposition that
n is a multiple of k. We �rst use Christo�des' heuristic to obtain a 1.5-approximate

tour Tr of the red vertices and a 1.5-approximate tour Tb of the blue vertices. Next we

(arbitrarily) break up Tr and Tb into paths of k vertices each, by deleting edges appro-
priately. It will be convenient to view each k-path as a \super-node" in the following.

We now overlay our 2-approximate 1-Delivery tour T1 (from the previous section) on
this graph. Note that any (red or blue) super-node now has degree exactly 2k, and

that there may be several edges between two given super-nodes. So what we have now

is a 2k-regular bipartite multi-graph. The following lemma is crucial:

Lemma 6 The edges of a d-regular bipartite multi-graph can be partitioned into d

perfect matchings.

Proof: Firstly note that the d-regularity implies there are an equal number of vertices

on each side of the bipartition. Consider any subset S of the vertices on the left side

of the bipartite graph and say jSj = m. Clearly the number of edges emanating from
S is dm and by the Pigeonhole Principle if the set S has fewer than m neighbors on

the right side then some vertex on the right side has degree greater than d, which

is a contradiction. Thus any subset S of the left-vertices has at least jSj neighbors.

6



Clearly this remains true even if replace each multi-edge by one of the edges, so by

Hall's theorem it follows that the multi-graph contains a perfect matching. If we delete
this perfect matching, we are left with a (d� 1)-regular bipartite multi-graph, and the

same argument can be repeated, each time removing a perfect matching. This proves

the lemma.

We can thus partition T1 into 2k perfect matchings on the super-nodes. We pick

the least-weight matching M out of these and delete all other edges of T1. Clearly
M � 1

2k
T1. At this stage we have a collection of n=k subgraphs H1; H2; . . . ; Hn=k, each

consisting of a red supernode connected via an edge of M to a blue supernode. Now

we re-introduce the edges of Tb that were removed when breaking Tb into k-paths; this
imposes a cyclic ordering on the subgraphs Hi; let us relabel them H1; H2; . . . ; Hn=k

with this cyclic ordering, where H1 contains the start blue vertex. We now traverse the

subgraphs H1; H2; . . . ; Hn=k in sequence as follows. Within each subgraph Hi �rst visit
all the blue vertices, then use the edge of M to go to the red side and visit all the red

vertices, and then return to the blue side, and go to the blue vertex that is connected
via an edge e of Tb to the next subgraph Hi+1, and use the edge e to go to Hi+1 (or

H1 if i = n=k). We claim that this tour T is within a constant factor of the optimal

k-Delivery tour:

Theorem 7 The above algorithm produces a tour T whose length is within a factor of
11.5 of the optimal k-Delivery tour Ck.

Proof: Notice that in short-cutting, by triangle inequality, we charge each edge of Tb
no more than 3 times, each edge of Tr no more than 2 times and each edge of M at

most 2 times. So

T � 3Tb + 2Tr + 2M

� 3� 1:5Cb + 2� 1:5Cr +
1

k
T1

� 7:5Ck +
2:0

k
C1

� 7:5Ck +
2:0

k
2kCk

� 11:5Ck

4 In�nite Capacity Truck

When the truck has in�nite capacity, the only restriction is that at any stage during
the delivery, the number of items picked up so far be at least as many as the number

of customers visited so far. The corresponding graph problem is this:

Blue-Dominant TSP. Given an edge-weighted graph G satisfying the triangle

inequality, with n blue vertices (depots) and n red vertices �nd an optimal tour

that starts at a blue vertex s and visits all the vertices (and returns to s) in blue-

dominant order. An ordering of vertices is blue-dominant if in each pre�x of the

ordering, there are at least as many blue vertices as red vertices.
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We show below a 2-approximation algorithm for this problem. It turns out that

one can obtain a 2-approximation for this problem by �rst �nding a minimum-weight
spanning tree (not necessarily bipartite) and then using a speci�c depth �rst traversal

and short-cutting scheme. As Fig 2 shows, for a �xed depth-�rst traversal (DFT)

there may be several ways to perform short-cuts. Let us make precise the distinction
between a DFT and a speci�c short-cutting scheme. Note that we can view a depth-

�rst traversal as traversing edges rather than as visiting vertices. In the edge-traversing

viewpoint, each edge is traversed exactly twice: �rst downward (away from the root)
and later upward (toward the root). Thus each vertex may be \visited" several times

by a DFT. The short-cutting scheme marks exactly one out of these several visits to
a vertex. For a �xed DFT and short-cutting scheme, the marking order de�nes a tour

of all the vertices. We will consider two types of short-cutting schemes in particular:

when the DFT reaches a subtree rooted at v, we may mark v either before or after
visiting all its descendants. In the former case we say v is pre-marked , and in the latter

case we say v is post-marked .

Theorem 8 For any spanning tree T rooted at the blue vertex s, there is a depth-�rs
t traversal and a short-cutting scheme that marks the vertices in blue-dominant order.

Proof: For any vertex v, let r(v) and b(v) be de�ned as before. For a marking

sequence de�ned by a DFT and a short-cutting scheme, for any vertex v let R(v)

denote the number of red vertices marked just before the DFT �rst reaches v, and let
B(v) denote the

number of blue vertices marked just before the DFT �rst reaches v.
Consider a depth-�rst traversal (DFT) of T satisfying the following:

Depth First Traversal Rule. After visiting a vertex v, if there are any children

w of v such that b(w) � r(w) then visit them (and their descendants) before

visiting any remaining children.

The short-cutting scheme is:

Short-Cutting Rule. Pre-mark blue-vertices (depots) and post-mark red ver-

tices.

Figure 5 illustrates a use of these rules.

We would like to show that B(v) � R(v) holds at all times. We will in fact claim

that the following invariant holds whenever the DFT �rst reaches a vertex v:

B(v) � R(v); and

B(v) + b(v) � R(v) + r(v); or equivalently B(v)�R(v) � r(v)� b(v):

The proof of the invariant is by structural induction on the rooted tree T . It is

trivially true at the start vertex s since B(s) = R(s) = 0 and b(s) = r(s) = n. Assume
inductively that the invariant holds just before the DFT reaches some vertex v. We

argue that it will hold at each child of v, visited say in the order w1; w2; . . . ; wk. For any
vertex v, let c(v) denote the quantity r(v)� b(v), the \surplus of customers", and let

D(v) denote B(v)�R(v), the \depot surplus". Our inductive assumption D(v) � c(v)

implies, if v is blue,

D(v) �
kX

i=1

c(wi)� 1;
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Figure 5: When the vertices of this spanning tree are marked in depth-�rst order using
the short-cutting scheme from above, we get a valid delivery tour for an in�nite-capacity

truck. The depots are shown shaded.

and if v is red,

D(v) �
kX

i=1

c(wi) + 1:

If v is blue, it is marked before the DFT visits w1, so D(w1) = D(v)+ 1. If v is red, it
is not marked before visiting w1, so D(w1) = D(v). In either case we have D(w1) � 0

and

D(w1) �
kX

i=1

c(wi):

Note that for each i = 1; 2; . . . ; k � 1,

D(wi+1) = D(wi)� c(wi) � c(wi+1) + c(wi+2) + . . . + c(wk):

Our DFT rule speci�es that children with c(wi) � 0 must be visited �rst, and the above

equation implies that the D(:) value does not decrease after traversing the subtree
rooted at such a child and therefore remains positive. So our invariant holds at each

such child. After the subtree under the last such child (say wj) has been traversed, we

have D(wj+1) � 0 and

D(wj+1) � c(wj+1) + c(wj+2) + . . . + c(wk);

where each term on the right hand side is positive. It is now easy to see that D(wi) � 0

and D(wi) � c(wi) will hold for each i = j + 1; . . . ; k.
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